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Abstract

Quality estimation (QE) of machine transla-

tion (MT) aims to evaluate the quality of

machine-translated sentences without refer-

ences and is important in practical applications

of MT. Training QE models require massive

parallel data with hand-crafted quality anno-

tations, which are time-consuming and labor-

intensive to obtain. To address the issue of

the absence of annotated training data, previ-

ous studies attempt to develop unsupervised

QE methods. However, very few of them can

be applied to both sentence- and word-level

QE tasks, and they may suffer from noises in

the synthetic data. To reduce the negative im-

pact of noises, we propose a self-supervised

method for both sentence- and word-level QE,

which performs quality estimation by recover-

ing the masked target words. Experimental re-

sults show that our method outperforms previ-

ous unsupervised methods on several QE tasks

in different language pairs and domains.1

1 Introduction

In recent years, neural approaches (Sutskever et al.,

2014; Bahdanau et al., 2015; Luong et al., 2015;

Vaswani et al., 2017) have significantly improved

the quality of machine translation (MT). Despite

their apparent success, neural machine translation

(NMT) systems still inevitably generate erroneous

translations in real-world scenarios (Bentivogli

et al., 2016; Castilho et al., 2017), especially for

low-resource language pairs. Therefore, the eval-

uation of translation quality plays an important

role in some applications of MT. For example, in

computer-assisted translation (CAT) (Barrachina

et al., 2009), the evaluation of translation quality

can significantly reduce human efforts for post-

editing (Specia, 2011).

∗Corresponding author
1Code can be found at https://github.com/

THUNLP-MT/SelfSupervisedQE.

Quality estimation (QE) of MT aims to evaluate

the quality of the outputs of an MT system without

references. Training QE models often requires mas-

sive parallel data, which are composed of authentic

source sentences and machine-translated target sen-

tences with quality annotations produced by man-

ual evaluation or human post-editing (Moura et al.,

2020; Hu et al., 2020; Ranasinghe et al., 2020). As

obtaining such annotated data is time-consuming

and labor-intensive in practice, unsupervised QE

has received increasing attention (Popović, 2012;

Etchegoyhen et al., 2018; Zhang et al., 2020; Zhou

et al., 2020; Fomicheva et al., 2020; Tuan et al.,

2021).

Most of the aforementioned methods use vari-

ous features to conduct unsupervised QE (Popović,

2012; Etchegoyhen et al., 2018; Zhang et al., 2020;

Zhou et al., 2020; Fomicheva et al., 2020). These

methods are simple and effective but limited to

sentence-level tasks. Compared with sentence-

level QE, word-level QE can provide more fine-

grained quality information (Fan et al., 2019), and

thus it can better assist post-editing in CAT when

combined with sentence-level QE. Recently, Tuan

et al. (2021) use synthetic data to train unsuper-

vised QE models, which can be applied for both

sentence- and word-level tasks. Specifically, they

construct synthetic target sentences using MT mod-

els or masked language models (MLMs) and gener-

ate quality annotations by comparing the synthetic

target sentences with the references using the TER

tool (Snover et al., 2005).

However, the method proposed by Tuan et al.

(2021) still has two major weaknesses. First, syn-

thetic data contain biased noise and may negatively

affect the model performance. On the one hand,

the differences between MT outputs and references

are usually larger than the differences between MT

outputs and their post-editions (Snover et al., 2005),

and thus more errors will be annotated in the syn-

thetic data. On the other hand, sentences that are
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Figure 1: Overview of our self-supervised QE method.

Our method performs quality estimation by checking

whether the masked target words can be successfully

recovered using the source sentence and the observed

target words. Masked words are highlighted by shad-

ing.

rewritten by MLMs often contain more catastrophic

errors, which rarely appear in machine-translated

sentences (Tuan et al., 2021). Second, the training

process of this method is complex since it requires

extra models to generate synthetic data.

In this work, we propose a self-supervised QE

method to overcome the aforementioned weak-

nesses. The basic idea is to mask some target

words in the machine-translated sentence and use

the source sentence and the observed target words

to recover the masked target words. Intuitively, a

target word is correct if it can be recovered accord-

ing to its surrounding context. For example, in

Figure 1, since the masked target word “Er” can

be successfully recovered but another masked tar-

get word “Lieder” is not identical to the recov-

ered word “Musik”, we identify “Er” as correct

and “Lieder” as erroneous. Based on this intuition,

our method estimates the translation quality of the

target words by checking whether they can be cor-

rectly recovered. Finally, we obtain the sentence-

level quality score by summarizing the word-level

predictions. Obviously, our method is not affected

by the noise and is easier to train, since it involves

no synthetic data. Experimental results show that

our self-supervised method outperforms previous

unsupervised methods.

