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A deep-learning system bridging molecule
structure and biomedical text with comprehension
comparable to human professionals
Zheni Zeng 1,2, Yuan Yao1,2, Zhiyuan Liu 1✉ & Maosong Sun 1✉

To accelerate biomedical research process, deep-learning systems are developed to auto-

matically acquire knowledge about molecule entities by reading large-scale biomedical data.

Inspired by humans that learn deep molecule knowledge from versatile reading on both

molecule structure and biomedical text information, we propose a knowledgeable machine

reading system that bridges both types of information in a unified deep-learning framework

for comprehensive biomedical research assistance. We solve the problem that existing

machine reading models can only process different types of data separately, and thus achieve

a comprehensive and thorough understanding of molecule entities. By grasping meta-

knowledge in an unsupervised fashion within and across different information sources, our

system can facilitate various real-world biomedical applications, including molecular property

prediction, biomedical relation extraction and so on. Experimental results show that our

system even surpasses human professionals in the capability of molecular property com-

prehension, and also reveal its promising potential in facilitating automatic drug discovery

and documentation in the future.
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Understanding molecule entities (i.e., their properties and
interactions) is fundamental to most biomedical research
areas. For instance, experts study the structural properties

of protein molecules to understand their mechanisms of action1,
and investigate the interactions between drugs and target mole-
cules to prevent adverse reactions2. To this end, people have built
many biomedical knowledge bases (KBs), including PubChem3,
Gene Ontology4, and DrugBank5. However, existing KBs are still
far from complete due to the rapid growth of biomedical
knowledge and the high cost of expert annotation. With the rapid
progress of deep learning, machine reading systems are developed
to automatically acquire biomedical knowledge by reading large-
scale data, accelerating recent biomedical research in many cases6.

However, compared to human learners, machine reading sys-
tems still have a huge gap in terms of both versatile reading and
knowledgeable learning7. In the acquisition of biomedical mole-
cule knowledge, humans are capable of versatilely reading dif-
ferent types of information that complementarily characterize
molecule entities, including molecule structures and biomedical
text. Specifically, molecule structures provide concise standar-
dized internal information, where functional groups and their
positions are strong indicators of molecular properties and
interactions.

In comparison, biomedical text provides abundant flexible external
information of molecule entities reported from wet-lab experiments.
Utilizing complementary information is typically crucial for human
learners to achieve comprehensive molecule understanding. More-
over, humans are able to knowledgeably learn and leverage meta-
knowledge within and across different information—establishing
fine-grained mappings between semantic units from different infor-
mation sources, e.g., functional groups and natural language phrases
—for deep molecule understanding.

To the best of our knowledge, all existing machine reading
systems for biomedical knowledge acquisition are confined to
either internal molecule structure information or external bio-
medical text information in isolation, and different models have
to be developed to process each type of information. This limits
not only the generality of machine reading systems, but also the
performance of knowledge acquisition due to the intrinsic nature
of each information. Specifically, information from molecule
structure is concise but typically limited compared to information
from wet-lab experiments, while information from biomedical
text enjoys better abundance and flexibility but usually suffers
from noisy extraction processes. Moreover, confined to single
information sources, machine reading systems can hardly learn
meta-knowledge beyond single information for deep molecule
understanding. Inspired by human learners, it is desirable to build
a knowledgeable machine reading system that versatilely learns
from both information sources to better master molecule
knowledge so as to assist biomedical research. However, it is non-
trivial to jointly model the heterogeneous data in a unified fra-
mework, and challenging to learn the meta-knowledge without
explicit human annotation.

In this work, we pioneer a knowledgeable machine reading
system, establishing connections between internal information
from molecule structures and external information from biome-
dical text, as shown in Fig. 1. We jointly model the heterogeneous
data in a unified language modeling framework, and learn the
meta-knowledge by self-supervised language model pre-training
techniques on large-scale biomedical data without using any
human annotation. Specifically, for molecule encoding, there are
various plausible choices such as descriptor-based models8 and
simplified molecular-input line-entry system (SMILES)-based
models9. In this work, we serialize molecule structures using
SMILES for programmatic simplicity, since they can be easily
unified with textual tokens and processed by the Transformer

architecture. Then the SMILES representations are segmented
into frequent substring patterns using the byte pair encoding
(BPE)10 algorithm in a purely data-driven approach inspired by
the tokenization and encoding method of predecessors11. Inter-
estingly, we observe that the resultant substring patterns are
chemically explainable (e.g., carbon chains and functional
groups), and can potentially be aligned to molecule knowledge
distributed in biomedical text. Therefore, we insert the segmented
SMILES-based representations of molecules into their corre-
sponding mentions in biomedical papers, and model the resultant
data under a unified language modeling framework. Finally, the
meta-knowledge is learned via self-supervised language model
pre-training on the large-scale biomedical data. After pre-train-
ing, the meta-knowledge can be readily transferred via fine-tuning
to facilitate various real-world biomedical applications.

Comprehensive experiments demonstrate that, by learning
deep meta-knowledge of molecule entities, the proposed model
achieves promising performance on various biomedical applica-
tions in both molecule structure and biomedical text, including
molecular property prediction, chemical reaction classification,
named entity recognition and relation extraction. More impor-
tantly, by grasping meta-knowledge between molecule structures
and biomedical text, our model enables promising cross-
information capabilities. Our model is able to produce natural
language documentation for molecule structures, and retrieve
molecule structures for natural language queries. Such intelligent
capabilities can provide convenient assistants and accelerate
biomedical research. Through the multiple-choice questions
about molecular properties, our model, which gets an accuracy
score over 0.83, is proved to have deeper comprehension towards
molecule structure and biomedical text than human professionals
that get 0.77 accuracy. In the case study of six functional natural
language queries towards 3,000 candidate molecule entities, 30
out of 60 retrieved entities can be supported by wet-lab experi-
ments, among which 9 entities are not reported in PubChem
(thus newly discovered), showing the promising potential of our
model in assisting biomedical research in the future.

