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Abstract
Word alignment is an important natural language pro-
cessing task that indicates the correspondence between
natural languages. Recently, unsupervised learning of
log-linear models for word alignment has received con-
siderable attention as it combines the merits of gener-
ative and discriminative approaches. However, a major
challenge still remains: it is intractable to calculate the
expectations of non-local features that are critical for
capturing the divergence between natural languages. We
propose a contrastive approach that aims to differentiate
observed training examples from noises. It not only in-
troduces prior knowledge to guide unsupervised learn-
ing but also cancels out partition functions. Based on the
observation that the probability mass of log-linear mod-
els for word alignment is usually highly concentrated,
we propose to use top-n alignments to approximate the
expectations with respect to posterior distributions. This
allows for efficient and accurate calculation of expecta-
tions of non-local features. Experiments show that our
approach achieves significant improvements over state-
of-the-art unsupervised word alignment methods.

Introduction
Word alignment is a natural language processing (NLP) task
that aims to identify the correspondence between words in
natural languages (Brown et al. 1993). Word-aligned parallel
corpora are an indispensable resource for many NLP tasks
such as machine translation and cross-lingual IR.

Current word alignment approaches can be roughly di-
vided into two categories: generative and discriminative.
Generative approaches are often based on generative mod-
els (Brown et al. 1993; Vogel, Ney, and Tillmann 1996;
Liang, Taskar, and Klein 2006), the parameters of which
are learned by maximizing the likelihood of unlabeled data.
One major drawback of these approaches is that they are
hard to extend due to the strong dependencies between sub-
models. On the other hand, discriminative approaches over-
come this problem by leveraging log-linear models (Liu,
Liu, and Lin 2005; Blunsom and Cohn 2006) and linear
models (Taskar, Lacoste-Julien, and Klein 2005; Moore,
Yih, and Bode 2006; Liu, Liu, and Lin 2010) to include ar-
bitrary features. However, labeled data is expensive to build

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and hence is unavailable for most language pairs and do-
mains.

As generative and discriminative approaches seem to be
complementary, a number of authors have tried to combine
the advantages of both in recent years (Berg-Kirkpatrick et
al. 2010; Dyer et al. 2011; Dyer, Chahuneau, and Smith
2013). They propose to train log-linear models for word
alignment on unlabeled data, which involves calculating two
expectations of features: one ranging over all possible align-
ments given observed sentence pairs and another over all
possible sentence pairs and alignments. Due to the complex-
ity and diversity of natural languages, it is intractable to cal-
culate the two expectations. As a result, existing approaches
have to either restrict log-linear models to be locally nor-
malized (Berg-Kirkpatrick et al. 2010) or only use local fea-
tures to admit efficient dynamic programming algorithms
on compact representations (Dyer et al. 2011). Although it
is possible to use MCMC methods to draw samples from
alignment distributions (DeNero, Bouchard-Cot̂é, and Klein
2008) to calculate expectations of non-local features, it is
computationally expensive to reach the equilibrium distribu-
tion. Therefore, including non-local features, which are crit-
ical for capturing the divergence between natural languages,
still remains a major challenge in unsupervised learning of
log-linear models for word alignment.

In the paper, we present a contrastive learning approach
to training log-linear models for word alignment on unla-
beled data. Instead of maximizing the likelihood of log-
linear models on the observed data, our approach follows
contrastive estimation methods (Smith and Eisner 2005;
Gutmann and Hyvärinen 2012) to guide the model to assign
higher probabilities to observed data than to noisy data. To
calculate the expectations of non-local features, we propose
an approximation method called top-n sampling based on
the observation that the probability mass of log-linear mod-
els for word alignment is highly concentrated. Hence, our
approach has the following advantages over previous work:

1. Partition functions canceled out. As learning only in-
volves observed and noisy training examples, our training
objective cancels out partition functions that comprise ex-
ponentially many sentence pairs and alignments.