2 Quality Estimation for Machine

Translation

Quality estimation for machine translation aims

to evaluate the quality of machine-translated sen-

tences without using references. Currently, there

are different types of QE tasks, including sentence-

, word-, phrase- and document-level QE. In this

work, we mainly focus on sentence- and word-level

QE.

Generally, both sentence- and word-level qual-

Source He likes Music .

Target Er mag Lieder .

Post-edition Er mag Musik .

Sentence-level QE 0.25

Word-level QE OK OK BAD OK

Table 1: Example of QE data for English-German trans-

lation. Erroneous words in MT are highlighted in italic.

ity annotations are generated by comparing the

machine-translated target sentences with their post-

editions using the TER tool (Snover et al., 2005).

For word-level annotations, each target word is

annotated with “OK” or “BAD”, where “OK” de-

notes correct words and “BAD” denotes erroneous

words. For sentence-level annotations, target sen-

tences are annotated with Human Translation Error

Rate (HTER) scores, which measure the percentage

of human edits to correct MT outputs:

HTER =

# of edits

# of words in the post-edition
. (1)

According to the equation above, sentence-level

quality scores are calculated based on the word-

level errors in the target sentences. In other words,

HTER scores can be approximately regarded as a

summary of word-level quality tags. Table 1 shows

an example of QE data.

3 Self-Supervised Quality Estimation

Our self-supervised QE method is implemented

based on the architecture of MLM (Devlin et al.,

2019) (Section 3.1). We train the model to recover

the masked target words in the authentic parallel

corpora and estimate the translation quality by re-

covering the masked target words in the target sen-

tence (Section 3.2). Besides, Monte Carlo (MC)

Dropout (Gal and Ghahramani, 2016) is utilized to

better calculate quality scores (Section 3.3).

3.1 Model Architecture

As shown in Figure 2, our self-supervised QE

model is built on top of the masked language model

(Devlin et al., 2019). We use the concatenation

of a source sentence and a partially masked tar-

get sentence as the input sequence and then use a

Transformer encoder to recover the masked tokens.

Formally, for any parallel sentence pair 〈x,y〉, we

randomly divide y into two parts ym and yo and

mask all tokens in ym. Then, we concatenate x and

the partially masked version of y as the input se-

quence. Suppose the length of the target sentence is
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Figure 2: The model architecture of our self-supervised QE method. Masked words are highlighted by shading.

T : y = y1, . . . , yt, . . . , yT . If the t-th target token

yt ∈ ym is masked, we use the model with parame-

ter θ to calculate the probability of yt conditioned

on x and yo (i.e., P (yt|x,yo;θ)).
Similar to Devlin et al. (2019), we mask 15% of

the tokens in the target sentence. However, since

the vocabulary of BERT is built with WordPiece

(Wu et al., 2016), words in the input sequence

may be divided into multiple subwords. There-

fore, when a subword of a word with multiple sub-

words is masked, the model may easily recover the

masked subword according to the remaining sub-

words without leveraging the source sentence. This

is undesirable because the source sentence should

play an important role in determining whether the

token is correctly translated. To address this prob-

lem, we adopt a masking strategy called Whole

Word Masking (WWM) (Cui et al., 2019), prevent-

ing the model from recovering a masked subword

only using the remaining subwords.

3.2 Training and Inference

As shown in Figure 3(a), our model is trained to

recover the masked tokens in the target side of

the authentic sentence pairs. Formally, given an

unlabeled training dataset D = {〈x(s),y(s)〉}Ss=1

which consists of authentic sentence pairs, we di-

vide each target sentence y(s) in D into the masked

part y
(s)
m and the observed part y

(s)
o . We train

the model on D to minimize the negative log-

likelihood loss on the masked target tokens:

L(D,θ) = −
S∑

s=1

logP (ym|x(s),y(s)
o ;θ)

= −

S∑

s=1

∑

yt∈y
(s)
m

logP (yt|x
(s),y(s)

o ;θ).