Our contributions are summarized as follows:

(1) We present a knowledgeable and versatile machine reading
system that bridges molecule structures and biomedical text.

(2) Our major contribution lies in the application of the
proposed model in assisting drug discovery and documen-
tation for biomedical research.

(3) Comprehensive experiments show the effectiveness of the
proposed model.

Results
Overview of KV-PLM. We propose KV-PLM, a unified pre-
trained language model processing both molecule structures and
biomedical text for knowledgeable and versatile machine reading.
KV-PLM takes the popular pre-trained language model BERT12

as the backbone. To process the heterogeneous data in a unified
model, molecule structures are first serialized into SMILES9

strings, and then segmented using BPE10 algorithm. To learn the
meta-knowledge between different semantic units, we pre-train
KV-PLM using the masked language modeling task12. During
pre-training, part of the tokens (including tokens from molecule
structure and biomedical text) are randomly masked, and the
model is asked to reconstruct the masked tokens according to the
context. In this way, the model can grasp the correlation between
molecule structure and biomedical text without any annotated
data. After pre-training, the model can be readily fine-tuned to
facilitate various mono-information and cross-information bio-
medical applications.
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To comprehensively investigate the biomedical capabilities of
KV-PLM, we conduct experiments in different aspects. We first
evaluate KV-PLM on mono-source biomedical tasks, including
molecule structure tasks and biomedical text tasks. Then we test
KV-PLM on challenging versatile reading tasks that require a
deep understanding of both molecule structures and biomedical
text. In the following sections, we present experimental results in
Table 1 from each aspect, and then draw the main conclusions.
Finally, we present a case study, showing the potential of our
knowledgeable machine reading system in assisting biomedical
research in real-world scenarios.

Baseline models. We compare KV-PLM with strong baseline
models to demonstrate the effectiveness of our method.

RXNFP. RXNFP13 is the state-of-the-art model for chemical
reaction classification. The model is based on Transformer
architecture14 and pre-trained by masked language modeling task
on chemical reaction formulas. However, tailored for processing
molecule structure tasks, RXNFP cannot be applied to natural
language tasks.

BERTwo. To observe the effect of pre-training, we adopt BERT
without any pre-training as a baseline. Notice that this model
tokenizes SMILES strings altogether with natural language text
using the tokenizer from the frequently-used Sci-BERT model15,
thus gets piecemeal subwords which can hardly be read by
humans.

SMI-BERT. For molecule structure tasks, one commonly-used
method is to conduct mask language modeling on SMILES

strings. We take SMI-BERT, which is only pre-trained on
SMILES strings as a mono-information pre-trained baseline.
The tokenizer is also the same as Sci-BERT.

Sci-BERT. One of the most frequently used pre-trained
language models in biomedical domain. It is trained on plenty
of natural language data and could solve natural language tasks
well. In other words, Sci-BERT is also a mono-information pre-
trained baseline.

KV-PLM. According to our idea, the model can be pre-trained
on a special corpus in which SMILES strings are inserted, and in
this way KV-PLM can learn mono-information knowledge. It is
expected to have obviously better performance on versatile
reading tasks.

KV-PLM*. As we have mentioned above, SMILES strings can
be tokenized with a separate tokenizer and form chemically
explainable substring patterns, which have no overlap with
natural language tokens. We improve KV-PLM by adopting
double tokenizers to process SMILES strings in a more
appropriate way.

Molecule structure tasks. For molecule structure, SMILES strings
are commonly used molecule and chemical reaction representa-
tions. We choose molecular property learning benchmark
MoleculeNet16 and chemical reaction dataset USPTO 1k TPL13 as
our experimental materials.

For SMILES property classification task on MoleculeNet, We
choose four commonly-used classification task themes including
BBBP, SIDER, TOX21, and HIV to evaluate the capability of

Fig. 1 Conceptual diagram of knowledgeable and versatile machine reading. Here we take salicylic acid as an example. Inspired by humans that
versatilely learn meta-knowledge within and across different information, our machine reading system first serializes, a molecule structures via BPE on
SMILES strings, then inserts the substrings into c. large-scale corpus and learns b fine-grained mapping between different semantic units by d mask
language modeling. In this way, the system can perform e knowledgeable and versatile reading, achieving good performance on both mono-information
downstream tasks and versatile reading tasks.
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reading SMILES strings and analyzing properties of molecules.
The properties these tasks focus on are blood-brain barrier
penetration, the ability to inhibit HIV replication, Toxicology in
the 21st Century and Side Effect Resource in order. We follow the
setting recommended by the benchmark and present ROC-AUC
score for evaluation. Table 1 only presents average score for the
four themes. Please refer to Table 3 for more details and baselines.

For chemical reaction classification task on USPTO 1k TPL,
it is a newly-released dataset that contains the 1000 most
common reaction template classes. Previous study13 has proved
that BERT pre-trained on the large scale of SMILES strings can
solve the task quite well. To make it more challenging, we
generalize a few-shot learning subset (hereinafter referred to as
USP-few) containing 32 training items for each class. We follow
the original setting and present macro F1 for classification
evaluation.