2. Efficient sampling. We use a dynamic programming algo-
rithm to extract top-n alignments, which serve as samples
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Figure 1: (a) An observed (romanized) Chinese sentence, an English sentence, and the word alignment between them; (b) a
noisy training example derived from (a) by randomly permutating and substituting words. As the training data only consists of
sentence pairs, word alignment serves as a latent variable in the log-linear model. In our approach, the latent-variable log-linear
model is expected to assign higher probabilities to observed training examples than to noisy examples.

to compute the approximate expectations.
3. Arbitrary features. The expectations of both local and

non-local features can be calculated using top-n approxi-
mation accurately and efficiently.
Experiments on multilingual datasets show that our ap-

proach achieves significant improvements over state-of-the-
art unsupervised alignment systems.

Latent-Variable Log-Linear Models for
Unsupervised Word Alignment

Figure 1(a) shows a (romanized) Chinese sentence, an En-
glish sentence, and the word alignment between them. The
links indicate the correspondence between Chinese and En-
glish words. Word alignment is a challenging task because
both the lexical choices and word orders in two languages
are significantly different. For example, while the English
word “at” corresponds to a discontinuous Chinese phrase
“zai ... shang”, the English function word “the” has no coun-
terparts in Chinese. In addition, a verb phrase (e.g., “made a
speech”) is usually followed by a prepositional phrase (e.g.,
“at the meeting”) in English but the order is reversed in Chi-
nese. Therefore, it is important to design features to capture
various characteristics of word alignment.

To allow for unsupervised word alignment with arbitrary
features, latent-variable log-linear models have been stud-
ied in recent years (Berg-Kirkpatrick et al. 2010; Dyer et al.
2011; Dyer, Chahuneau, and Smith 2013). Let x be a pair
of source and target sentences and y be the word alignment.
A latent-variable log-linear model parametrized by a real-
valued vector θ ∈ RK×1 is given by

P (x;θ) =
∑

y∈Y(x)

P (x,y;θ) (1)

=

∑
y∈Y(x) exp(θ · φ(x,y))

Z(θ)
(2)

where φ(·) ∈ RK×1 is a feature vector and Z(θ) is a parti-
tion function for normalization:

Z(θ) =
∑
x∈X

∑
y∈Y(x)

exp(θ · φ(x,y)) (3)

We use X to denote all possible pairs of source and target
strings and Y(x) to denote the set of all possible alignments

for a sentence pair x. Let l and m be the lengths of the source
and target sentences in x, respectively. Then, the number of
possible alignments for x is |Y(x)| = 2l×m. In this work,
we use 5 local features (translation probability product, rel-
ative position absolute difference, link count, monotone and
swapping neighbor counts) and 11 non-local features (cross
count, source and target linked word counts, source and tar-
get sibling distances, source and target maximal fertilities,
multiple link types) that prove to be effective in modeling
regularities in word alignment (Taskar, Lacoste-Julien, and
Klein 2005; Moore, Yih, and Bode 2006; Liu, Liu, and Lin
2010).

Given a set of training examples {x(i)}Ii=1, the standard
training objective is to find the parameter that maximizes the
log-likelihood of the training set:

θ∗ = argmax
θ

{
L(θ)

}
(4)

= argmax
θ

{
log

I∏
i=1

P (x(i);θ)

}
(5)

= argmax
θ

{
I∑

i=1

log
∑

y∈Y(x(i))

exp(θ · φ(x(i),y))

− logZ(θ)

}
(6)

Standard numerical optimization methods such as L-
BFGS and Stochastic Gradient Descent (SGD) require to
calculate the partial derivative of the log-likelihood L(θ)
with respect to the k-th feature weight θk

∂L(θ)

∂θk

=
I∑

i=1

∑
y∈Y(x(i))

P (y|x(i);θ)φk(x
(i),y)

−
∑
x∈X

∑
y∈Y(x)

P (x,y;θ)φk(x,y) (7)

=
I∑

i=1

Ey|x(i);θ[φk(x
(i),y)]− Ex,y;θ[φk(x,y)] (8)
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As there are exponentially many sentences and align-
ments, the two expectations in Eq. (8) are intractable to cal-
culate for non-local features that are critical for measuring
the fertility and non-monotonicity of alignment (Liu, Liu,
and Lin 2010). Consequently, existing approaches have to
use only local features to allow dynamic programming algo-
rithms to calculate expectations efficiently on lattices (Dyer
et al. 2011). Therefore, how to calculate the expectations of
non-local features accurately and efficiently remains a major
challenge for unsupervised word alignment.

