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Neural Diffusion Model for
Microscopic Cascade Study

Cheng Yang, Maosong Sun, Haoran Liu, Shiyi Han, Zhiyuan Liu, Huanbo Luan

Abstract—The study of information diffusion or cascade has attracted much attention over the last decade. Most related works target
on studying cascade-level macroscopic properties such as the final size of a cascade. Existing microscopic cascade models which
focus on user-level modeling either make strong assumptions on how a user gets infected by a cascade or limit themselves to a
specific scenario where “who infected whom” information is explicitly labeled. The strong assumptions oversimplify the complex
diffusion mechanism and prevent these models from better fitting real-world cascade data. Also, the methods which focus on specific
scenarios cannot be generalized to a general setting where the diffusion graph is unobserved.
To overcome the drawbacks of previous works, we propose a Neural Diffusion Model (NDM) for general microscopic cascade study.
NDM makes relaxed assumptions and employs deep learning techniques including attention mechanism and convolutional network for
cascade modeling. Both advantages enable our model to go beyond the limitations of previous methods, better fit the diffusion data
and generalize to unseen cascades. Experimental results on diffusion identification task over four realistic cascade datasets show that
our model can achieve a relative improvement up to 26% against the best performing baseline in terms of F1 score.

Index Terms—Information Diffusion, Neural Network

F

1 INTRODUCTION

INformation diffusion is a ubiquitous and fundamental
event in our daily lives, such as the spread of rumors,

the contagion of viruses and the propagation of new ideas
and technologies. The diffusion process, also called a cas-
cade, has been studied over a broad range of domains.
Though some works believe that even the eventual size of a
cascade cannot be predicted [1], recent works [2], [3], [4]
have shown the ability to estimate the size, growth and
many other key properties of a cascade. Nowadays the
modeling of cascades play an important role in many real-
world applications, e.g. production recommendation [5], [6],
[7], [8], [9], epidemiology [10], [11], social networks [12],
[13], [14] and the spread of news and opinions [15], [16],
[17]. Most previous works focus on the study of macroscopic
properties such as the total number of users who share a
specific photo [2] and the growth curve of the popularity of
a blog [3]. However, macroscopic cascade study is a rough
estimate of cascades and cannot be adapted for microscopic
questions as shown in Fig. 1. Microscopic cascade study,
which pays more attention to user-level modeling instead
of cascade-level, is much more powerful than macroscopic
estimation and allows us to apply user-specific strategies for
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Fig. 1. Macroscopic cascade study v.s. microscopic cascade study.

real-world applications. For example, during the adoption
of a new product, microscopic cascade study can help us
deliver advertisements to those users that are most likely to
buy the product at each stage. In this paper, we focus on the
study of microscopic level.

Though useful and powerful, the microscopic study
of cascades faces great challenges because the real-world
diffusion process could be rather complex [18] and usually
partially observed [11], [19]:

Complex mechanism. Since the mechanism of how a
specific user gets infected 1 is sophisticated, traditional
cascade models based on strong assumptions and simple
formulas may not be the best choice for microscopic cas-
cade modeling. Existing cascade models [20], [21], [22], [23]
which could be adopted for microscopic analysis mostly
ground in Independent Cascade (IC) model [12]. IC model

1. We use “infected” and “activated” alternatively to indicate that a
user is influenced by a cascade.
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assigns a static probability pu,v to user pairs (u, v) with
pairwise independent assumptions, where the probability
pu,v indicates how likely user v will get infected by user u
when u is infected. Other diffusion models [24], [25] make
even stronger assumptions that the infected users are only
determined by the source user. Though intuitive and easy
to understand, these cascade models are based on strong
assumptions and oversimplified probability estimation for-
mulas, both of which limit the expressivity and ability to fit
complex real-world cascade data [26]. The complex mech-
anism of real-world diffusions encourages us to explore
more sophisticated models, e.g. deep learning techniques,
for cascade modeling.

Incomplete observation. On the other hand, the cascade
data is usually partially observed indicates that we can
only observe those users getting infected without knowing
who infected them. However, to the best of our knowledge,
existing deep-learning engined microscopic cascade mod-
els [27], [28] are based on the assumption that the diffusion
graph where a user can only infect and get infected by
its neighbors is already known. For example, when we
study the retweeting behavior on the Twitter network, “who
infected whom” information is explicitly labeled in retweet
chain and the next infected user candidates are restricted
to the neighboring users rather than the whole user set.
While in most diffusion processes such as the adoption of a
product or the contamination of a virus, the diffusion graph
is unobserved [11], [19], [29]. Therefore, these methods
consider a much simpler problem and cannot be generalized
to a general setting where the diffusion graph is unknown.

To fill in the blank of general microscopic cascade study
and address the limitations of traditional cascade models,
we propose a neural diffusion model based on relaxed
assumptions and employ up-to-date deep learning tech-
niques, i.e. attention mechanism and convolutional neural
network, for cascade modeling. The relaxed assumptions
enable our model to be more flexible and less constrained,
and deep learning tools are good at capturing the complex
and intrinsic relationships that are hard to be characterized
by hand-crafted features. Both advantages allow our model
to go beyond the limitations of traditional methods based on
strong assumptions and oversimplified formulas and better
fit the complicated cascade data. Following the experimental
settings in [23], we conduct experiments on diffusion identi-
fication task over four realistic cascade datasets to evaluate
the performances of our proposed model and other state-
of-the-art baseline methods. Experimental results show that
our model can achieve a relative improvement up to 26%
against the best performing baseline in terms of F1 score.