From the results we can see that pre-training greatly improves
the performance. Mono-information pre-training model SMI-
BERT already gets a high average score on property classification
themes, showing that focusing on internal knowledge mining may
finish MoleculeNet tasks quite well. Pre-training on natural
language shows a further positive effect for molecule structure
tasks, indicating the value of external knowledge. Sci-BERT
surprisingly achieves good performance without pre-training on
SMILES strings, and this leads to the assumption that there is a
certain connection between SMILES patterns and natural
language patterns, which is a quite interesting discovery worthy
of further investigation.

Comparing KV-PLM with KV-PLM* we could see that the
separate tokenizer works worse than the original natural language
tokenizer on molecule structure tasks. This is because that a few
atoms or functional groups and their spatial structures are
ignored by the separate tokenizer for the convenience of forming
substring patterns, while attention for specific atoms or functional
groups is important especially for chemical reaction classification.

Natural language tasks. To recognize entities and extract their
relations from unstructured text is a fundamental application for
machine reading, and by this way we can form easy-to-use
structured knowledge automatically. During the process, there are
two important tasks including named entity recognition (NER)
and relation extraction (RE). We choose BC5CDR NER dataset
(hereinafter referred to as BC5CDR) and ChemProt dataset as
our experimental materials.

For biomedical NER task on BC5CDR, models are required to
perform sequence labeling, where each textual token is classified
into semantic labels that indicate locations and types of named
entities. This is an important evaluation task because entities are
the main processing objects in biomedical domain, and linking
between structural knowledge and raw text is also based on entity
recognition. Notice that the type of entities is usually specified for
biomedical NER, and BC5CDR mainly focuses on recognition for
chemical molecules and diseases.

For RE task on ChemProt, models are required to perform
relation classification for entity pairs. We expect machine reading
systems to recognize the relationships between the given entities
so that the raw text could be formalized into easy-to-use formats
including graph and triplet. There are 13 relation classes between
chemical and protein pairs. Entities are annotated in the
sentences.

Results for NER and RE are shown in Table 1. We take span-
level macro F1 score for NER and sentence-level micro F1 score
for RE as usual. As we can see, pre-training is of key importance
for natural language tasks, and cross-information pre-training
achieves better performance than mono-information pre-T

ab
le

1
T
he

m
ai
n
ex
pe

ri
m
en

ta
l
re
su
lt
s
on

m
on

o-
in
fo
rm

at
io
n
ta
sk
s
an

d
ve

rs
at
ile

re
ad

in
g
ta
sk
s.