Contrastive Learning with Top-n Sampling
Instead of maximizing the log-likelihood of the observed
training data, we propose a contrastive approach to unsu-
pervised learning of log-linear models. For example, given
an observed training example as shown in Figure 1(a), it is
possible to generate a noisy example as shown in Figure 1(b)
by randomly shuffling and substituting words on both sides.
Intuitively, we expect that the probability of the observed ex-
ample is higher than that of the noisy example. This is called
contrastive learning, which has been advocated by a number
of authors (see Related Work).

More formally, let x̃ be a noisy training example de-
rived from an observed example x. Our training data is
composed of pairs of observed and noisy examples: D =
{〈x(i), x̃(i)〉}Ii=1. The training objective is to maximize the
difference of probabilities between observed and noisy train-
ing examples:

θ∗

= argmax
θ

{
J(θ)

}
(9)

= argmax
θ

{
log

I∏
i=1

P (x(i))

P (x̃(i))

}
(10)

= argmax
θ

{
I∑

i=1

log
∑

y∈Y(x(i))

exp(θ · φ(x(i),y))

− log
∑

y∈Y(x̃(i))

exp(θ · φ(x̃(i),y))

}
(11)

Accordingly, the partial derivative of J(θ) with respect to
the k-th feature weight θk is given by

∂J(θ)

∂θk

=
I∑

i=1

∑
y∈Y(x(i))

P (y|x(i);θ)φk(x
(i),y)

−
∑

y∈Y(x̃(i))

P (y|x̃(i);θ)φk(x̃
(i),y) (12)

=

I∑
i=1

Ey|x(i);θ[φk(x
(i),y)]− Ey|x̃(i);θ[φk(x̃

(i),y)]

(13)
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Figure 2: Distributions of log-linear models for alignment
on short sentences (≤ 4 words).

The key difference is that our approach cancels out
the partition function Z(θ), which poses the major com-
putational challenge in unsupervised learning of log-
linear models. However, it is still intractable to calculate
the expectation with respect to the posterior distribution
Ey|x;θ[φ(x,y)] for non-local features due to the exponential
search space (i.e., |Y(x)| = 2l×m). One possible solution is
to use Gibbs sampling to draw samples from the posterior
distribution P (y|x;θ) (DeNero, Bouchard-Cot̂é, and Klein
2008). But the Gibbs sampler usually runs for a long time to
converge to the equilibrium distribution.

Fortunately, by definition, only alignments with highest
probabilities play a central role in calculating expectations.
If the probability mass of the log-linear model for word
alignment is concentrated on a small number of alignments,
it will be efficient and accurate to only use most likely align-
ments to approximate the expectation.

Figure 2 plots the distributions of log-linear models
parametrized by 1,000 random feature weight vectors. We
used all the 16 features. The true distributions were calcu-
lated by enumerating all possible alignments for short Chi-
nese and English sentences (≤ 4 words). We find that top-5
alignments usually account for over 99% of the probability
mass.

More importantly, we also tried various sentence lengths,
language pairs, and feature groups and found this concentra-
tion property to hold consistently. One possible reason is that
the exponential function enlarges the differences between
variables dramatically (i.e., a > b⇒ exp(a)� exp(b)).

Therefore, we propose to approximate the expectation us-
ing most likely alignments:
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Figure 3: Average approximation errors of top-n sampling
on short sentences (≤ 4 words). The true expectations of
local and non-local features are exactly calculated by full
enumeration.

Ey|x;θ[φk(x,y)]

=
∑

y∈Y(x)

P (y|x;θ)φk(x,y) (14)

=

∑
y∈Y(x) exp(θ · φ(x,y))φk(x,y)∑

y′∈Y(x) exp(θ · φ(x,y′))
(15)

≈
∑

y∈N (x;θ) exp(θ · φ(x,y))φk(x,y)∑
y′∈N (x;θ) exp(θ · φ(x,y′))

(16)

where N (x;θ) ⊆ Y(x) contains the most likely alignments
depending on θ:

∀y1 ∈ N (x;θ),∀y2 ∈ Y(x)\N (x;θ) :

θ · φ(x,y1) > θ · φ(x,y2) (17)

Let the cardinality of N (x;θ) be n. We refer to Eq. (16)
as top-n sampling because the approximate posterior distri-
bution is normalized over top-n alignments:

PN (y|x;θ) =
exp(θ · φ(x,y))∑

y′∈N (x) exp(θ · φ(x,y′))
(18)

In this paper, we use the beam search algorithm proposed
by Liu, Liu, and Lin (2010) to retrieve top-n alignments
from the full search space. Starting with an empty align-
ment, the algorithm keeps adding links until the alignment
score will not increase. During the process, local and non-
local feature values can be calculated in an incremental way
efficiently. The algorithm generally runs in O(bl2m2) time,
where b is the beam size. As it is intractable to calculate the
objective function in Eq. (11), we use the stochastic gradient
descent algorithm (SGD) for parameter optimization, which
requires to calculate partial derivatives with respect to fea-
ture weights on single training examples.
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Figure 4: Average approximation errors of top-n sampling
on long sentences (≤ 100 words). The true expectations of
local features are exactly calculated by dynamic program-
ming on lattices.

Experiments
Approximation Evaluation
To measure how well top-n sampling approximates the true
expectations, we define the approximation error E(D,θ) as

1

I ×K

I∑
i=1

||δY(x(i), x̃(i),θ)− δN (x
(i), x̃(i),θ)||1 (19)

where δY(·) returns the true difference between the expec-
tations of observed and noisy examples:

δY(x, x̃,θ) = Ey|x;θ[φ(x,y)]− Ey|x̃;θ[φ(x̃,y)] (20)

Similarly, δN (·) returns the approximate difference. || · ||1 is
the L1 norm.

In addition, we define average approximation error on a
set of random feature weight vectors {θ(t)}Tt=1:

1

T

T∑
t=1

E(D,θ(t)) (21)

Figure 3 shows the average approximation errors of our
top-n sampling method on short sentences (up to 4 words)
with 1,000 random feature weight vectors. To calculate the
true expectations of both local and non-local features, we
need to enumerate all alignments in an exponential space.
We randomly selected 1, 000 short Chinese-English sen-
tence pairs. One noisy example was generated for each ob-
served example by randomly shuffling, replacing, inserting,
and deleting words. We used the beam search algorithm
(Liu, Liu, and Lin 2010) to retrieve n-best lists. We plotted
the approximation errors for n up to 15. We find that the av-
erage approximation errors drop dramatically when n ranges
from 1 to 5 and approach zero for large values of n, suggest-
ing that a small value of n might suffice to approximate the
expectations.

Figure 4 shows the average approximation errors of top-n
sampling on long sentences (up to 100 words) with 1,000
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# samples Gibbs Top-n
1 1.5411 0.1653
5 0.7410 0.1477

10 0.6550 0.1396
50 0.5498 0.1108
100 0.5396 0.1086
500 0.5180 0.0932

Table 1: Comparison with Gibbs sampling in terms of aver-
age approximation error.

noise generation French-English Chinese-English
SHUFFLE 8.93 21.05
DELETE 9.03 21.49
INSERT 12.87 24.87

REPLACE 13.13 25.59

Table 2: Effect of noise generation in terms of alignment
error rate (AER) on the validation sets.

random feature weight vectors. To calculate the true expec-
tations, we follow Dyer et al. (Dyer et al. 2011) to use a
dynamic programming algorithm on lattices that compactly
represent exponentially many asymmetric alignments. The
average errors decrease much less dramatically than in Fig-
ure 3 but still maintain at a very low level (below 0.17). This
finding implies that the probability mass of log-linear mod-
els is still highly concentrated for long sentences.

Table 1 compares our approach with Gibbs sampling. We
treat each link l as a binary variable and the alignment prob-
ability is a joint distribution over m×n variables, which can
be sampled successively from the conditional distribution
P (l|y\{l}). Starting with random alignments, the Gibbs
sampler achieves an average approximation error of 0.5180
with 500 samples and takes a very long time to converge.
In contrast, our approach achieves much lower errors than
Gibbs even only using one sample. Therefore, using more
likely alignments in sampling improves not only the accu-
racy but also efficiency.