To conclude, our contributions are 3-fold:

• To the best of our knowledge, our work is the first
attempt to employ deep learning techniques for gen-
eral microscopic cascade study where the diffusion
graph is unknown.

• We design a neural diffusion model based on relaxed
assumptions compared with the pairwise indepen-
dence assumption in traditional cascade models and
allow our model to better fit real-world cascades and
generalize to unseen data.

• Experimental results on diffusion identification task

over four realistic datasets demonstrate the effective-
ness and robustness of our proposed model. Com-
pared with the best performing baseline, our model
can achieve a relative improvement up to 26% on F1
score.

2 RELATED WORKS

We organize related works into macroscopic and micro-
scopic cascade studies. In terms of methodology, our work
is also related to network representation learning methods.

2.1 Macroscopic Cascade Study
Most previous works focused on macroscopic level esti-
mation such as the eventual size of a cascade [4] and the
growth curve of popularity [3]. Macroscopic cascade study
methods can be further classified into feature-based ap-
proaches, generative approaches, and deep-learning based
approaches. Feature-based approaches formalized the task
as a classification problem [2], [30] or a regression prob-
lem [31], [32] by applying SVM, logistic regression and
other machine learning algorithms on hand-crafted fea-
tures including temporal [33] and structural [2] features.
Generative approaches considered the growth of cascade
size as an arrival process of infected users and employed
stochastic processes, such as Hawkes self-exciting point pro-
cess [4], [34], for modeling. With the success of deep learn-
ing techniques in various applications, deep-learning based
approaches, e.g. DeepCas [26] and DeepHawkes [35], were
proposed to employ Recurrent Neural Network (RNN) for
encoding cascade sequences into feature vectors instead of
hand-crafted features. Compared with hand-crafted feature
engineering, deep-learning based approaches have better
generalization ability across different platforms and give
better performance on evaluation tasks.

2.2 Microscopic Cascade Study
Our work is more related to microscopic cascade study
which focuses on user-level modeling. We classify re-
lated works into three categories: IC-based approaches,
embedding-based approaches, and deep-learning based ap-
proaches.

IC model [12], [15], [36], [37] is one of the most popu-
lar diffusion models which assumed independent diffusion
probability through each link. Extensions of IC model fur-
ther considered time delay information by incorporating a
predefined time-decay weighting function, such as continu-
ous time IC [38], CONNIE [19], NetInf [20] and Netrate [21].
Infopath [22] was proposed to infer dynamic diffusion prob-
abilities based on information diffusion data and study the
temporal evolution of information pathways. MMRate [39]
inferred multi-aspect transmission rates by incorporating
aspect-level user interactions and various diffusion patterns.
All above methods learned the probabilities from cascade
sequences. Once a model is trained, it can be used for
microscopic evaluation tasks by simulating the generative
process using Monte Carlo simulation.

Embedding-based approaches encoded each user into
a parameterized real-valued vector and trained the pa-
rameters by maximizing an objective function. Embedded



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 3

IC [23] followed the pairwise independence assumption in
IC model and modeled the diffusion probability between
two users by a function of their user embeddings. Other
embedding-based diffusion models [24], [25] made even
stronger assumptions that infected users are determined
only by the source user and the content of information item.
As shown in previous work [26], such models with strong
assumptions oversimplify the reality and generally show
poor performance on real application tasks.

Existing deep-learning based approaches [27], [28] fo-
cused on the retweeting and sharing behaviors in a so-
cial network where “who infected whom” information is
explicitly labeled in retweet chain. The next infected user
candidates are also restricted to the neighboring users when
the diffusion graph is known. However, the diffusion graph
is usually unknown for most diffusion processes [11], [19].
For example, during the contamination of a virus, by whom
a patient gets infected is unobserved. Existing deep-learning
based methods considered a much simpler problem and
cannot be generalized to a general setting where the diffu-
sion graph is unobserved. To the best of our knowledge, our
work is the first attempt to employ deep learning techniques
for general microscopic cascade study where the diffusion
graph is unknown.

2.3 Network Representation Learning

Researchers have explored many algorithms to represent
nodes in a network by real-valued vectors. By projecting
topology structure into vectors, we can apply machine learn-
ing techniques for many network applications, e.g. classifi-
cation. Most network representation learning works focus
on task unspecific learning where the downstream task is
unknown. Early stage works [40] use eigenvector computa-
tion to learn node embeddings. With the success of neural
networks, people also employ simple neural networks for
representation learning [41], [42]. For task specific learning,
a certain task such as classification [43] and recommenda-
tion [44] is specified and the network embeddings serve as
the bottom layer of their model as what we will do in this
paper. In terms of diffusion identification task, Embedded
IC [23] is proposed and will be used as our baseline method.

3 DATA OBSERVATION

In this section, we will conduct data observation on real-
world datasets and investigate the intrinsic relationships
between activated users in a diffusion sequence. In specific,
we will try to figure out whether consecutively activated
users are more likely to be relevant and thus appear in
more diffusion sequences together. We will first introduce
the datasets.