M
od

el
M
ol
ec
ul
e
st
ru
ct
ur
e
ta
sk
s

N
at
ur
al

la
ng

ua
ge

ta
sk
s

V
er
sa
ti
le

re
ad

in
g
ta
sk
s

M
ol
ec
ul
eN

et
U
S
P
-f
ew

C
he

m
P
ro
t

B
C
5
C
D
R

S
-T

A
cc

R
ec
@
20

T
-S

A
cc

R
ec
@
20

S
co
re

R
X
N
FP

6
5.
37

±
0
.6
3

78
.9
7
±
3.
9
3

36
.6
0
±
0
.7
6

9
.5
5
±
3.
0
5

1.
58

±
0
.3
3

1.
19

±
0
.2
8

2.
26

±
0
.1
4

0
.8
1
±
0
.0
5

25
.4
8
±
1.
0
6

BE
R
T
w
o

6
6
.6
7
±
0
.2
9

33
.0
5
±
0
.6
0

4
4
.1
0
±
5.
26

6
5.
6
9
±
0
.2
0

17
.0
0
±
3.
0
6

0
.9
1
±
0
.2
2

17
.8
9
±
2.
0
4

0
.7
4
±
0
.1
1

32
.2
3
±
11
.6

SM
I-

BE
R
T

6
8
.6
1
±
0
.6
3

56
.7
9
±
1.
4
0

4
6
.4
9
±
2.
21

74
.3
6
±
0
.4
1

24
.6
8
±
0
.2
2

19
.1
4
±
1.
0
5

22
.4
7
±
0
.8
0

19
.8
2
±
0
.5
4

70
.0
8
±
1.
4
0

Sc
i-

BE
R
T

70
.6
5
±
0
.5
8

8
4
.5
0
±
0
.7
1

8
4
.6
1
±
0
.5
8

8
9
.2
6
±
0
.2
2

50
.3
8
±
1.
39

6
2.
11
±
1.
4
9

50
.1
2
±
1.
6
7

6
8
.0
2
±
1.
8
7

8
1.
59

±
0
.5
1

K
V
-

PL
M

70
.7
1
±
0
.3
2

8
5
.5
9
±
0
.7
7

8
4
.5
9
±
0
.5
9

8
9
.0
0
±
0
.3
3

53
.7
9
±
1.
4
2

6
6
.6
3
±
1.
51

54
.2
2
±
0
.9
4

71
.8
0
±
1.
56

8
3.
13

±
0
.3
1

K
V
-

PL
M
*

6
8
.3
4
±
0
.5
2

6
9
.1
3
±
0
.4
6

8
5
.1
9
±
0
.5
5

8
9
.1
7
±
0
.2
2

55
.9
2
±
0
.7
9

6
8
.5
9
±
1.
0
3

5
5
.6
1
±
0
.1
8

74
.7
7
±
0
.5
7

8
2.
39

±
0
.6
9

Fo
r
ve
rs
at
ile

re
ad
in
g
ta
sk
s,
w
e
pr
es
en

t
te
st

ac
cu
ra
cy

an
d
re
ca
ll
fo
r
bo

th
SM

IL
ES

-T
ex
t
re
tr
ie
va
la
nd

T
ex
t-
SM

IL
ES

re
tr
ie
va
lo
n
PC

de
s.
Sc
or
e
st
an
ds

fo
r
ac
cu
ra
cy

on
th
e
C
H
EM

Ic
ho

ic
e
ta
sk
.B

ol
df
ac
ed

nu
m
be

rs
in
di
ca
te

si
gn

ifi
ca
nt

ad
va
nt
ag
e
ov
er

th
e
se
co
nd

-b
es
t
re
su
lts

in
on

e-
si
de

d
t-
te
st

w
ith

p-
va
lu
e
<
0
.0
5,

an
d
un

de
rl
in
ed

nu
m
be

rs
de

no
te

no
si
gn

ifi
ca
nt

di
ff
er
en

ce
.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28494-3

4 NATURE COMMUNICATIONS |          (2022) 13:862 | https://doi.org/10.1038/s41467-022-28494-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


training, which proves that KV-PLM successfully learns internal
structural knowledge and this can help it understand natural
language. Pre-training on pure SMILE strings also helps natural
language tasks, verifying the assumption that a connection exists
between SMILES patterns and natural language patterns.

Versatile reading tasks. Since the biomedical text in natural
language form is the most comprehensive material for humans,
and molecule structure is the most direct information of mole-
cules, we expect our model to process both of the two informa-
tion, and understand the global and local properties of molecules.

There are few ready-made suitable datasets for versatile reading
of SMILES strings and natural language documentation. We
collect 15k substances in PubChem which have names, SMILES
and corresponding paragraphs of property descriptions. We
name our cross-information fine-tuning data as PCdes.

For cross-information retrieval, it is formulated as a
bidirectional retrieval task for the chemical-description pairs.
We evaluate the capability of understanding paragraph-level
descriptions and describing global properties of molecules. KV-
PLM is fine-tuned on PCdes, trying to pick the best match
SMILES string or property description sentence for each other.
The matching score is obtained by the cosine similarity of text
representations. For evaluation metrics, we report the accuracy of
the top retrieval result in randomly sampled mini-batches (64
pairs in each mini-batch). Models are also required to rank the
average matching score for all the 3k molecules and description
paragraphs. We present recall@20 for both directions.

For match judging, we evaluate the capability of under-
standing sentence-level descriptions and distinguishing the local
properties of molecules. To this end, we propose the multiple-
choice task CHEMIchoice.

Based on descriptions in PCdes, 1.5k multiple choices are
automatically generated. For the given SMILES string of

substance in the test set, there are four choices of a single
description sentence. Negative samples similar to the positive
sample are removed, helping decrease the possibility of false
negative for ground-truth answers. The system is required to
choose the correct answer just like a student completing an exam,
which is a quite realistic situation. The schematic diagram for
CHEMIchoice is shown in Fig. 2.

We report the results of the experiments above in Table 1.
Distinct data samples are used in repeating experiments with the
random generation process of CHEMIchoice. As expected, with
the help of cross-information pre-training on heterogeneous data,
KV-PLM* can process versatile reading tasks well and achieve the
best performance on most of the metrics.

For human professional performance, we recruited six
undergraduates and postgraduates from top universities who
major in chemistry without exam failure record. Given 200
questions randomly sampled from CHEMIchoice, they are
required to choose the best match property description sentence
for each chemical structure.

Human professionals are told that they are participating in a
study to provide human performance evaluation and the
experimental remuneration is determined by the rationality of
their answers, thus they would not deliberately lower their level.
All participants gave informed consent for their test data for this
study. This research does not involve ethical issues. Academic
Committee of the Department of Computer Science and
Technology of Tsinghua University approved the protocol.

The performances of the six professionals exhibit diversity as
shown in Fig. 3. The average score of them is 64.5 and the highest
score is 76.5. We take the highest score to represent the human
level since it shows the property prediction capability of an expert
who is well-trained and has abundant knowledge about this type
of questions, while the score is still significantly lower than our
model performance. We analyze their incorrect answers and find

Fig. 2 Schematic diagram for KV-PLM* finishing CHEMIchoice task. For the given unfamiliar molecule entity, we get a versatile materials including
structure and description, from which we know the correct sentence and randomly pick wrong sentences from the pool to form four choices. b Molecule
structure and text of choices are fed into KV-PLM* and get their representations, based on which the confidence scores of choices are calculated by cosine
similarity. c The tokenizers for structures and biomedical text are different. In this instance, KV-PLM* successfully finds out the correct description
sentence for the given substance.
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that human professionals tend to choose common property
descriptions that do not necessarily match the target substance
(e.g., irritates skin, eyes, and mucous membranes), and they are
not strong in judging the unique properties of the substance to be
analyzed.

Result analysis. From the experimental results in Table 1, we
draw three main findings as below:

(1) Pre-training on mono-information data can greatly
improve model performance on corresponding downstream
tasks. Specifically, SMI-BERT outperforms BERTwo on
molecule structure tasks, and Sci-BERT works better than
BERTwo on natural language tasks. In addition, mono-
information pre-trained models also achieve reasonable
performance on versatile tasks. The results show that pre-
training can effectively grasp meta-knowledge within each
type of information to help biomedical tasks.

(2) Interestingly, we find that mono-information pre-training
also brings improvements to downstream tasks from other
information types. Specifically, despite being pre-trained on
natural language data, when fine-tuned on molecule
structure tasks, Sci-BERT even outperforms strong SMI-
BERT and RXNFP models that are tailored for and pre-
trained on molecule structure data. This indicates that there
may exist certain connections between the patterns of
molecule structures and natural language. For example,
compositionality and hierarchy are important properties of
both molecule structures and natural language, which can be
transferred to help tasks from different information sources.

