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Abstract
While neural machine translation (NMT) has made
remarkable progress in translating a handful of
resource-rich language pairs recently, parallel cor-
pora are not always readily available for most lan-
guage pairs. To deal with this problem, we pro-
pose an approach to zero-resource NMT via max-
imum expected likelihood estimation. The basic
idea is to maximize the expectation with respect
to a pivot-to-source translation model for the in-
tended source-to-target model on a pivot-target par-
allel corpus. To approximate the expectation, we
propose two methods to connect the pivot-to-source
and source-to-target models. Experiments on two
zero-resource language pairs show that the pro-
posed approach yields substantial gains over base-
line methods. We also observe that when trained
jointly with the source-to-target model, the pivot-
to-source translation model also obtains improve-
ments over independent training.

1 Introduction
Recently, neural machine translation (NMT) has achieved
state-of-the-art performance on language pairs with abundant
parallel corpora available [Sutskever et al., 2014; Bahdanau
et al., 2014]. Nevertheless, large-scale, high-quality parallel
corpora are non-existent for most language pairs [Utiyama
and Isahara, 2007]. Studies reveal that it is challenging for
NMT to yield satisfactory results for resource-scarce lan-
guage pairs [Zoph et al., 2016; Firat et al., 2016]. Zoph et al.
[2016] indicate that NMT tends to learn degenerate estimates
from low-count events, which deteriorates the translation per-
formance of NMT under small-data conditions.

As a result, developing methods to achieve zero-resource
neural machine translation, in which no direct source-target
parallel corpora are available, has attracted increasing at-
tention in the community recently [Johnson et al., 2016;
Firat et al., 2016]. Existing work can be roughly divided
into two broad categories: multilingual and pivot-based ap-
proaches. The multilingual approaches focus on leverging
multilingual parallel corpora to achieve zero-resource NMT.
∗ Corresponding author: Yang Liu.

Johnson et al. [2016] introduce a simple solution to use a
single NMT model to translate between multiple languages.
Requiring no change to the model architecture, their universal
model takes advantage of multilingual data to improve NMT
for all languages pairs involved. Firat et al. [2016] propose
a finetuning algorithm for multiway, multilingual neural ma-
chine translation that enables zero-resource machine trans-
lation. Although these multilingual methods achieve direct
source-to-target translation without parallel corpora avail-
able, it is fairly difficult to learn and analyze the universal
representation for multiple languages.

Another important direction is to introduce a third lan-
guage called pivot to bridge the source and target languages,
which has been widely used in zero-resource statistical ma-
chine translation [Cohn and Lapata, 2007; Wu and Wang,
2007; Utiyama and Isahara, 2007; Bertoldi et al., 2008;
Habash and Hu, 2009]. Bertoldi et al. [2008] present an
approach to constructing a pseudo source-target parallel cor-
pus by translating the pivot sentences in the pivot-target cor-
pus into the source language with the pivot-to-source model.
On the other hand, one of the most representative pivot-based
methods is the pivot-based translation [Utiyama and Isahara,
2007], which achieves source-to-target translation indirectly
using the source-to-pivot and pivot-to-target models: a source
sentence is first translated into a pivot sentence, which is
then translated into a target sentence. Recently, Johnson et
al. [2016] show the pivot-based translation for NMT signifi-
cantly outperforms their universal NMT without incremental
training. Although the pivot-based translation is a simple and
effective approach to zero-resource NMT, they often suffer
from the error propagation problem due to indirect modeling:
mistakes made in source-to-pivot translation will be propa-
gated to pivot-to-target translation.

In this work, we aim to achieve direct modeling of zero-
resource source-to-target NMT and minimizing the require-
ment of multilingual data. We propose an approach to directly
training the source-to-target translation model via maximum
expected likelihood estimation. Our training objective is to
maximize the expectation with respect to a pivot-to-source
translation model for the intended source-to-target model on
a pivot-target parallel corpus. The assumption underlying our
idea is that if a pivot sentence z and a target sentence y con-
stitute a parallel sentence pair, the source translation x of the
pivot sentence should also be translationally equivalent to y.
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Figure 1: (a) The pivot-based approach and (b) the maximum expected likelihood estimation approach to zero-resource neural
machine translation. X, Y, and Z denote source, target, and pivot languages, respectively. We use a dished line to denote that
there exists a parallel corpus available for the connected language pair. Solid lines with arrows represent translation directions.
The pivot-based approach leverages a pivot to achieve indirect source-to-target translation: it first translates x to z, which is then
translated to y. Maximum expected likelihood estimation aims to maximize the expectation with respect to a pivot-to-source
translation model P (x|z;θz→x) for the intended source-to-target model P (y|x;θx→y) on a pivot-target parallel corpus.