3.1 Datasets

We collect four real-world cascade datasets that cover a
variety of applications for evaluation. A cascade is an item
or some kind of information that spreads through a set of
users. Each cascade consists of a list of (user, timestamp)
pairs where each pair indicates the fact that the user gets
infected at the timestamp.

TABLE 1
Statistics of Datasets.

Dataset # Users # Links # Cascades Avg. Length

Lastfm 982 506,582 23,802 7.66
Irvine 540 62,605 471 13.63

Memetracker 498 158,194 8,304 8.43
Twitter 19,546 18,687,423 6,158 36.74

Lastfm is a music streaming website. We collect the
dataset from [45]. The dataset contains the full history of
nearly 1, 000 users and the songs they listened to over one
year. We treat each song as an item spreading through users
and remove the users who listen to no more than 5 songs.

Irvine is an online community for students at University
of California, Irvine collected from [46]. Students can partic-
ipate in and write posts on different forums. We regard each
forum as an information item and remove the users who
participate in no more than 5 forums.

Memetracker 2 collects a million of news stories and blog
posts and track the most frequent quotes and phrases, i.e.
memes, for studying the migration of memes across a group
of people. Each meme is considered to be an information
item and each URL of websites or blogs is regarded as a
user. Following the settings of previous works [23], we filter
the URLs to only keep the most active ones to alleviate the
effect of noise.

Twitter dataset [47] concerns tweets containing URLs
posted on Twitter during October 2010. The complete tweet-
ing history of each URL is collected. We consider each
distinct URL as a spreading item over Twitter users. We filter
out the users with no more than 5 tweets. Note that the scale
of Twitter dataset is competitive and even larger than the
datasets used in previous neural-based cascade modeling
algorithms [23], [28].

Note that all the above datasets have no explicit evidence
about by whom a user gets infected. Though we have the
following relationship in Twitter dataset, we still cannot
trace the source of by whom a user is encouraged to tweet a
specific URL unless the user directly retweets.

We list the statistics of datasets in Table 1. Since we
have no interaction graph information between users, we
assume that there exists a link between two users if they
appear in the same cascade sequence. Each virtual “link”
will be assigned a parameterized probability in traditional
IC model and thus the space complexity of traditional
methods is relatively high especially for large datasets. We
also calculate the average cascade length of each dataset in
the last column.

3.2 Statistical Analysis

Now we will try to reveal the correlation patterns between
users by statistical results. By intuition, two consecutively
infected users in a cascade sequence are more likely to have
connections, e.g. one infects another, and thus participate in
many other diffusion sequences together.

To demonstrate this statement, we consider the follow-
ing statistics: given the fact that user ui and uj are infected

2. http://www.memetracker.org
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Fig. 2. Statistical results of the expectation of co-occurrence times of two random users given the fact that they are both infected by a cascade with
K users infected between them. Here < 10 and ≥ 10 are average co-occurrence times for K < 10 and K ≥ 10 .
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Fig. 3. Statistical results of the expectation of co-occurrence times of two random users given the fact that they are both infected by a cascade with
K users infected between them and they are the top 5% user pairs in terms of co-occurrence times satisfying the previous condition.

in a cascade sequence with K users infected between them
in this sequence, what will be the expectation of the number
of cascade sequences that user ui and uj both participate in?
Here K = 0 indicates that user ui and uj are consecutively
activated. If the intuition is true, then the expectation should
decrease as K increases.

Fig. 2 presents the statistical results of all four datasets.
Here we list the results for K = 0, 1, 2, 3 and the average
for K < 10 and K ≥ 10. The statistics show that the expec-
tations of co-occurrence times for K < 10 are consistently
larger than those for K ≥ 10. Note that the gap is not very
large for some datasets due to the long-tail effect. Therefore,
we further present the results only for the top 5% user pairs
in terms of co-occurrence times for each K in Fig. 3. We can
see the differences more clearly in this setting.

These statistical results demonstrate that consecutively
infected users in a cascade sequence are more likely to be
relevant. By saying two users are “relevant”, there could
be a direct diffusion path between them or they are both
likely to be infected by a third one. Also, we find that
not only the most recently infected user will be relevant to
the next infected one: As shown in Fig. 2 and 3, all recent
infected users (K = 0, 1, 2, 3) could be relevant with minor
differences (more relevant for smaller K). We will build our
model based on these findings in next section.

4 METHOD

In this section, we will start by formalizing the problem and
introducing the notations. Then we propose two heuristic
assumptions according to the data observations as our basis
and design a Neural Diffusion Model (NDM) using deep
learning techniques. Finally, we will introduce the overall
optimization function and other details of our model.

4.1 Problem Formalization

A cascade dataset records the information that an item
spreads to whom and when during its diffusion. For ex-
ample, the item could be a product and the cascade records
who bought the product at what moment. However, in most
cases, there exists no explicit interaction graph between the
users [23], [37]. Therefore, we have no explicit information
about how a user was infected by other users.

Formally, given user set U and observed cascade se-
quence set C, each cascade ci ∈ C consists a list of users
{ui

0, u
i
1 . . . u

i
|ci|−1} ranked by their infection time, where |ci|

is the length of sequence ci and ui
j ∈ U is the j-th user

in the sequence ci. Note that we only consider the order
of users getting infected and ignore the exact timestamps of
infections in this paper as previous works did [23], [28], [29].