Alignment Evaluation
We evaluated our approach on French-English and Chinese-
English alignment tasks. For French-English, we used the
dataset from the HLT/NAACL 2003 alignment shared task
(Mihalcea and Pedersen 2003). The training set consists of
1.1M sentence pairs with 23.61M French words and 20.01M
English words, the validation set consists of 37 sentence
pairs, and the test set consists of 447 sentence pairs. Both
the validation and test sets are annotated with gold-standard
alignments. For Chinese-English, we used the dataset from
Liu et al. (2005). The training set consists of 1.5M sentence
pairs with 42.1M Chinese words and 48.3M English words,
the validation set consists of 435 sentence pairs, and the test
set consists of 500 sentence pairs. The evaluation metric is
alignment error rate (AER) (Och and Ney 2003).

The baseline systems we compared in our experiments in-
clude

1. GIZA++ (Och and Ney 2003): unsupervised training of

n French-English Chinese-English
1 8.93 21.05
5 8.83 21.06

10 8.97 21.05
50 8.88 21.07
100 8.92 21.05

Table 3: Effect of n in terms of AER on the validation sets.

features French-English Chinese-English
local 15.56 25.35

local + non-local 8.93 21.05

Table 4: Effect of non-local features in terms of AER on the
validation sets.

IBM models 1-5 (Brown et al. 1993) and HMM (Vogel,
Ney, and Tillmann 1996) using EM,

2. Berkeley (Liang, Taskar, and Klein 2006): unsupervised
training of joint HMMs using EM,

3. fast align (Dyer, Chahuneau, and Smith 2013): unsuper-
vised training of log-linear models based on IBM model
2 using EM,

4. Vigne (Liu, Liu, and Lin 2010): supervised training of
log-linear models using minimum error rate training (Och
2003).

As both GIZA++ and fast align produce asymmet-
ric alignments, we use the grow-diag-final-and heuristic
(Koehn et al. 2007) to generate symmetric alignments for
evaluation. While the baseline systems used all the train-
ing sets, we randomly selected 500 sentences and generated
noises by randomly shuffling, replacing, deleting, and insert-
ing words. 1

We first used the validation sets to find the optimal setting
of our approach: noisy generation, the value of n, feature
group, and training corpus size.

Table 2 shows the results of different noise genera-
tion strategies: randomly shuffling, inserting, replacing, and
deleting words. We find shuffling source and target words
randomly consistently yields the best results. One possible
reason is that the translation probability product feature (Liu,
Liu, and Lin 2010) derived from GIZA++ suffices to evalu-
ate lexical choices accurately. It is more important to guide
the aligner to model the structural divergence by changing
word orders randomly.

Table 3 gives the results of different values of sample size
n on the validation sets. We find that increasing n does not
lead to significant improvements. This might result from the
high concentration property of log-linear models. Therefore,
we simply set n = 1 in the following experiments.

1As the translation probability product feature derived from
GIZA++ is a very strong dense feature, using small training corpora
(e.g., 50 sentence pairs) proves to yield very good results consis-
tently (Liu, Liu, and Lin 2010). However, if we model translation
equivalence using millions of sparse features (Dyer et al. 2011), the
unsupervised learning algorithm must make full use of all parallel
corpora available like GIZA++. We leave this for future work.
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system model supervision algorithm French-English Chinese-English
GIZA++ IBM model 4 unsupervised EM 6.36 21.92
Berkeley joint HMM unsupervised EM 5.34 21.67
fast align log-linear model unsupervised EM 15.20 28.44

Vigne linear model supervised MERT 4.28 19.37
this work log-linear model unsupervised SGD 5.01 20.24

Table 5: Comparison with state-of-the-art aligners in terms of AER on the test sets.

Table 4 shows the effect of adding non-local features.
As most structural divergence between natural languages
are non-local, including non-local features leads to signif-
icant improvements for both French-English and Chinese-
English. As a result, we used all 16 features in the following
experiments.

Table 5 gives our final result on the test sets. Our approach
outperforms all unsupervised aligners significantly statisti-
cally (p < 0.01) except for the Berkeley aligner on the
French-English data. The margins on Chinese-English are
generally much larger than French-English because Chinese
and English are distantly related and exhibit more non-local
structural divergence. Vigne used the same features as our
system but was trained in a supervised way. Its results can
be treated as the upper bounds that our method can poten-
tially approach.