(3) Cross-information pre-training enables unified machine
reading systems that outperform the baseline methods on
biomedical tasks from both information sources. Moreover,
our models also achieve state-of-the-art performance on
versatile tasks, showing their promising potential in
assisting biomedical research in these significant scenarios
in the future. The results show the importance of
integrating both internal and external molecule informa-
tion, and the effectiveness of the proposed machine reading
method for biomedical tasks.

Case study. In this subsection, we first give observations about
the properties of substring patterns learned by models. From
Fig. 4 we can see that substring patterns, which we think are of

similar properties tend to have closer fingerprints due to pre-
training, showing that mask learning helps model build mapping
correlation in an unsupervised fashion.

The clusters become tighter after being given the alignment
supervised information just as the lower subgraph shows. More-
over, we can look at the vectors in purple and find that the model
can correctly distinguish between alcohol and phenol, and also
understand the meaning of acid and organic salt. This proves the
capability of our model to learn not only isolated but also
combined properties of substring patterns and mapping between
SMILES and text when finetuned on versatile reading tasks.

Further, we mainly discuss the KV-PLM* fine-tuned on PCdes
due to the novelty of versatile reading tasks. To observe the
retrieval capability and further potential, we can conduct both
description retrieval and molecule retrieval.

For description retrieval, the system finds appropriate
descriptive sentences and generates a paragraph of natural
language description for the given SMILE string. Sentences and
substances are randomly selected from PCdes test set. Figure 5
shows the property description of Tuberin predicted by KV-
PLM*. The ether bond is predicted as alcohol at first, and
successfully recognized as aromatic ether after getting the input
benzene ring pattern. The model even predicts that Tuberin has a
role as an antioxidant mainly due to the double bonds, which is
not recorded in PubChem. Crystalline is also a correctly predicted
property.

Another instance is 4-hydroxychalcone. Aromatic and benzoic
properties are predicted after the phenol group is shown. Fruity
taste and relatively neural are newly supplemented properties
when given the double bond. After seeing the whole structure, the
system gives out a more precise property description, predicting
that it has a role as a plant metabolite and inhibitor, and also
prevents oxidation.

Simpler compounds are also tested. For Chloroacetonitrile, the
carbon nitrogen triple bond helps predict that it is toxic by
ingestion. Combining with the chlorine the model eventually
knows that it is a colorless toxic gas and has a role as an organic
pollutant.

For molecule retrieval, the system reads natural language
instructions and retrieves matching SMILES strings in turn. We
require our model to find an anti-inflammatory agent from PCdes
test set, and ten substances with the highest similarity scores are
listed in Table 2. Most of them are related to inflammation or the
immune system, and there are four substances clearly proved to
be an anti-inflammatory agent. For Elocalcitol and Marinobufa-
genin, data in PubChem doesn’t show this information, or to say,
the two agents are “newly-discovered”.

Other queries including antineoplastic agent, antioxidant
agent, herbicide, dye, and antidepressant drug are tested, and
half of all substances the model retrieved are sure to meet the
requirements. There are also several properties for substances that
are missed in PubChem. For those newly-discovered molecule
entities, supporting details can be found in corresponding
references.

Results above show that our model catches the separation and
combination properties of SMILES substring patterns, and aligns
the semantic space of SMILES strings and natural language quite
well. There is a chance for our method to contribute to open
property prediction of molecules and drug discovery process.

Discussion
In this article, we show the possibility of bridging the SMILES
string and natural language together and propose the BERT-
based model KV-PLM for knowledgeable and versatile machine
reading in the biomedical domain. Through pre-training on the

Fig. 3 Score comparison of CHEMIchoice task. Our model successfully
surpasses human professionals, showing its promising capability of
comprehending molecule structure and biomedical text. Error bars indicates
standard deviation over six runs.
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special corpus, external knowledge from language and internal
knowledge from molecule structure can fuse with each other
unsupervisedly. KV-PLM has a basic understanding of molecule
entities, and the satisfying performance when fine-tuned on
various downstream tasks proves the effectiveness of molecular
knowledge. Our model achieves higher accuracy than baseline
models on MoleculeNet benchmark, and brings significant
improvement for the more challenging task on USP-few. Even as
a plain language model, our model can process classical tasks
including Chemprot RE and CDR NER quite well. KV-PLM
shows its capability to be a general biomedical machine
reading model.

Meanwhile, the advantages for bridging the two formats of text
are not restricted to the applications in mono-information form.
Since there exists a correspondence between SMILES strings and
natural language descriptions, we process them with a method
similar to cross-information learning. By fine-tuning on PCdes
data, KV-PLM can achieve cross retrieval between substances and
property descriptions. We propose a new task CHEMIchoice to
evaluate the reading ability on SMILES strings and natural lan-
guage and also the alignment ability between them. Further, we
take qualitative analysis about the potential of KV-PLM on open
property prediction and drug discovery.

Still, there are some problems waiting for us to solve. First we
need a better definition and evaluation for cross-domain reading
tasks. Considering that models may only rely on a few sentences if
training by paragraphs, we align the SMILES strings and
descriptions by sentence. However, this method brings noises
because randomly picked negative samples from other paragraphs
may also be correct for the given substances. Besides, we simplify
the SMILES strings to get more concise substring pattern results,
while by removing brackets and number labels we lose infor-
mation about the spatial structure. What’s more, it is a simple and

rude way to linearly connect SMILES strings and natural language
in series. More clever structures for fusing internal and external
knowledge about chemicals and other types of entities are
expected to be proposed.