In this paper, our goal is to learn a cascade model which
can predict the next infected user uj+1 given a partially ob-
served cascade sequence {u0, u1 . . . uj}. The learned model
is able to predict the entire infected user sequence based on
the first few observed infected users and thus be used for
microscopic evaluation tasks illustrated in Figure 1. In our
model, we add a virtual user called “Terminate” to the user
set U . At training phase, we append “Terminate” to the end
of each cascade sequence and allow the model to predict
next infected user as “Terminate” to indicate that no more
users will be infected in this cascade.

Further, we represent each user by a parameterized real-
valued vector to project users into vector space. The real-
valued vectors are also called embeddings. We denote the
embedding of user u as emb(u) ∈ Rd where d is the
dimension of embeddings. In our model, a larger inner
product between the embeddings of two users indicates
a stronger correlation between the users. The embedding
layer is used as the bottom layer of our model by projecting
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a user into corresponding vector as shown in Figure 4.

4.2 Model Assumptions

In traditional Independent Cascade (IC) model [12] set-
tings, all previously infected users can activate a new user
independently and equally regardless of their orders of
getting infected. Many extensions of IC model further con-
sidered time delay information such as continuous time IC
(CTIC) [38] and Netrate [21]. However, none of these models
tried to find out which users are actually active and more
likely to activate other users at the moment. To address this
issue, we propose the following assumption.

Assumption 1. Given a recently infected user u, users
that are strongly correlated to user u including user u itself
are more likely to be active.

This assumption is intuitive and straight-forward. As a
newly activated user, u should be active and may infect
other users. The users strongly correlated to user u are
probably the reason why user u gets activated recently and
thus more likely to be active than other users at the moment.
We further propose the concept of “active user embedding”
to characterize all such active users.

Definition 1. For each recently infected user u, we aim
to learn an active user embedding act(u) ∈ Rd which
represents the embedding of all active users related to user
u, and can be used for predicting the next infected user in
next step.

The active user embedding act(uj) characterizes the
potential active users related to the fact that user uj gets
infected. From the data observations, we can see that all
recently infected users could be relevant to the next infected
one. Therefore, the active user embeddings of all recently
infected users should contribute to the prediction of next
infected user, which leads to the following assumption.

Assumption 2. All recently infected users should con-
tribute to the prediction of next infected user and be pro-
cessed differently according to the order of getting infected.

Compared with the strong assumptions made by IC-
based and embedding-based method introduced in related
works, our heuristic assumptions allow our model to be
more flexible and better fit cascade data. Now we will
introduce how to build our model based on these two
assumptions, i.e. extracting active users and unifying these
embeddings for prediction.

4.3 Extracting Active Users with Attention Mechanism

For the purpose of computing active user embeddings, we
propose to use attention mechanism [48], [49] to extract the
most likely active users by giving them more weights than
other users. As shown in Figure 4, the active embedding
of user uj is computed as a weighted sum of previously
infected users:

act(uj) =

j∑
k=0

wjkemb(uk), (1)

where the weight of uk is

wjk =
exp(emb(uj)emb(uk)T )∑j

m=0 exp(emb(uj)emb(um)T )
. (2)

Note that wjk ∈ (0, 1) for every k and
∑j

m=0 wjm = 1. wjk

is the normalized inner product between the embeddings
of uj and uk which indicates the strength of correlation
between them.

From the definition of active user embedding act(uj)
in Eq. 1, we can see that the user embeddings emb(uk)
which have a larger inner product with emb(uj) will be
allocated a larger weight wjk. This formula naturally follows
our assumption that users strongly correlated to user u
including user u itself should be paid more attention.

To fully utilize the advantages of a neural model, we
further employ the multi-head attention [49] to improve
the expressibility. Multi-head attention projects the user
embeddings into multiple subspaces with different linear
projections. Then multi-head attention performs attention
mechanism on each subspace independently. Finally, multi-
head attention concatenates the attention embeddings in all
subspaces and feeds the result into a linear projection again.

Formally, in a multi-head attention with h heads, the
embedding of i-th head is computed as

headi =

j∑
k=0

wi
jkemb(uk)WV

i , (3)

where

wi
jk =

exp(emb(uj)W
Q
i (emb(uk)WK

i )T )∑j
m=0 exp(emb(uj)W

Q
i (emb(um)WK

i )T )
, (4)

WV
i ,WQ

i ,WK
i ∈ Rd×d are head-specific linear projection

matrices. In particular, WQ
i and WK

i can be seen to project
user embeddings into receiver space and sender space respec-
tively for asymmetric modeling.

Then we have the active user embedding act(uj)

act(uj) = [head1, head2 . . . headh]WO, (5)

where [] indicates concatenation operation and WO ∈
Rhd×d projects the concatenated results into d-dimensional
vector space.

Multi-head attention allows the model to “divide and
conquer” information from different perspectives (i.e. sub-
spaces) independently and thus is more powerful than the
traditional attention mechanism.