(2)

During the training process, the model θ learns

to recover the masked target tokens in the authen-

tic parallel corpora. After the training process, we

use the model to perform quality estimation by

checking whether the masked target tokens can be

successfully recovered. Specifically, as shown in

Figure 3(b), for each masked token, we use the

model to calculate the probability of successful

recovery conditioned on the source sentence and

the observed target tokens. Obviously, the token

is difficult to recover if the probability is low. In

this case, we consider the token is erroneous. Oth-

erwise, the token tends to be correct.

Formally, suppose we have a sentence pair 〈x, ŷ〉
which consists of an authentic source sentence x

and a machine-translated target sentence ŷ. When

estimating the translation quality of the t-th to-

ken ŷt in ŷ, our method randomly divides the tar-

get sequence ŷ into the observed part ŷo and the

masked part ŷm such that ŷt ∈ ŷm. Then, we use

the model to calculate the conditional probability

P (ŷt|x, ŷo;θ), which can be used as its quality

score:

score(ŷt) = P (ŷt|x, ŷo;θ). (3)

As mentioned in Section 3.1, some of the in-

put words may contain multiple subwords. In this

case, we use ŷt to denote a subword in the target

sequence and ŵ to denote the word which ŷt be-

longs to. We calculate the quality score of a target

word with multiple subwords by simply averaging

the quality scores of its subwords:

score(ŵ) =
1

|ŵ|

∑

ŷt∈ŵ

score(ŷt), (4)

where |ŵ| denotes the number of subwords in ŵ.
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(a) Training (b) Inference

Figure 3: Training and inference processes of our self-supervised QE method. Masked words are highlighted by

shading. (a) During training, the model is trained to recover the masked target words in authentic parallel sentence

pairs. (b) During inference, the model performs quality estimation according to the probability that the masked

target words are successfully recovered.

If a threshold τ ∈ (0, 1) is given, a real-valued

quality score can be mapped to a quality tag:

tag(ŵ) =

{

OK score(ŵ) ≥ τ,

BAD score(ŵ) < τ.
(5)

Finally, we calculate the sentence-level quality

score by averaging the quality scores over all target

words:

score(ŷ) = −
1

|ŷ|

∑

ŵ∈ŷ

score(ŵ), (6)

where |ŷ| denotes the number of words in ŷ. Note

that we add a negative sign to the equation above

since HTER scores are negatively correlated with

translation quality.

3.3 Calculating Quality Scores with Monte

Carlo Dropout

In this work, we also utilize Monte Carlo (MC)

Dropout (Gal and Ghahramani, 2016), which is

proven conducive to the performance of unsuper-

vised QE models (Fomicheva et al., 2020). Instead

of directly calculating token-level quality scores us-

ing Eq. (3), we sample multiple models by perturb-

ing the original model parameters using dropout

(Srivastava et al., 2014) and use these models to cal-

culate the expectation of conditional probabilities

as the quality scores.

Specifically, in our method, each time we can

only obtain the probability of the masked target

words. Therefore, if we need N samples of prob-

ability for each target token, we sample N ′ > N

different models and conduct N ′ different estima-

tions using these models, making each target word

masked exactly N times among all N ′ estimations.

Thus, we obtain N samples for each target token

and then calculate the quality score by averaging

these samples. For the details about this process,

please refer to Appendix A.1.

4 Experiments

4.1 Setup

Data and Preprocessing

We mainly conducted experiments on the WMT

2019 QE tasks, which consist of tasks in two differ-

ent language pairs (En-De and En-Ru). Both tasks

are in the IT domain. Since our experiments were

conducted in an unsupervised setting, we used par-

allel corpora without quality annotations as train-

ing data2. Specifically, for En-De, we used in-

domain parallel data from various sources, includ-

ing the training data from the WMT 2016 IT do-

main translation task, the WMT 2017 QE task, and

the WMT 2018 APE task, as well as the Openof-

fice and KDE4 corpora available in OPUS3 (Tiede-

mann, 2012). For En-Ru, we used the in-domain

parallel data collected by OPUS, including ada83,

GNOME, KDE4, OpenOffice, PHP and Ubuntu.

To further validate our method’s performance in

different domains, we also conducted experiments

on the WMT 2018 En-Lv QE task, which is in the

biomedical domain. We used the EMEA corpus

(which is also available in OPUS) as training data.