Our future work will focus on the problems above, trying to get
a more perfect model structure, training method and also
benchmark. Graph structure and more complicated molecule
representations may be adopted. Generation systems instead of
retrieval may also bring different but interesting effects.

Methods
Related work. Various structural machine reading systems have been developed to
read molecule structures for molecular knowledge acquisition. In early years,
machine learning algorithms help with molecular dynamics simulation17,18 and
energy calculations19. Recently, neural networks have been one of the most popular
tools for analyzing molecule properties. Molecule fingerprints computed by
neural networks have achieved competitive performance as compared with
expert-crafted descriptors8,20,21. Notably, recent studies show promising results in
modeling serialized molecule structures using powerful neural language
models11,22–24.

Since it is nearly impossible for human experts to read such a huge number of
papers, machine reading systems, powered by natural language processing (NLP)
techniques, are developed to extract molecule entities and their relations by reading
large-scale biomedical literature25–30. To this end, researchers have proposed
various neural language models to understand biomedical text, including
convolutional neural networks, recurrent neural networks, recursive neural
networks, and self-attention-based neural networks31–33. Recently, neural language
models equipped with self-supervised pre-training techniques34,35 have greatly
pushed the state-of-the-art on a broad variety of biomedical information extraction
tasks15,36.

In this work, we bridge molecule structures and biomedical text in a unified
multimodal deep learning framework. Previous works explore employing deep
learning models to connect multimodal information, including medical images and
text37, natural images and text38, molecules and reactions39 and molecules and
protein sequences40. There are also some works investigating pre-training vision-
language models41,42. In comparison, our model jointly learns molecule structure
and biomedical text representations, and establishes convenient interaction

Fig. 4 Visualizing substring pattern embeddings using t-SNE62. Parts of substring pattern fingerprints are randomly chosen and processed for
dimensionality reduction. Similar substring patterns are marked in the same colors. The upper one shows fingerprints from pre-trained KV-PLM*, and the
lower one is from the model finetuned on PCdes.
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channels between biomedical molecule knowledge and researchers for
comprehensive biomedical research assistance.

Corpus. Our pre-training corpus comes from S2orc43 which is a PDF-parse
English-language academic papers corpus.

We take over 0.3 million papers which contain 1 billion tokens for pre-training.
75% of the papers are under Medicine, Biology or Chemistry fields, and the other
25% are under Computer Science field. In order to reduce the number of special
characters related to experimental data in the text, we choose the abstract,
introduction, and conclusion sections of the papers. No other special preprocessing
is applied. For chemical substances we use documents from PubChem3, in which
there are over 150 million chemicals with SMILES strings and synonyms. To insert
SMILES strings for chemicals, we need to do entity linking for the corpus. Since
high precision and comparably low recall is acceptable for the large scale of
unsupervised data, we first recognize possible entities with the help of SciSpacy44,
and then link these words with KB entities if the words can exactly match the high
confidence synonyms. Notice that some substances have the same name with

common objects, including “dogs”, “success” and so on. Thus we filter out common
words from the synonym dictionary.

There are altogether 10k chemicals with 0.5 million times of occurrence being
detected in our corpus.

For the natural language part, we use the vocabulary list exactly the same as Sci-
BERT, which is more appropriate than the original BERT vocabulary on academic
papers. For the SMILES strings part, we apply the BPE10 encoding method (https://
github.com/rsennrich/subword-nmt) to 20,000 SMILES strings randomly chosen
from PubChem and get a special vocabulary list. It is already stated that brackets
and number labels are ignored. Finally, we filter out those whose frequency is lower
than 100 and get 361 substring patterns among which functional groups can be
observed, indicating the effectiveness of the splitting method. All the SMILES
strings are split into substring patterns separately with natural language.

Dataset. For SMILES strings processing tasks, we adopt MoleculeNet16, a wide
standard benchmark where molecule properties for SMILES string are concluded
into 17 types, and expressed in the form of classification or regression tasks. We
adopt four representative tasks from MoleculeNet including BBBP, HIV, Tox21,

Fig. 5 Case study for property prediction. The molecular structures are first serialized in SMILES strings. With more SMILES sub-groups provided (in
purple), the model can predict the properties more precisely.

Table 2 Case study for drug discovery.

Property query Substances retrieval result

Anti-inflammatory Effective: Elocalcitola 53, Fluocinolone, Fluocinonide, and Marinobufagenina 54

Unclear: Eribulin mesylate, U46619, Cholesteryl linoleate, Hallactone B, Leukotriene A4, and Npvvhffknivtprtppps
Antineoplastic Effective: Rebeccamycina 55, Idarubicin, Eribulin mesylate, Piroxantrone, and XC-302 free base

Unclear: Trimethoprim, Cyclomontanin C, Hexamidin, Fosinopril, and Dabigatran
Antioxidant Effective: Purpurina 56, Aromadendrin, Amburoside A, Dioxinodehydroeckola 57, and hemateina 58

Unclear: Capensinidin, 2′-Hydroxygenistein, Hydramacrophyllol A, 23566-96-3, and Olivomycin
Herbicide Effective: Guanabenza 59, 17254-80-7, Bentazone, and Triclopyr

Unclear: Diflubenzuron, Fenhexamid, 1-Azakenpaullone, Pteroic acid, and Bromhexine, C5H11ClHgN2O2
Dye Effective: Azocarmine G, Acid roseine, Acid green 3, Basic violet 14, Evans blue, Ponceau S, CHEBI:52122a 60, Azure A, and

Mercurochrome
Unclear: Acid Green 50 parent

Anti-depressant Effective: Benzphetamine, Benzylpiperazinea 61, Norpramin
Unclear: Dimethylaniline, 2627-86-3, Reduced Pyocyanine, 1672-76-0, 261789-00-8, Dadpm, and D extroamphetamine

Effective substances are proved with clear documentation.
aRepresents newly-discovered about which we list references for details.
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and SIDER. We use the official training, validation and test sets provided by
DeepChem45 package to ensure that the performance is relatively stable and
reproducible. For the two multilabel datasets Tox21 and SIDER, we report the
average scores for all the tasks.