Therefore, our approach involves two models: the pivot-to-
source model that provides an artificial parallel corpus and the
source-to-target model that is learned on the artificial data.
As it is intractable to enumerate all sentences in the source
language, we also propose two strategies to connect the pivot-
to-source and source-to-target models. Experiments on two
zero-resource translation tasks demonstrate that the proposed
approach yields substantial gains over the baseline methods.

2 Background
2.1 Maximum Likelihood Estimation
Given a source-language sentence x and a target-language
sentence y, we use P (y|x;θx→y) to denote a source-to-target
NMT model [Bahdanau et al., 2014].

For resource-rich language pairs, a source-target parallel
corpus Dx,y = {〈x(k),y(k)〉}Kk=1 is available to train the
source-to-target NMT model. The standard training objec-
tive in this scenario is to maximize the log-likelihood of the
training data:

θ̂x→y = argmax
θx→y

{
L(θx→y)

}
(1)

where the log-likelihood is defined as

L(θx→y) =

K∑
k=1

logP (y(k)|x(k);θx→y) (2)

2.2 Pivot-based Translation
For zero-resource language pairs, parallel corpora are usually
not readily available. As a result, previous work has endeav-
ored to leverage a third language called pivot to bridge the
source and target languages. Let z be a pivot-language sen-
tence. As shown in Figure 1, source-to-target translation can
be modeled indirectly by cascading two sub-models:

P (y|x;θx→z,θz→y) =
∑
z

P (z|x;θx→z)P (y|z;θz→y) (3)

The pivot-based translation assumes that a source-pivot
parallel corpusDx,z = {〈x(m), z(m)〉}Mm=1 and a pivot-target
parallel corpus Dz,y = {〈z(n),y(n)〉}Nn=1 are available. As a
result, the source-to-pivot and pivot-to-target models can be
trained separately:

θ̂x→z = argmax
θx→z

{
M∑

m=1

logP (z(m)|x(m);θx→z)

}
(4)

θ̂z→y = argmax
θz→y

{
N∑

n=1

logP (y(n)|z(n);θz→y)

}
(5)

Then, the two models can be used to perform source-to-
target translation in two steps:

ẑ = argmax
z

{
P (z|x; θ̂x→z)

}
(6)

ŷ = argmax
y

{
P (y|ẑ; θ̂z→y)

}
(7)

One drawback of this approach is that the translation qual-
ity of source-to-target translation heavily depends on the se-
lection of ẑ, which often fails to retain exactly the same in-
formation with the original source sentence and thus leads to
severe cascaded translation errors.

3 Approach
3.1 Maximum Expected Likelihood Estimation
As shown in Figure 1, our idea is to maximize the expecta-
tion with respect to a pivot-to-source translation model for
the intended source-to-target model on a pivot-target parallel
corpus:

θ̂x→y = argmax
θx→y

{
Jindep(θx→y)

}
(8)

where the training objective is defined as

Jindep(θx→y) =

N∑
n=1

Ex|z(n);θ̂z→x

[
logP (y(n)|x;θx→y)

]
(9)



Note that the pivot-to-source model is pre-trained on the
source-pivot corpus:

θ̂z→x = argmax
θz→x

{
L(θz→x)

}
(10)

where the log-likelihood is defined as

L(θz→x) =

M∑
m=1

logP (x(m)|z(m);θz→x) (11)

We refer to Eq. (8) and (9) as maximum expected likeli-
hood estimation.

Maximum expected likelihood estimation is an extension
of standard maximum likelihood estimation for learning the
intended distribution P (y|x;θx→y) by introducing a data
generating distribution P (x|z;θz→x). This new training cri-
terion for zero-resource NMT is based on the following as-
sumption: since 〈z(n),y(n)〉 is a bilingual sentence pair, the
source translation of z(n) (i.e., x) should also be translation-
ally equivalent to y(n).

However, as calculating the expectation in Eq. (9) needs
to enumerate all possible source sentences, it is intractable to
optimize source-to-target model parameters due to the expo-
nential search space. As a result, we propose two approxima-
tion methods to address this problem.