4.4 Unifying Active User Embeddings for Prediction
with Convolutional Network

Different from previous works [21], [50] which directly give
a time-decay weight that assumes larger weights for the
most recently infected users, we propose to use a param-
eterized neural network to handle the active user embed-
dings at different positions. Compared with a predefined
exponential-decay weighting function [21], a parameterized
neural network can be learned automatically to fit the real-
world dataset and capture the intrinsic relationship between
active user embedding at each position and next infected
user prediction. In this paper, we consider Convolutional
Neural Network (CNN) to meet this purpose.

CNN has been widely used in image recognition [51],
recommender systems [52] and natural language process-
ing [53]. CNN is a shift-invariant neural network and allows
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Fig. 4. An overview of our Neural Diffusion Model (NDM). NDM sequentially predicts the next infected user based on the active embeddings (the
blue nodes) of recent activated users and the active embeddings is computed by an attention layer over the user embeddings (the green nodes) of
all previous infected users.

us to assign position-specific linear projections to the em-
beddings.

Figure 4 illustrates an example where the window size
of our convolutional layer win = 3. The convolutional
layer first converts each active user embedding act(uj−n)
into a |U|-dimensional vector by a position-specific linear
projection matrix WC

n ∈ Rd×|U| for n = 0, 1 . . .win − 1.
Then the convolutional layer sums up the projected vectors
and normalizes the summation by softmax function.

Formally, given partially observed cascade sequence
(u0, u1 . . . uj), the predicted probability distribution prej ∈
R|U| is

prej = softmax(
win−1∑
n=0

act(uj−n)WC
n ), (6)

where softmax(x)[i] = exp(x[i])∑
p exp(x[p]) and x[i] denotes the i-

th entry of a vector x. Each entry of prej represents the
probability that the corresponding user gets infected at next
step.

Since the initial user u0 plays an important role in the
whole diffusion process, we further take u0 into considera-
tion:

prej = softmax(
win−1∑
n=0

act(uj−n)WC
n + act(u0)WC

init · Finit),

(7)
where WC

init ∈ Rd×|U| is the projection matrix for initial user
u0 and Finit ∈ {0, 1} is a hyperparameter which controls
whether incorporate initial user for prediction or not.

4.5 Overall Architecture, Model Details and Learning
Algorithms

We naturally maximize the log-likelihood of all observed
cascade sequences to build the overall optimization func-
tion.

L(Θ) =
∑
ci∈C

|ci|−2∑
j=0

log preij [u
i
j+1], (8)

where preij [u
i
j+1] is the predicted probability of ground

truth next infected user ui
j+1 at position j in cascade ci, and

Θ is the set of all parameters need to be learned, including
user embeddings emb(u) ∈ Rd for each u ∈ U , projection
matrices in multi-head attention WV

n ,WQ
n ,WK

n ∈ Rd×d for
n = 1, 2 . . . h,WO ∈ Rhd×d and projection matrices in con-
volutional layer WC

init,W
C
n ∈ Rd×|U| for n = 0, 1 . . .win−1.

Note that our model is general and can also be adapted for
the case where “who infected whom” info is provided by
converting a training cascade into a set of “true” infection
sequences where each user is infected by its precedent user.

Implementation Details. We implement our model us-
ing PyTorch 3 and optimize the parameters by gradient
descent with Adam optimizer [54]. We further employ layer
normalization [55] and residual connection [56] operation
to active user embedding to avoid gradient explosion or
vanishment problem that may occur in deep neural net-
works. In other words, the active user embedding act(u)
is replaced by LayerNorm(emb(u)+act(u)) instead where

3. http://pytorch.org
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the LayerNorm(·) function encourages the output to have
zero mean and unit variance. We also use dropout [57] to the
attention mechanism to prevent our model from overfitting
and the dropout rate is set to 0.1. Since the same user will
not be infected twice, we mask the users that are already
infected in the Eq. 7 so that they won’t be predicted. We
release our source code at github 4 and all the details are
listed. Hyperparameter settings will be introduced in next
section.

Complexity. The space complexity of our model is
O(d|U|) where d is the embedding dimension which is
much less than the size of user set. Note that the space
complexity of training traditional IC model will go up to
O(|U|2) because we need to assign an infection probability
between each pair of potential linked users. Therefore, the
space complexity of our neural model is less than that of
traditional IC methods.

The computation of a single active embedding takes
O(|ci|d2) time where ci is the length of corresponding cas-
cade and the next infected user prediction in Eq. 7 step takes
O(d|U|) time. Hence the time complexity of training a single
cascade is O(

∑
ci∈C(|ci|

2d2+ |ci|d|U|)) which is competitive
with previous neural-based models such as embedded IC
model [23]. But as we will show in the experiments, our
model converges much faster than embedded IC model and
is capable of handling large-scale dataset.

5 EXPERIMENTS

We conduct experiments on microscopic diffusion identi-
fication 5 task as previous works did [23] to evaluate the
performance of our model and various baseline methods.
We will first introduce the baseline methods, evaluation
metrics and hyperparameter settings. Then we will present
the experimental results and give further analysis about the
evaluation.

5.1 Baselines

We consider a number of state-of-the-art baselines to
demonstrate the effectiveness of our algorithm. Most of the
baseline methods will learn a transition probability matrix
M ∈ R|U|×|U| from cascade sequences where each entry
Mij represents the probability that user uj gets infected by
ui when ui is activated.