Sentences were tokenized and truecased using

the scripts provided by Moses (Koehn et al., 2007).

We also deduplicated the sentences in the train-

ing datasets. Table 2 shows the statistics of these

datasets.

2Although some of the training data have quality annota-
tions, we did not use these annotations in the experiments.

3https://opus.nlpl.eu/
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Year Language Pair Domain System Train Dev Test

2018 En-Lv Biomedical
SMT

313K
1.00K 1.32K

NMT 1.00K 1.45K

2019
En-De IT NMT 365K 1.00K 1.02K

En-Ru IT NMT 217K 1.00K 1.02K

Table 2: Statistics of the training, development and test datasets in our experiments.

Baselines

We mainly compared our method with SyntheticQE

(Tuan et al., 2021), which uses synthetic data to

train unsupervised QE models for both sentence-

and word-level tasks. This baseline has three dif-

ferent variants:

1. SyntheticQE-MT: The target side of the syn-

thetic data is produced using MT models.

2. SyntheticQE-MLM: The target side of the syn-

thetic data is produced using MLMs.

3. SyntheticQE-MT+MLM: An ensemble of the

aforementioned two models.

To further validate the performance of our

method, we also compared our method with the fol-

lowing unsupervised sentence-level baseline meth-

ods:

1. uMQE (Etchegoyhen et al., 2018): A method

based on lexical translation tables and statisti-

cal language models.

2. BERTScore (Zhang et al., 2020): A method

based on similarity scores of contextual BERT

embeddings.

3. BERTScore++ (Zhou et al., 2020): A variant

of BERTScore (Zhang et al., 2020), which

also uses word alignments and MLMs.

4. NMT-QE (Fomicheva et al., 2020): A method

based on NMT models and uncertainty quan-

tification.

Evaluation

We evaluated the performances of our method and

the baselines using the standard metrics of the

WMT QE shared tasks. Specifically, we used Pear-

son’s correlation metric for sentence-level tasks

and the multiplication of F1-scores for “OK” and

“BAD” classes for word-level tasks.

Implementation Details

We implemented our method on top of the Trans-

formers library4 (Wolf et al., 2020). We trained

our model by fine-tuning the multilingual BERT

(Devlin et al., 2019). We used the Adam optimizer

(Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.999
and ǫ = 10−8 to optimize model parameters. Dur-

ing training, we set the batch size to 128, the maxi-

mum sequence length to 256, the number of train-

ing steps to 100,000, the learning rate to 5×10−5

and the dropout rate to 0.1. We evaluated our model

every 1,000 steps and chose the model with the

best performance on the development set for infer-

ence. For the MC Dropout process, we used the

same dropout rate as during training and set N to

6. Since each prediction masks about 15% of the

words, we set N ′ = N/15% = 40. We tuned the

threshold τ on the development set to maximize

the word-level performance5. For ensemble mod-

els, we simply averaged the quality scores given

by two different models (and then obtained the

word-level tags based on the threshold). For the im-

plementation details of the baselines, please refer

to Appendix A.3.

4.2 Results

We first compared our self-supervised QE method

with different variants of SyntheticQE (Tuan et al.,

2021) on the WMT 2019 sentence- and word-level

QE tasks. The experimental results are shown in

Table 3.

For single models, the baseline SyntheticQE-MT

outperforms another baseline SyntheticQE-MLM

except on the En-Ru sentence-level task. Our sin-

gle model consistently outperforms both baselines

on both sentence- and word-level tasks in two dif-

ferent language pairs. Additionally, our single

model achieves competitive or better performance

compared to the highly complex ensemble model

4https://github.com/huggingface/

transformers
5For the thresholds used in the experiments, please refer

to Appendix A.2.
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Method

En-De En-Ru

Sent-Level Word-Level Sent-Level Word-Level

Dev Test Dev Test Dev Test Dev Test

Results of Supervised Models

Supervised∗ 0.473 0.507 0.366 0.396 0.495 0.517 0.410 0.448

Results of Single Unsupervised Models

SyntheticQE-MT 0.478 0.425 0.349 0.338 0.201 0.233 0.263 0.265

SyntheticQE-MLM 0.386 0.368 0.318 0.309 0.204 0.284 0.181 0.208

Ours 0.504 0.463 0.381 0.383 0.242 0.435 0.318 0.338

Results of Ensemble Unsupervised Models

SyntheticQE-MT Ensemble 0.488 0.428 0.360 0.339 0.212 0.246 0.274 0.297

SyntheticQE-MLM Ensemble 0.407 0.379 0.318 0.307 0.210 0.299 0.185 0.216

SyntheticQE-MT+MLM 0.508 0.460 0.373 0.362 0.247 0.317 0.262 0.286

Ours Ensemble 0.518 0.462 0.395 0.385 0.248 0.453 0.318 0.359

Table 3: Comparison with SyntheticQE (Tuan et al., 2021) on the WMT 2019 sentence- and word-level develop-