Specifically, we adopt the following tasks and datasets:

(1) BBBP, the blood-brain barrier penetration dataset. It includes binary labels
for 2053 compounds on their permeability properties. Binary labels for
penetration/non-penetration are given.

(2) SIDER, the Side Effect Resource database of marketed drugs and adverse
drug reactions. It groups drug side effects into 27 system organ classes and
includes binary labels for 1427 drugs. Symptoms waited for binary
classification including endocrine disorders, eye disorders and so on.

(3) Tox21, a public database measuring the toxicity of compounds created by
the “Toxicology in the 21st Century”. It contains qualitative toxicity
measurements for 8014 compounds on 12 different targets, including
nuclear receptors and stress response pathways. Molecules are supposed to
be classified between toxic and nontoxic on each target.

(4) HIV, a dataset introduced by the DTP AIDS Antiviral Screen. It tests the
ability to inhibit HIV replication for 41,127 compounds required to classify
between inactive and active.

Besides, we adopt USPTO 1k TPL dataset (https://github.com/rxn4chemistry/
rxnfp) and create a few-shot subset. The original set has 410k data items. We
randomly pick 32 items for each class and get 32k items in total. In prepossessing
SMILES representations, to prevent sparse SMILES tokenization (i.e., producing
over-specific infrequent tokens), we remove numbers and brackets before feeding
them to KV-PLM* tokenizer. No other prepossessing steps are conducted.

For natural language processing, we adopt Chemprot and BC5CDR dataset.
Chemprot is a text mining chemical-protein interactions corpus with 13 classes of
relation types including inhibitor, product-of and so on. There are 1020 abstracts
(230k tokens) for train set, 612 abstracts (110k tokens) for dev set and 800 abstracts
(180k tokens) for test set. BC5CDR is a chemical-disease relation detection corpus
with 1500 abstracts in total and equally divided into train set, dev set and test set.
There are over 5k mentions of chemicals in each set. More researches focus on the
NER task than the relation detection task of BC5CDR. We use the version of the
two datasets provided by Sci-BERT (https://github.com/allenai/scibert) and there is
no special preprocessing of the data.

For cross-information tasks, we evaluate our retrieval model on PCdes.
Specifically, we substitute all the synonyms of the ground-truth substances into the
word it to avoid information leakage. 15k SMILES-description pairs in PCdes are
split into training, validation and test sets with ratio 7:1:2. For matching judging,
we first construct a choice base consisting of the 870 description sentences that
occur more than five times except for derivation descriptions. Then we sort the
sentence strings to assign similar sentences with closer index. To generate multiple-
choice questions for CHEMIchoice, for each of the 1428 test substances, we
randomly choose a sentence from the corresponding ground-truth descriptions as
the positive choice. The negative choices are sampled from the choice base, where
the difference between indexes of positive and negative sentences is greater than 10.
In this way, we largely avoid false negative choices.

Model. KV-PLM is based on the BERT model, which is one of the most popular
language models in recent years. Specifically, KV-PLM has 12 stacked Transformer
layers with 110M parameters in total, where each Transformer layer consists of a
self-attention sub-layer followed by a feedforward sub-layer.

There are plenty of ready-made frameworks for BERT. For computation
efficiency, we initialize our model by Sci-BERT uncased version. To adapt to
downstream tasks, following previous works12,15, we introduce a classification layer
on top of the model, which can perform sequence classification and sequence
labeling for SMILES string classification, RE and NER tasks.

To apply deep models to SMILES strings processing, there are different
strategies for tokenization46. In one of our model variants KV-PLM, we directly
take the tokenizer of Sci-BERT to tokenize SMILES strings, regarding them exactly

the same as general text. In the other variant KV-PLM*, inspired by the SPE-based
generative models47, we apply BPE to SMILES strings to better control the
tokenization of SMILES strings. For example, by controlling the vocabulary size of
the SMILES string tokenizer, we can largely prevent over-specific infrequent
tokenization results.

For the retrieval system, we regard SMILES strings as queries and descriptions
retrieval candidates. The core idea is to focus on the nearest negative samples
instead of all. The encoder for SMILES strings is the same one with descriptions
since SMILES strings are also linear text and can be easily fused. Let f(t) be a
feature-based representation computed by encoder from text t. Define the retrieval
score between SMILES string of a molecule m and a unit of description d as:

sðm; dÞ ¼ f ðmÞ � f ðdÞ
jf ðmÞj � jf ðdÞj ; ð1Þ

which is the cosine similarity of two representations. We refer to the loss function
in VSE++48 which is a similar representative image-caption retrieval method. For
a positive pair (m,d), we calculate the Max of Hinges (MH) loss:

LMH ¼ max
d0

½αþ sðm; d0Þ � sðm; dÞ�

þmax
m0

½αþ sðm0; dÞ � sðm; dÞ�;
ð2Þ

where α is a margin hyperparameter, d0 and m0 are negative descriptions and
SMILES strings from the batch.