Netrate [21] considers the time-varying dynamics of
diffusion probability through each link and defines three
transmission probability models, i.e. exponential, power-law
and Rayleigh, which encourage the diffusion probability to
decrease as the time interval increases. In our experiments,
we only report the results of exponential model since the
other two models give similar results.

Infopath [22] also targets on inferring dynamic diffusion
probabilities based on information diffusion data. Infopath
employs stochastic gradient to estimate the temporal dy-
namics and studies the temporal evolution of information
pathways.

4. https://github.com/albertyang33/NeuralDiffusionModel
5. Previous work called this task as “diffusion prediction” while we

name it as “diffusion identification” as the time ordering is not fully
considered in this setting.

Embedded IC [23] explores representation learning tech-
nique and models the diffusion probability between two
users by a function of their user embeddings instead of a
static value. Embedded IC model is trained by stochastic
gradient descent method.

LSTM is a widely used neural network framework [58]
for sequential data modeling and has been used for cascade
modeling recently. Previous works employ LSTM for some
simpler tasks such as popularity prediction [26] and cascade
identification with known diffusion graph [27], [28]. Since
none of these works are directly comparable to ours, we
adopt LSTM network for comparison by adding a softmax
classifier to the hidden state of LSTM at each step for next
infected user prediction.

5.2 Hyperparameter Settings for Neural Models
Though the parameter space of neural network based meth-
ods is much less than that of traditional IC models, we
have to set several hyperparameters to train neural models.
To tune the hyperparameters, we randomly select 10% of
training cascade sequences as validation set. Note that all
training cascade sequences including the validation set will
be used to train the final model for testing.

For Embedded IC model, the dimension of user embed-
dings is selected from {25, 50, 100} as the original paper
did [23]. For LSTM model, the dimensions of user embed-
dings and hidden states are set to the best choice from
{16, 32, 64, 128}. For our model NDM, the number of heads
used in multi-head attention is set to h = 8, the window
size of convolutional network is set to win = 3 and the
dimension of user embeddings is set to d = 64. Note that
we use the same set of (h,win, d) for all the datasets. The
flag Finit in Eq. 7 which determines whether the initial user
is used for prediction is set to Finit = 1 for Twitter dataset
and Finit = 0 for the other three datasets. We will show the
robustness of our model in parameter sensitivity subsection.

Note that neural models, i.e. Embedded IC, LSTM and
NDM, are based on matrix multiplication operations and
thus naturally benefit from the GPU acceleration. Therefore,
we train these three methods on a GPU device (GeForce
GTX TITAN X) instead of a CPU device (Intel Xeon E5-2620
@ 2.0GHz).

5.3 Microscopic Diffusion Identification
To compare the ability of cascade modeling, we evaluate our
model and all baseline methods on the microscopic diffusion
identification task. We follow the experimental settings in
Embedded IC [23] for a fair comparison. We randomly select
90% cascade sequences as training set and the rest as test set.
For each cascade sequence c = (u0, u1, u2 . . . ) in the test set,
only the initial user u0 is given and all successively infected
users Gc = {u1, u2 . . . u|Gc|} need to be predicted. Note that
we completely ignore exact timestamp information in this
work and the time order among sequences is omitted for
simplification. We will explore a more reasonable setting as
future work by taking timestamp information into consider-
ation.

All baseline methods and our model are required to
identify a set of users and the results will be compared with
ground truth infected user set G. For baseline methods that
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TABLE 2
Experimental results on microscopic diffusion identification.

Metric Dataset Method ImprovementNetrate Infopath Embedded IC LSTM NDM

Macro-F1

Lastfm 0.017 0.030 0.020 0.026 0.056 +87%
Memetracker 0.068 0.110 0.060 0.102 0.139 +26%

Irvine 0.032 0.052 0.054 0.041 0.076 +41%
Twitter - 0.044 - 0.103 0.139 +35%

Micro-F1

Lastfm 0.007 0.046 0.085 0.072 0.095 +12%
Memetracker 0.050 0.142 0.115 0.137 0.171 +20%

Irvine 0.029 0.073 0.102 0.080 0.108 +6%
Twitter - 0.010 - 0.052 0.087 +67%

TABLE 3
Experimental results on microscopic diffusion identification at early stage where only the first five infected users are predicted in each cascade.

Metric Dataset Method ImprovementNetrate Infopath Embedded IC LSTM NDM

Macro-F1

Lastfm 0.018 0.028 0.010 0.018 0.048 +71%
Memetracker 0.071 0.094 0.042 0.091 0.122 +30%

Irvine 0.031 0.030 0.027 0.018 0.064 +106%
Twitter - 0.040 - 0.097 0.123 +27%

Micro-F1

Lastfm 0.016 0.035 0.013 0.019 0.045 +29%
Memetracker 0.076 0.106 0.040 0.094 0.126 +19%

Irvine 0.028 0.030 0.029 0.020 0.065 +117%
Twitter - 0.050 - 0.093 0.118 +27%

ground in IC model, i.e. Netrate, Infopath and Embedded
IC, we will simulate the infection process according to
the learned pairwise diffusion probability and their corre-
sponding generation process. For LSTM and our model, we
can sequentially sample a user according to the probability
distribution of softmax classifier at each step.