ment and test sets. “*”: we followed Kepler et al. (2019) and implemented the supervised models by fine-tuning

the multilingual BERT (Devlin et al., 2019). For the implementation details of the supervised models, please refer

to Appendix A.4.

Dataset Method Sent Word

SMT

SyntheticQE-MT 0.469 0.417

SyntheticQE-MLM 0.416 0.298

Ours 0.560 0.425

NMT

SyntheticQE-MT 0.526 0.444

SyntheticQE-MLM 0.424 0.320

Ours 0.590 0.476

Table 4: Comparison with SyntheticQE (Tuan et al.,

2021) on the WMT 2018 En-Lv test sets.

Method
En-Lv En-De En-Ru

SMT NMT NMT NMT

uMQE 0.385 0.550 0.375 0.243

BERTScore 0.176 0.221 -0.101 0.093

BERTScore++ 0.213 0.155 -0.073 0.069

NMT-QE 0.540 0.580 0.452 0.372

Ours 0.560 0.590 0.463 0.435

Table 5: Comparison with other previous unsupervised

methods (Etchegoyhen et al., 2018; Zhang et al., 2020;

Zhou et al., 2020; Fomicheva et al., 2020) on the WMT

2018 En-Lv and the WMT 2019 sentence-level test

sets.

SyntheticQE-MT+MLM, which requires both MT

and MLM models to generate synthetic data.

For ensemble models, the ensemble

model SyntheticQE-MT+MLM outperforms

SyntheticQE-MT and SyntheticQE-MLM (includ-

ing their ensemble variants) in most cases. Our

ensemble model performs better than our single

Figure 4: Precision-recall curves of SyntheticQE (Tuan

et al., 2021) and our self-supervised method for “BAD”

class on the WMT 2019 En-De word-level develop-

ment set.

model in most cases and consistently outperforms

all ensemble baselines.

To further validate whether our method can gen-

eralize across different domains, we conducted ex-

periments on the WMT 2018 En-Lv task, which

is in the biomedical domain. As shown in Table 4,

our single model outperforms both SyntheticQE-

MT and SyntheticQE-MLM on both sentence- and

word-level tasks, which confirms that our method

can generalize well across different domains.

We also compared our method with other un-

supervised sentence-level methods. As shown in

Table 5, our method also outperforms other unsu-

pervised methods on sentence-level tasks.
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Source switch between the snapshots to find the settings you like best .

Target & Golden
wechseln Sie zwischen den Schnappschüsse , um die gewünschten

Einstellungen zu finden .

SyntheticQE-MT
wechseln Sie zwischen den Schnappschüsse , um die gewünschten

Einstellungen zu finden .

SyntheticQE-MLM
wechseln Sie zwischen den Schnappschüsse , um die gewünschten

Einstellungen zu finden .

Ours
wechseln Sie zwischen den Schnappschüsse , um die gewünschten

Einstellungen zu finden .

Table 6: Example of word-level QE using different methods. Erroneous target words annotated in the golden data

or detected by the models are highlighted in red and italic.

4.3 Further Comparison with SyntheticQE

To analyze the advantages of our method, we con-

ducted further analysis on the WMT 2019 En-De

word-level development set and plot the precision-

recall curves for the “BAD” class by setting dif-

ferent thresholds for SyntheticQE and our method.

As shown in Figure 4, between the two baseline

systems, the precision of SyntheticQE-MT is rel-

atively low when the recall is below 0.2, and the

precision of SyntheticQE-MLM is relatively low

when the recall is above 0.2. Compared with the

baselines, our method reaches a relatively high pre-

cision whenever the recall is low or high.