3.2 Approximation
Using Single Word Embeddings
Let X (z) be the set of all possible source translations of a
pivot sentence z. A standard solution is to approximate the
full search space with a sampled subset:

Ex|z(n);θ̂z→x

[
logP (y(n)|x;θx→y)

]
=

∑
x∈X (z(n))

P (x|z(n); θ̂z→x) logP (y
(n)|x;θx→y)

≈
∑

x∈S(z(n))

P (x|z(n); θ̂z→x) logP (y
(n)|x;θx→y) (12)

where S(z) ⊂ X (z) is a sampled subset.
Note that the intended distribution P (y(n)|x;θx→y) actu-

ally takes the concatenation of word embeddings of x as in-
put. Let x = x1, . . . , xt, . . . , xT be a sampled source transla-
tion with T words for z(n). We use e(xt) ∈ Rd×1 to represent
the word embedding of xt. Therefore, the vector representa-
tion of x is given by

e(x) =
{
e(xt)

}T
t=1

(13)

Therefore, Eq. (12) can be equivalently written as

Ex|z(n);θ̂z→x

[
logP (y(n)|x;θx→y)

]
≈

∑
x∈S(z(n))

P
(
e(x)|e(z(n)); θ̂z→x

)
×

logP
(
e(y(n))|e(x);θx→y)

)
(14)

Although approximation with sampling proves to achieve
a reasonable balance between effectiveness and efficiency

[Shen et al., 2016], the sampled space is still restricted to a
limited number of candidate translations. In addition, only a
small fraction of words in the entire vocabulary are included
in the samples. As a result, our approach also potentially
faces the error propagation problem: sampling mistakes will
affect the estimation of intended model parameters.

Using Expected Word Embeddings
Inspired by [Kočiský et al., 2016], we propose to use expected
word embeddings rather than single word embeddings to cir-
cumvent this drawback. Given a sampled source translation
x(s) ∈ S(z(n)), at each time step in the decoder of the pivot-
to-source model, an expected word embedding for the t-th
source word xt is calculated as

E
x|z(n),x

(s)
<t ;θ̂z→x

[
e(x)

]
=

∑
x∈Vx

P (x|z(n),x(s)
<t ; θ̂z→x)e(x) (15)

where Vx is the vocabulary of the source language.
As a result, provided with a sampled source sentence x(s),

the expected vector representation of a source sentence x can
be approximated with the concatenation of expected word
embeddings, which is defined as

E(x(s), z(n),Vx, θ̂z→x)

=
{
E
x|z(n),x

(s)
<t ;θ̂z→x

[
e(x)

]}T

t=1
(16)

Note that E(x(s), z(n),Vx, θ̂z→x) depends on the selection of
x(s).

As the expected word embeddings consider the entire vo-
cabulary, we can leverage the expected word embeddings to
implicitly represent the full search space X (z(n)) approxi-
mately:

Ex|z(n);θ̂z→x

[
logP (y(n)|x;θx→y)

]
≈ 1

|S(z(n))| ×∑
x(s)∈S(z(n))

logP
(
e(y(n))|E(x(s), z(n),Vx, θ̂z→x);θx→y

)
Besides taking the full vocabulary into consideration, an-

other important advantage of using expected word embed-
dings over the single embeddings counterpart is that pivot-
to-source and source-to-target models are connected more
closely. Consider Eq. (14). It is clear that the partial deriva-
tives with respect to the parameters of the two models are
independent of each other. In contrast, using expected word
embeddings explicitly makes the calculation of partial deriva-
tives of one model dependent on another model since it al-
lows the error from the source-to-target model to be back-
propagated to the pivot-to-source model through the expected
word embeddings.

Therefore, we propose to use joint training to enable the in-
teraction between pivot-to-source and source-to-target mod-
els:

θ̂z→x, θ̂x→y = argmax
θz→x,θx→y

{
Jjoint(θz→x,θx→y)

}
(17)



Spanish-English German-English English-French
Es En Ge En En Fr

# Sent. 850K 840K 900K
# Word 23.23M 21.44M 20.88M 21.91M 22.56M 25.00M

Table 1: Statistics of parallel corpora used in our experiments. We evaluate our approach on two zero-resource translation tasks:
Spanish-French and German-French. English is used as the pivot language.

where the new training objective is given by

Jjoint(θz→x,θx→y)

=

N∑
n=1

Ex|z(n);θz→x

[
logP (y(n)|x;θx→y)

]
+L(θz→x) (18)

4 Experiments
4.1 Setup
Data Preparation
We evaluate our approach on two zero-resource translation
tasks:

1. Spanish-English-French: Spanish as the source lan-
guage, English as the pivot language, and French as the
target language;

2. German-English-French: German as the source lan-
guage, English as the pivot language, and French as the
target language.