Note that the ground truth infected user set could also be
partially observed because the datasets are crawled within a
short time window. Therefore, for each test sequence c with
|Gc| ground truth infected users, all the algorithms are only
required to identify the first |Gc| infected users in a single
simulation. Also note that the simulation may terminate and
stop infecting new users before activating |Gc| users.

We conduct 1000 times Monte Carlo simulations for each
test cascade sequence c for all algorithms and compute the
infection probability P c

u of each user u ∈ U . We evaluate the
identification results using two classic evaluation metrics:
Macro-F1 and Micro-F1.

Macro-F1. Macro-averaged F1 first computes the pre-
cision prec, recall recc and F1 score fc locally for each
test cascade sequence c in the test set Ctest. Then macro-
averaged F-measure takes the average over all test cascade
sequences:

prec =

∑
u∈Gc P c

u∑
u∈U P

c
u

, recc =

∑
u∈Gc P c

u

|Gc|
, fc =

2prec · recc
prec + recc

,

Macro− F1 =

∑
c∈|Ctest| fc

|Ctest|
.

Micro-F1. Micro-averaged F1 computes precision pre,
recall rec globally by averaging over all identifications and
serves as a complementary view by giving larger weights to
longer cascades:

pre =

∑
c∈|Ctest|

∑
u∈Gc P c

u∑
c∈|Ctest|

∑
u∈U P

c
u

, rec =

∑
c∈|Ctest|

∑
u∈Gc P c

u∑
c∈|Ctest| |Gc|

,

Micro− F1 =
2pre · rec
pre + rec

.

To further evaluate the performance of cascade identifi-
cation at early stage, we conduct additional experiments by
only predicting the first five infected users in each test cas-
cade. We present the experimental results in Table 2 and 3.
Here “-” indicates that the algorithm fails to converge in 72
hours. The last column represents the relative improvement
of NDM against the best performing baseline method. We
have the following observations:

(1) NDM consistently and significantly outperforms all
the baseline methods. As shown in Table 2, the relative
improvement against the best performing baseline is at
least 26% in terms of Macro-F1 score. The improvement on
Micro-F1 score further demonstrates the effectiveness and
robustness of our proposed model. The results also indicate
that well-designed neural network models are able to sur-
pass traditional cascade methods on cascade modeling.

(2) NDM has even more significant improvements on
cascade identification task at early stage. As shown in Table 3,
NDM outperforms all baselines by a large margin on both
Macro and Micro F1 scores. Note that it’s very important
to identify the first wave of infected users accurately for
real-world applications because a wrong identification will
lead to error propagation in following stages. A precise
identification of infected users at early stage enables us to
better control the spread of information items through users.
For example, we can prevent the spread of a rumor by warn-
ing the most vulnerable users in advance and promote the
spread of a product by paying the most potential customers
more attention. This experiment demonstrates that NDM
has the ability to be used for real-world applications.

(3) NDM is capable of handling large-scale cascade
datasets. Previous neural-based method, Embedded IC, fails
to converge in 72 hours on Twitter dataset with around 20
thousand users and 19 million of potential links. In contrast,
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Fig. 5. Comparisons between NDM and NDM+SN on diffusion identifi-
cation.
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Fig. 6. Comparisons between NDM and NDM+SN on diffusion identifica-
tion at early stage where only the first five infected users are predicted.

NDM converges in 6 hours on this dataset with the same
GPU device, which is at least 10 times faster than Embedded
IC. This observation demonstrates the scalability of NDM.

5.4 Benefits from Social Network
Sometimes the underlying social network of users is avail-
able, e.g. the Twitter dataset used in our experiments. In
the Twitter dataset, a network of Twitter followers is ob-
served though the information diffusion is not necessarily
passed through the edges of the social network. We hope
that the diffusion identification process could benefit from
the observed social network structure. We apply a simple
modification on our NDM model to take advantage of the
social network. Now we will introduce the modification in
detail.

Firstly, we embed the topological social network struc-
ture into real-valued user features by DeepWalk [41], a
widely used network representation learning algorithm. The
dimension of network embeddings learned by DeepWalk
is set to 32 which is half of the dimension d = 64 which

Lastfm Memetracker Irvine Twitter
0

0.5

1

1.5

2

M
S

L
E

 

 

DeepCas

NDM

Fig. 7. Experimental results on cascade size identification. MSLE is the
lower the better.

is the representation size of our model. Secondly, we use
the learned network embeddings to initialize the first 32
dimensions of the user representations of our model and
fix them during the training process without changing
any other modules. In other words, a 64-dimensional user
representation is made up of a 32-dimensional fixed net-
work embedding learned by DeepWalk from social network
structure and another 32-dimensional randomly initialized
trainable embedding. We name the modified model with
Social Network considered as NDM+SN for short. This is
a simple but useful implementation and we will explore a
more sophisticated model to take the social network into
modeling directly in future work. Fig. 5 and 6 show the
comparison between NDM and NDM+SN.

Experimental results show that NDM+SN is able to
improve the performance on diffusion identification task
slightly with the help of incorporating social network
structure as prior knowledge. The relative improvement of
Micro-F1 is around 4%. The results demonstrate that our
neural model is very flexible and can be easily extended to
take advantage of external features.