In SyntheticQE-MT, the target side of the syn-

thetic data is produced by MT models, and thus

more tokens may be labeled with “BAD” in the

synthetic data than in the authentic data since

references are less similar to machine-translated

sentences than post-editions (Snover et al., 2005).

In other words, some “BAD” labels in the syn-

thetic data do not represent erroneous target words

but represent words merely different from the ex-

pressions in the references. These two types of

“BAD” labels cannot be significantly distinguished

in the synthetic data, which may be harmful to the

model’s ability for detecting real errors and finally

lead to lower precision when the recall is low.

In SyntheticQE-MLM, the target side of the syn-

thetic data is produced by MLMs, and thus more

catastrophic errors appear in synthetic target sen-

tences than in machine-translated sentences (Tuan

et al., 2021). In this case, the model mainly fo-

cuses on detecting rare catastrophic errors in the

target sentences, but is incapable of detecting com-

mon subtle errors. Therefore, SyntheticQE-MLM

reaches a relatively high precision when the recall

is low but a relatively low precision when the recall

is high.

ID WWM MC Dropout Sent Word

1 ×
√

0.465 0.344

2
√

× 0.479 0.376

3
√ √

0.504 0.381

Table 7: Ablation studies on the WMT 2019 En-De

development set.

By contrast, our self-supervised QE method does

not rely on these noisy synthetic data. Thus our

method is not affected by the noise and achieves

better results whenever the recall is low or high.

Case study. To further show the advantages of

our method, we provide an example in Table 6.

In this example, the only erroneous word in the

target sentence is “Schnappschüsse”, which is cor-

rected to “Schnappschüssen” in the post-edition.

SyntheticQE-MT fails to detect this error, and

wrongly predicts two correct words “gewünschten”

and “finden” as erroneous. SyntheticQE-MLM also

fails to detect this subtle error. Our method suc-

cessfully detects the error while it does not predict

other correctly translated words as erroneous.

4.4 Ablation Studies

To compare and analyze the performance of our

method with different configurations, we con-

ducted ablation studies on the WMT 2019 En-

De development set. The experimental results are

shown in Table 7.

Effect of masking strategies. To measure the ef-

fect of masking strategies, we conducted experi-

ments using different masking strategies and com-

pared their performances. According to the re-

sults, the model with WWM (row 3) outperforms

its counterpart without WWM (row 1). Table 8

shows an example of word-level QE using models
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Source in a text box , delete the option text .

Target & Golden lschen Sie den ausgewählten Text in einem Textfeld .

w/o WWM lschen Sie den ausgewählten Text in einem Textfeld .

w/ WWM lschen Sie den ausgewählten Text in einem Textfeld .

Table 8: Example of word-level QE using different masking strategies. Erroneous target words annotated in the

golden data or detected by the models are highlighted in red and italic.

with different masking strategies. In this example,

the model without WWM fails to detect the erro-

neous target word “ausgewählten”, which consists

of 2 subwords “ausgewählt” and “##en”. How-

ever, the model with WWM successfully detects

this error. This indicates that WWM helps esti-

mate the translation quality of words with multiple

subwords.

Effect of MC Dropout. To measure the effect of

MC Dropout, we conducted experiments without

MC Dropout (row 2) and compared them with their

counterparts with MC Dropout (row 3). Experi-

mental results show that the performance decline

with the absence of MC Dropout. Additionally,

we also try applying MC Dropout to SyntheticQE,

but we find no significant improvement over its

counterpart without MC Dropout.

5 Related Work

Our work is closely related to two lines of research:

(1) quality estimation for machine translation, and

(2) masked language models.

5.1 Quality Estimation for Machine

Translation

QE aims to evaluate the quality of machine-

translated sentences without references, which has

been studied mainly under supervised settings. Spe-

cia et al. (2013) propose a feature-based QE method

using various manually designed features and tra-

ditional machine learning models. With the recent

prevalence of deep learning, various neural meth-

ods for QE have been proposed (Kim et al., 2017;

Ive et al., 2018; Fan et al., 2019). Recently, with the

development of pretraining, multilingual pretrained

language models (Devlin et al., 2019; Conneau and

Lample, 2019; Conneau et al., 2020) are also uti-

lized in QE (Kim et al., 2019; Kepler et al., 2019;

Moura et al., 2020; Ranasinghe et al., 2020; Rubino

and Sumita, 2020; Zhang and van Genabith, 2020;

Lee, 2020).