Baselines tailored for mono-information tasks. For mono-information tasks
including natural language tasks and molecule tasks, there are plenty of mature
methods specially designed for them. Here, we compare our models with baselines
tailored for mono-information tasks.

Experiment results on 4 MoleculeNet themes are shown in Table 3. D-MPNN8

is a supervised graph convolution based method combined with descriptors.
Random forest (RF)49 is a representative method for statistical machine learning
which also takes descriptors as the input. DMP50 is an unsupervised pre-training
method that takes SMILES strings and molecular graphs as the input.

Although not tailored for molecule tasks, our models still achieve reasonable
performance compared to strong baselines. It is promising to leverage more
advanced molecule encoders in PLMs to further improve the results, which we
leave for future research.

Experiment results for ChemProt relation extraction and BC5CDR NER are
shown in Table 4. We observe that pre-trained language models are generally the
best solutions for these natural language processing tasks. We report the results of
BioBERT (+PubMed) and RoBERTa51, which are both popular models and
achieve comparable results with Sci-BERT. Note that the initial version of
BioBERT36 underperforms Sci-BERT, while the recently released version is
additionally trained on PubMed corpus, which helps it become the state-of-the-art
model on ChemProt and BC5CDR. Our models achieve comparable performance
with BioBERT (+PubMed).

Table 3 Experiment results on 4 MoleculeNet themes. Baseline results are cited from ref. 50.

Model BBBP HIV SIDER TOX21 Average

D-MPNN 71.2 ± 3.8 75.0 ± 2.1 63.2 ± 2.3 68.9 ± 1.3 69.6
RF 71.4 ± 0.0 78.1 ± 0.6 68.4 ± 0.9 76.9 ± 1.5 73.7
DMP 78.1 ± 0.5 81.0 ± 0.7 69.2 ± 0.7 78.8 ± 0.5 76.5
RXNFP 68.49 ± 0.71 73.46 ± 1.03 54.07 ± 1.64 65.46 ± 0.47 65.37 ± 0.63
BERTwo 68.37 ± 0.48 69.39 ± 1.04 60.19 ± 1.19 68.75 ± 0.64 66.67 ± 0.29
Sci-BERT 74.94 ± 1.30 75.38 ± 1.18 60.55 ± 2.36 71.72 ± 0.60 70.65 ± 0.58
SMI-BERT 71.12 ± 2.24 73.88 ± 1.45 59.84 ± 0.88 69.61 ± 0.44 68.61 ± 0.63
KV-PLM 74.61 ± 0.92 74.00 ± 1.16 61.51 ± 1.47 72.71 ± 0.59 70.71 ± 0.32
KV-PLM* 71.97 ± 0.85 71.84 ± 1.36 59.78 ± 1.53 69.79 ± 0.45 68.34 ± 0.52

Table 4 Experiment results on ChemProt and BC5CDR.

Model ChemProt RE BC5CDR NER

Sci-BERT 84.61 ± 0.58 89.26 ± 0.22
RoBERTa 81.10 ± 0.95 86.93 ± 0.20
BioBERT (+PubMed) 85.48 ± 0.52 89.24 ± 0.35
KV-PLM 84.59 ± 0.59 89.00 ± 0.33
KV-PLM* 85.19 ± 0.55 89.17 ± 0.22

Underlined numbers denote the best scores with no significant difference.
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Training settings. For Natural Language tasks, the authors of BERT provided
range of possible values to work well across various tasks: batch size [8, 16, 32],
Adam learning rate [2e−5, 3e−5, 5e−5], epoch number [2, 3, 4]. We conduct grid
search in the hyper-parameters above. In ChemProt RE task, we set batch size as 8,
learning rate as 2e−5 and epoch number as 4. In BC5CDR NER task, we set batch
size as 16, learning rate as 3e−5 and epoch number as 4. Grid search is also done
for the strongest baseline model Sci-BERT and the best hyper-parameters are
proved to be the same.

For the MoleculeNet tasks, we search suitable learning rate in [5e−6, 5e−5, 5e
−4] and batch size in [64, 128, 256], which are bigger than above because data
points are more than natural sentences. It turns out to be relatively insensitive to
hyperparameters changes as long as convergence is guaranteed. In MoleculeNet
tasks, we set batch size as 128, learning rate as 5e−6 and epoch number as 20. In
USP-few task, we set batch size as 256, learning rate as 5e−5 and epoch
number as 30.

For retrieval training, since the batch size recommended in VSE++48 is 128
while our training data scale is not so huge, we finally set batch size as 64. We set
epoch number as 30, learning rate as 5e−5 and margin as 0.2.

Notice that in all the experiments above, BertAdam optimizer is used and
warmup proportion is 0.2. Max length is 128 for sentences and 64 for SMILES
strings. For rxnfp model, since it is the only model of which the hidden size is 256
instead of 768, we set the learning rate as 5e−4 due to the smaller scale of
parameters and get better performance.

Tools and packages that we used in the experiments include: torch,
transformers, numpy, sklearn, tqdm, seqeval, chainer-chemistry, rdkit, subword-
nmt, boto3, and requests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data that support the findings of this study have been deposited in Google Drive: https://
drive.google.com/drive/folders/1xig3-3JG63kR-Xqj1b9wkPEdxtfD_4IX.

Code availability
The code of this study52 can be obtained from GitHub: https://github.com/thunlp/KV-
PLM. The zip file of code can be downloaded via the Google Drive link above.
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