We use Spanish-English, German-English and English-
French parallel corpora from the Europarl dataset. For each
language pair, we retain sentence pairs with no more than
50 words. We also split the overlapping part of pivot sen-
tences in the source-pivot and pivot-target corpora into two
separate parts with equal size, which are then merged with
the non-overlapping parts of the source-pivot and pivot-target
corpora, respectively. Removing overlapped data ensures that
none of the source-target parallel sentence pairs is present
in our training data. All sentences are tokenized by the to-
kenize.perl script [Koehn et al., 2007].

Table 1 shows the detailed statistics of parallel corpora
used in our experiments. For Spanish-English, the train-
ing data contains 850K sentence pairs with 23.23M Spanish
words and 21.44M English words. For German-English, the
training data consists of 840K sentence pairs with 20.88M
German words and 21.91M English words. They share the
same English-French corpus which has 900K sentence pairs
with 22.56M English words and 25.00M French words. The
shared task 2006 datasets are used as development and test
sets. The evaluation metric is case-insensitive BLEU [Pap-
ineni et al., 2002], calculated by the multi-bleu.perl script.

Baseline Methods
We compare our approach with the following baseline meth-
ods:

1. PSEUDO [Bertoldi et al., 2008]: a method for building
pseudo parallel corpora adapted for NMT.

2. PIVOT [Utiyama and Isahara, 2007]: a pivot-based
translation method adapted for NMT.

For the PSEUDO method, we first train a pivot-to-source
NMT model P (x|z; θ̂z→x) on the source-pivot parallel cor-
pus. Then, the pivot sentences {z(n)}Nn=1 in the pivot-target
parallel corpus Dz,y = {〈z(n),y(n)〉}Nn=1 are translated into
source sentences {x̃(n)}Nn=1 using the pivot-to-source NMT
model P (x|z; θ̂z→x). These source sentences {x̃(n)}Nn=1 and
the original target sentences {y(n)}Nn=1 in the pivot-target
parallel corpus constitute a pseudo source-target parallel cor-
pusDx̃,y = {〈x̃(n),y(n)〉}Nn=1, which can be used to train the
source-to-target model P (y|x;θx→y). The PSEUDO method
can be treated as a special case of maximum expected likeli-
hood estimation since only the candidate translation with the
highest probability in the full space is considered.

For the PIVOT method, we first train source-to-pivot and
pivot-to-target NMT models separately on source-pivot and
pivot-target parallel corpora. In decoding, a source sentence
is first translated into a pivot sentence using the source-to-
pivot model, which is then translated to a target sentence us-
ing the pivot-to-target model. Please refer to Section 2.2 for
more details. This approach serves as the baseline in previous
work on zero-source neural machine translation task [John-
son et al., 2016; Firat et al., 2016]. It is worth emphasizing
that the PIVOT method is a very strong baseline as Johnson
et al. [2016] show that it yields much higher BLEU scores
than their universal NMT model without incremental training
and the direct source-to-target translation model proposed in
[Firat et al., 2016] alone also performs worse than the PIVOT
method.

We implement all methods on top of the state-of-the-art
open-source NMT system GROUNDHOG [Bahdanau et al.,
2014]. All neural translation models use the default setting of
network hyper-parameters of GROUNDHOG.

Training Details
Our joint training approach requires the parameters of mul-
tiple translation models to be updated jointly. In practice,
we find that it is extremely slow for the models to converge
from random initialization. Inspired by previous work on
training multi-layered perceptrons [Bengio et al., 2007], we
use the weights of the pivot-to-source model trained inde-
pendently and the source-to-target model trained with the
PSEUDO method to initialize joint training. For fair com-
parison, we also initialize the source-to-target model in our
independent training approach with the model obtained by
the PSEUDO method. Although each mini-batch takes more
time to update than standard MLE training, our approaches
converge very fast thanks to the aforementioned initialization