Due to the data scarcity problem in QE, sev-

eral studies have endeavored to construct unsuper-

vised QE models. For example, Etchegoyhen et al.

(2018) build unsupervised QE models using lexical

translation tables and language models. Zhang et al.

(2020) utilize lexical similarities based on word

vectors. Zhou et al. (2020) propose an enhanced

version of Zhang et al. (2020), which also utilizes

explicit cross-lingual patterns obtained from word

alignments and multilingual MLMs. Fomicheva

et al. (2020) use different features extracted from

NMT models. Tuan et al. (2021) train unsupervised

QE models using synthetic data. However, these

works are either limited to sentence-level tasks, or

negatively affected by the noisy synthetic data. By

comparison, our work develops a self-supervised

method for both sentence- and word-level QE with-

out using synthetic data.

Our work is also similar to Fan et al. (2019)

and Kim et al. (2019). However, their works are

designed for supervised QE and require to be fine-

tuned on labeled training data, while our work con-

ducts unsupervised QE by directly utilizing the

conditional probabilities given by the model and

does not require any further fine-tuning process.

Moreover, our work utilizes different techniques

like WWM (Cui et al., 2019) and MC Dropout

(Gal and Ghahramani, 2016) to further improve the

performance.

5.2 Masked Language Models

Recently, pretrained masked language models

(MLMs) (Devlin et al., 2019) have been widely

used in various NLP tasks including natural lan-

guage understanding (Wang et al., 2019) and ma-

chine reading comprehension (Xu et al., 2019). The

idea of MLM is also used in other complex NLP

tasks. For example, Ghazvininejad et al. (2019)

introduce a conditional masked language model

(CMLM) for non-autoregressive NMT. Chen et al.

(2021) and Zhang and van Genabith (2021) present

MLM objectives to improve neural word alignment

models. MLM objectives are also used in the train-

ing process of supervised QE (Kim et al., 2019;

Rubino and Sumita, 2020; Cui et al., 2021). To
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the best of our knowledge, our work is the first to

utilize MLM objectives for QE under unsupervised

settings.

Our work is also similar to translation lan-

guage modeling (TLM) (Conneau and Lample,

2019). However, TLM is a multilingual pretraining

schema designed for fine-tuning on various mul-

tilingual downstream tasks, while our work fine-

tunes a multilingual pretrained model on bilingual

parallel corpora for unsupervised QE.

6 Conclusion and Future Work

We have presented a self-supervised method for

quality estimation of machine-translated sentences.

The central idea is to perform quality estimation

by recovering masked target words using the sur-

rounding context. Our method is easy to implement

and is not affected by noisy synthetic data. Experi-

mental results show that our method outperforms

previous unsupervised QE methods. In the future,

we plan to extend our self-supervised method to

phrase- and document-level tasks.
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A Appendix

A.1 Detailed Process of Calculating Quality

Scores with Monte Carlo Dropout

See Algorithm 1.

A.2 Thresholds Used in Our Method

We used τ = 0.385 for En-De, τ = 0.059 for En-

Ru, τ = 0.660 for En-Lv (SMT) and τ = 0.616

for En-Lv (NMT).

A.3 Implementation Details of Baselines

Implementation Details of SyntheticQE

For SyntheticQE-MT, the target side of the syn-

thetic data was produced in a cross-validation set-

ting similar to Negri et al. (2018). The synthetic tar-

get sentences were translated using Moses (Koehn

et al., 2007) (for SMT datasets) or THUMT (Tan

et al., 2020) (for NMT datasets). Specifically,

for Moses, we mainly followed the default train-

ing process and configurations. We removed sen-

tences longer than 100 words before training. For

the language models used in Moses, we used 3-

gram Kneser-Ney language models (Heafield et al.,

2013). For THUMT, we used the Transformer

(Vaswani et al., 2017) architecture with base set-

ting for NMT models. We used the Adam optimizer

(Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.98

and ǫ = 10
−9 to optimize model parameters. We

used the same learning rate schedule as Vaswani

et al. (2017) with 4,000 warmup steps. During

training, we set the batch size to 25,000 tokens, the

number of training steps to 100,000, the penalty

of label smoothing to 0.1 and the dropout rate to

0.1. We performed subword segmentation using

BPE (Sennrich et al., 2016) with 32,000 merge

operations.