We also compared our approach with baseline systems
on French-English and Chinese-English translation tasks
but only obtained modest improvements. As alignment and
translation are only loosely related (i.e., lower AERs do not
necessarily lead to higher BLEU scores), imposing appro-
priate structural constraints (e.g., the grow, diag, final oper-
ators in symmetrizing alignments) seems to be more impor-
tant for improving translation translation quality than devel-
oping unsupervised training algorithms (Koehn et al. 2007).

Related Work

Our work is inspired by three lines of research: unsupervised
learning of log-linear models, contrastive learning, and sam-
pling for structured prediction.

Unsupervised Learning of Log-Linear Models

Unsupervised learning of log-linear models has been widely
used in natural language processing, including word seg-
mentation (Berg-Kirkpatrick et al. 2010), morphological
segmentation (Poon, Cherry, and Toutanova 2009), POS tag-
ging (Smith and Eisner 2005), grammar induction (Smith
and Eisner 2005), and word alignment (Dyer et al. 2011;
Dyer, Chahuneau, and Smith 2013). The contrastive estima-
tion (CE) approach proposed by Smith and Eisner (2005) is
in spirit most close to our work. CE redefines the partition
function as the set of each observed example and its noisy
“neighbors”. However, it is still intractable to compute the
expectations of non-local features. In contrast, our approach
cancels out the partition function and introduces top-n sam-
pling to approximate the expectations of non-local features.

Contrastive Learning
Contrastive learning has received increasing attention in a
variety of fields. Hinton (2002) proposes contrastive diver-
gence (CD) that compares the data distribution with recon-
structions of the data vector generated by a limited number
of full Gibbs sampling steps. It is possible to apply CD to un-
supervised learning of latent-variable log-linear models and
use top-n sampling to approximate the expectation on poste-
rior distributions within each full Gibbs sampling step. The
noise-contrastive estimation (NCE) method (Gutmann and
Hyvärinen 2012) casts density estimation, which is a typical
unsupervised learning problem, as supervised classification
by introducing noisy data. However, a key limitation of NCE
is that it cannot be used for models with latent variables that
cannot be integrated out analytically. There are also many
other efforts in developing contrastive objectives to avoid
computing partition functions (LeCun and Huang 2005;
Liang and Jordan 2008; Vickrey, Lin, and Koller 2010).
Their focus is on choosing assignments to be compared
with the observed data and developing sub-objectives that al-
low for dynamic programming for tractable sub-structures.
In this work, we simply remove the partition functions by
comparing pairs of observed and noisy examples. Using
noisy examples to guide unsupervised learning has also
been pursued in deep learning (Collobert and Weston 2008;
Tamura, Watanabe, and Sumita 2014).

Sampling for Structured Prediction
Widely used in NLP for inference (Teh 2006; Johnson,
Griffiths, and Goldwater 2007) and calculating expectations
(DeNero, Bouchard-Cot̂é, and Klein 2008), Gibbs sampling
has not been used for unsupervised training of log-linear
models for word alignment. Tamura, Watanabe, and Sumita
(2014) propose a similar idea to use beam search to calculate
expectations. However, they do not offer in-depth analyses
and the accuracy of their unsupervised approach is far worse
than the supervised counterpart in terms of F1 score (0.55
vs. 0.89).

Conclusion
We have presented a contrastive approach to unsupervised
learning of log-linear models for word alignment. By in-
troducing noisy examples, our approach cancels out parti-
tion functions that makes training computationally expen-
sive. Our major contribution is to introduce top-n sampling
to calculate expectations of non-local features since the
probability mass of log-linear models for word alignment
is usually concentrated on top-n alignments. Our unsuper-
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vised aligner outperforms state-of-the-art unsupervised sys-
tems on both closely-related (French-English) and distantly-
related (Chinese-English) language pairs.

As log-linear models have been widely used in NLP,
we plan to validate the effectiveness of our approach on
more structured prediction tasks with exponential search
spaces such as word segmentation, part-of-speech tagging,
dependency parsing, and machine translation. It is impor-
tant to verify whether the concentration property of log-
linear models still holds. Since our contrastive approach
compares between observed and noisy training examples,
another promising direction is to develop large margin learn-
ing algorithms to improve generalization ability of our ap-
proach. Finally, it is interesting to include millions of sparse
features (Dyer et al. 2011) to directly model the translation
equivalence between words rather than relying on GIZA++.
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