Method Embed. Training Spanish-French German-French
Dev. Test Dev. Test

PSEUDO single indep. 28.04 28.27 20.23 19.92
PIVOT single indep. 29.51 29.86 23.49 23.33

this work
single indep. 32.48 32.27 24.37 24.18

expected indep. 32.98 33.04 24.41 24.49
joint 33.97 33.83 25.41 24.99

Table 2: Comparison with PSEUDO and PIVOT on the Europarl dataset. We evaluate our approach on two zero-resource
translation tasks: Spanish-French and German-French. English is used as the pivot language. PSEUDO denotes using the pivot-
to-source NMT model trained on the source-pivot parallel corpus to translate the pivot sentences into source sentences, which
is combined with the target part in the pivot-target corpus to form a pseudo source-target parallel corpus [Bertoldi et al., 2008].
PIVOT denotes using the source-to-pivot model to translate a source sentence into a pivot sentence, which is then translated into
a target sentence with the pivot-to-target model [Utiyama and Isahara, 2007]. “Embed.” indicates the way to form the vector
representation of a sentence using word embeddings (see Section 3.2 for details). “Training” indicates whether two sub-models
are trained jointly or not. The evaluation metric is case-insensitive BLEU.

techniques.
Each time the sentence z(n) is selected in a mini-batch,

we only randomly sample one sentence x in consideration of
the limited GPU memory. Note that a set of different sen-
tences will still be sampled for each z(n) as z(n) is usually
selected in mini-batches multiple times. This is important
since it can effectively lower the variance of approximation.
For the single embedding approach, we find the probability
weight P (x|z; θ̂z→x) is usually very small, making the train-
ing extremely slow. Therefore, in practice we instead take its

q-th root q

√
P (x|z; θ̂z→x) and set q = 10 for speed-up.

4.2 Comparison with PSEUDO and PIVOT

Table 2 shows the comparison of our approach with PSEUDO
and PIVOT on the Europarl corpus. PSEUDO achieves a
BLEU score of 28.27 on the Spanish-French task and 19.92
on German-French, which are much lower than those of other
approaches. This is because PSEUDO only uses the source
translation with the highest probability to build the pseudo
parallel corpus, which may also cause severe error propaga-
tion problem in training: mistakes made in the pivot-to-source
translation affect the quality of pseudo parallel corpus.

The PIVOT approach significantly outperforms PSEUDO
for both translation tasks. Although PIVOT also faces the er-
ror propagation problem in decoding, the source-pivot and
pivot-target parallel corpora used to train source-to-pivot and
pivot-to-target NMT models are supposed to be clean. In con-
trast, the source part of the pseudo parallel corpus inevitably
contains much noise due to translation errors.

Our approach significantly outperforms both PSEUDO and
PIVOT on both tasks. Note that PSEUDO can be considered
as a special case of maximum expected likelihood estima-
tion: only the candidate with the highest probability in the
full space is used. This finding suggests that it is important to
take multiple candidates into consideration in maximum ex-
pected likelihood estimation. As using expected embeddings
is capable of exploiting the full vocabulary, it outperforms
using single word embeddings significantly.

Another important finding is that joint training leads to sig-
nificant improvements over independent training thanks to the

Training English-Spanish English-German
Dev. Test Dev. Test

Indep. 30.73 31.16 19.61 19.56
Joint 31.83 32.57 21.99 21.77

Table 3: Comparison between independent and joint training
on pivot-to-source translation.

Direction Spanish-French German-French
Dev. Test Dev. Test

unidirectional 33.97 33.83 25.41 24.99
bidirectional 34.66 34.41 25.62 25.42

Table 4: Effect of bidirectional training.

interaction between the pivot-to-source and source-to-target
models during training. Table 3 shows that the interaction not
only improves source-to-target translation, but also enhances
pivot-to-source translation. The BLEU scores increase by
over 2% for both tasks.

4.3 Effect of Bidirectional Training

From the perspective of pivot-based approaches, our ap-
proach can be seen as indirectly modeling pivot-to-target
translation via pivot-to-source and source-to-target transla-
tion models on the pivot-target parallel corpus Dz,y =

{〈z(n),y(n)〉}Mm=1.