For SyntheticQE-MLM, we followed Tuan et al.

(2021) and produced the target side of the synthetic

data by randomly substituting, deleting, and insert-

ing words. The substitutions and insertions were

performed using MLMs. Since our experiments

were conducted on datasets in different domains,

the MLMs we used were obtained by fine-tuning

the multilingual BERT (Devlin et al., 2019) on the

target side of the parallel corpora.

The TER (Snover et al., 2005) scores of the syn-

thetic training data and the authentic development

and test data are shown in Table 9.

For the QE models in SyntheticQE, we followed

Kepler et al. (2019) and used a BERT-based model

for both sentence- and word-level tasks. The mod-

els were fine-tuned on the synthetic data. For the

optimizer, we used the Adam optimizer (Kingma

and Ba, 2015) with β1 = 0.9, β2 = 0.999 and

ǫ = 10
−8. We set the batch size to 128, the maxi-

mum sequence length to 256, the number of train-

ing steps to 100,000, the learning rate to 5×10
−5

and the dropout rate to 0.1. We evaluated our model

every 1,000 steps and chose the model with the best

performance on the development set for inference.

We tuned the threshold on the development set to

maximize word-level performance.

Implementation Details of Other Unsupervised

Sentence-Level Baselines

For uMQE (Etchegoyhen et al., 2018), we set the

minimal prefix length to 4, the maximal number

of candidates in the translation table to 4 and the

order of the language model to 5.

For the word embeddings in BERTScore (Zhang

et al., 2020) and BERTScore++ (Zhou et al., 2020),

we used the contexutalized embeddings in the 9th

layer of the multilingual BERT (Devlin et al., 2019).

In BERTScore++, we set a to 0.8 and λ to 0.01.

For NMT-QE (Fomicheva et al., 2020), we use

the D-TP measure for unsupervised QE. This mea-

sure uses MC Dropout (Gal and Ghahramani, 2016)

to calculate the expectation of sentence-level trans-

lation probabilities. For the NMT models used in

NMT-QE, we implemented it based on THUMT

(Tan et al., 2020) with the base setting as presented

in Vaswani et al. (2017). We evaluated our model

every 1,000 steps and chose the model with the best

performance on the development set for inference.

For the MC Dropout process, we set N = 30.

A.4 Implementation Details of Supervised

Models

The supervised models were also implemented

based on the multilingual BERT (Devlin et al.,

2019). We used the official training data provided

by WMT to train the models. Each model were

trained for 5 epochs. We set the batch size to 12

and the learning rate to 10
−5. We tuned the thresh-

old on the development set to maximize word-level

performance.
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Algorithm 1 Calculating quality scores with Monte Carlo Dropout

Input: source sentence x, target sentence ŷ = (ŷ1, · · · , ŷT ), number of samples for each target token N ,

number of estimations N ′, model parameter θ

Output: quality scores of all target tokens score(ŷ1), · · · , score(ŷT )

1: for n ← 1 to N ′ do

2: ŷ
(n)
m ← ∅

3: for t ← 1 to T do

4: score(ŷt) ← 0
5: Randomly sample N integers n1, n2, · · · , nN from [1, N ′]
6: for i ← 1 to N do

7: ŷ
(ni)
m ← ŷ

(ni)
m ∪ {ŷt}

8: for n ← 1 to N ′ do

9: ŷ
(n)
o ← ŷ\ŷ

(n)
m

10: Sample a model θ̂n from θ using dropout

11: Calculate P (ŷt|x, ŷ
(n)
o ; θ̂n) for all ŷt ∈ ŷ

(n)
m using the model θ̂n

12: for each ŷt ∈ ŷ
(n)
m do

13: score(ŷt) ← score(ŷt) + P (ŷt|x, ŷ
(n)
o ; θ̂n) / N

14: return score(ŷ1), · · · , score(ŷT )

Dataset
En-Lv En-De En-Ru

SMT NMT NMT NMT

Train (SyntheticQE-MT) 0.452 0.418 0.453 0.662

Train (SyntheticQE-MLM) 0.292 0.292 0.319 0.387

Dev∗∗ 0.200 0.280 0.141 0.127

Test∗∗ 0.200 0.300 0.168 0.154

Table 9: TER scores of the synthetic training data and the authentic development and test data. “**”: the TER

scores are computed using the human post-editions instead of the references.