P (y(n)|z(n);θz→x,θx→y)

=
∑
x

P (x|z(n);θz→x)P (y
(n)|x;θx→y)

= Ex|z(n);θz→x

[
P (y(n)|x;θx→y)

]
(19)

An alternative is to make use of the source-pivot parallel



Method Training Data Spanish-French German-French
es-en de-en en-fr es-fr de-fr Dev. Test Dev. Test

ORACLE
- - - 100K 100K 24.26 24.62 13.58 13.68
- - - 1.0M 1.0M 33.99 33.33 23.83 23.41
- - - 1.5M 1.5M 36.81 36.22 25.78 25.54

this work 850K 840K 900K - - 34.66 34.41 25.62 25.42

Table 5: Comparison with ORACLE that uses direct source-target parallel corpora.

corpus Dx,z = {〈x(n), z(n)〉}Nn=1:

P (z(m)|x(m);θx→y,θy→z)

=
∑
y

P (y|x(m);θx→y)P (z
(m)|y;θy→z)

= Ey|x(m);θx→y

[
P (z(m)|y;θy→z)

]
(20)

For convenience, we refer to Eq. (19) as the z → x → y
direction and Eq. (20) as the x→ y → z direction.

The joint training objective for the x→ y → z direction is
given by

Jjoint(θx→y,θy→z)

=

M∑
m=1

Ey|x(m);θx→y

[
logP (z(m)|y;θy→z)

]
+

L(θy→z) (21)

As bidirectional information has proven to be complemen-
tary for the learning of mapping between two languages [Och
and Ney, 2002; Li and Jurafsky, 2016], the two directions can
be combined to perform bidirectional training:

B(θx→y,θy→z,θz→x)

= Jjoint(θz→x,θx→y) + λJjoint(θx→y,θy→z) (22)

where λ is a hyper-parameter that balance the preference be-
tween two directions. We set λ = 0.1 in our experiments.

Table 4 shows the effect of bidirectional training. “uni-
directional” denotes the z → x → y direction and “bidi-
rectional” denotes combining the the z → x → y and
x → y → z directions. Combining the two directions leads
to significant improvements (p < 0.01). Note that train-
ing alone in the x → y → z direction results in very low
BLEU scores. One possible reason is that the training objec-
tive Jjoint(θx→y,θy→z) serves as more like a regularization
item, in the sense that it can provide some useful information
to further improve the model’s performance, but it alone lacks
the capability to provide complete and effective supervision.

4.4 Comparison with ORACLE

Table 5 compares our best approach with ORACLE that uses
direct source-target parallel corpora. We observe that our ap-
proach outperforms ORACLE with 100K and 1M parallel sen-
tences. This is very encouraging since our approach only uses
three source-pivot and pivot-target corpora with around 850K
parallel sentences.

5 Related Work
Recently, zero-resource neural machine translation has re-
ceived much attention in the community. Firat et al. [2016]
pre-train multi-way multilingual model and then fine-tune it
with pseudo parallel data generated by the model. However,
the use of pseudo parallel data as supervision unavoidably
suffers from the error propagation problem. This is probably
why their one-to-one direct translation model performs worse
than the pivot-based translation strategy. Google’s multilin-
gual neural machine translation system uses a single NMT
model to translate between multiple languages, naturally en-
abling zero-resource translation [Johnson et al., 2016].

A wide variety of approaches have been proposed for zero-
resource or low-resource translation in conventional SMT
systems. Wu et al. [2007] and Cohn et al. [2007] use
source-to-pivot and pivot-to-target translation models to in-
duce a new source-to-target phrase table, on which a source-
to-target translation model is built. Bertoldi et al. [2008] ex-
ploit existing models to build a pseudo source-target parallel
corpus, from which a source-to-target model can be trained.
These methods fall into the broad category of directly con-
structing a source-to-target translation model. Utiyama and
Isahara [2007] compare two translation strategies, namely
phrase translation and sentence translation. The former is
similar to the work in [Wu and Wang, 2007], while the latter
is the pivot-based translation which first translates the source
sentence to the pivot sentence and then to the target sentence.
Cheng et al. [2016] improve the pivot-based translation by
jointly training the source-to-pivot and pivot-to-target trans-
lation models. Nakayama and Nishida [2016] perform zero-
resource machine translation using multimedia as the pivot.

Our work is in spirit close to Bertoldi et al. [2008] since
both assume that if a pivot sentence z and a target sentence y
constitute a parallel sentence pair, the source translation x of
the pivot sentence z should also be translationally equivalent
to y. However, we formally define the expected training ob-
jective and adapt it to NMT, thus enabling the novel expected
embedding and joint training strategies.

6 Conclusion
We have presented a method for training neural machine
translation models for zero-resource language pairs using
maximum expected likelihood estimation. The central idea
is to leverage a data generating distribution to provide pseudo
parallel corpora for training the intended distribution. Ex-
periments on the Europarl corpus show that our approach
achieves significant improvements over the pivot-based trans-
lation approach.
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