5.5 Macroscopic Cascade Size Identification

Though our proposed model aims at microscopic cascade
modeling, we will explore the ability of macroscopic cas-
cade size identification of our model in this subsection. For
cascade size identification, all models are asked to predict
the final size of a cascade given the first 5 infected users.
We employ the same datasets and data splits in microscopic
identification.

Recall that we append “Terminate” as a virtual user to
the end of each cascade sequence and allow the model to
predict next infected user as “Terminate” to indicate that
no more users will be infected in this cascade. Similar
to the experimental setting in section 5.3, we run Monte
Carlo simulations for each test cascade sequence to estimate
the eventual size of a cascade. We use Mean Square Log-
transformed Error (MSLE), which is employed in previous
work on cascade size prediction [26], [35], as evaluation
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Fig. 8. Parameter sensitivity of hyperparameters in Lastfm Dataset. Macro-F1 (Early) and Micro-F1 (Early) correspond to the identification
performance at early stage.

metric. In specific, MSLE= 1
|C|

∑|C|
i=1(log(|ci|)− log(predi))

2

where predi is the predicted size of cascade ci.
We consider DeepCas [26], the state-of-the-art cascade

size prediction algorithm, as our baseline method. The ex-
perimental results are shown in Figure 7.

Experimental results show that NDM gives comparative
and even better performance against DeepCas [26] on cas-
cade size identification task, though NDM is not directly
optimized for macroscopic level identification. Compared
with DeepCas which treats cascade size prediction as a re-
gression problem, NDM actually utilizes more information
in the training data, i.e. the detailed infected users and the
ordering of their infections. To conclude, our proposed mi-
croscopic diffusion model can also be used for macroscopic
cascade size identification and achieve good performance by
utilizing more information. These observations would shed
light on future direction of macroscopic level prediction and
encourage a unified cascade model for both microscopic and
macroscopic identification.

5.6 Parameter Sensitivity

In this subsection, we will take Lastfm dataset as an il-
lustrative example to present how hyperparameter settings
affect the performance of our model. We use the best set of
hyperparameter settings as our basis, i.e. number of heads
h = 8, window size of convolutional network win = 3,
dimension of user embeddings d = 64 and flag of using
initial user for prediction Finit = 0. Then we vary each
hyperparameter while keeping others fixed. Figure 8 shows
the performance on diffusion identification under different
hyperparameter settings.

We can see that the performance of NDM is stable when
we vary the hyperparameters within a reasonable range.
NDM does not encounter serious overfitting problem when
we double the dimension of embeddings d to 128. This
experiment demonstrates the robustness of our model.

5.7 Interpretability

Admittedly, the interpretability is usually a weak point of
neural network models. Compared with feature engineering
methods, neural-based models encode a user into a real-
valued vector space and there is no explicit meaning of each
dimension of user embeddings. In our proposed model,
each user embedding is projected into 16 subspaces by an 8-
head attention mechanism. Intuitively, the user embedding

TABLE 4
The scale of learned projection matrices in convolutional layer

measured by Frobenius norm || · ||2F .

Dataset WC
init WC

0 WC
1 WC

2

Lastfm 32.3 60.0 49.2 49.1
Memetracker 13.3 16.6 13.3 13.0

Irvine 13.9 13.9 13.7 13.7
Twitter 130.3 93.6 91.5 91.5

in each subspace represents a specific role of the user.
But it is quite hard for us to link the 16 embeddings to
interpretable hand-crafted features. We will consider the
alignment between user embeddings and interpretable fea-
tures based on a joint model in future work.

Fortunately, we still have some findings in the convo-
lutional layer. Recall that WC

n ∈ Rd×|U| for n = 0, 1, 2 are
position-specific linear projection matrices in convolutional
layer and WC

init is the projection matrix for the initial user.
All four matrices are randomly initialized before training. In
a learned model, if the scale of one of these matrices is much
larger than that of other ones, then the prediction vector is
more likely to be dominated by the corresponding position.
For example, if the scale of WC

0 is much larger than that of
other ones, then we can infer that the most recent infected
user contributes most to the next infected user prediction.

Following the notations in Eq. 7, we set Finit = 1 for
all datasets in this experiment and compute the square of
Frobenius norm of learned projection matrices as shown in
Table 4. We have the follow observations:

(1) For all four datasets, the scales of WC
0 ,WC

1 and WC
2

are competitive and the scale of WC
0 is always a little bit

larger than that of the other two. This observation indicates
that the active embeddings act(uj), act(uj−1), act(uj−2) of
all three recently infected users will contribute to the pre-
diction of uj+1. Also, the most recent infected user uj is the
most important one among the three. This finding naturally
matches our intuitions and verifies Assumption 2 proposed
in method section.

(2) The scale of WC
init is the largest on Twitter dataset.

This indicates that the initial user is very important in
diffusion process on Twitter. This is partly because Twitter
dataset contains the complete history of the spread of a URL
and the initial user is actually the first one tweeting the
URL. While in the other three datasets, the initial user is
only the first one within the time window of crawled data.
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Note that we set hyperparameter Finit = 1 only for Twitter
dataset in diffusion identification task because we find that
the performances are competitive or even worse on the other
three datasets if we set Finit = 1.

6 CONCLUSION

In this paper, we propose a Neural Diffusion Model (NDM)
for microscopic cascade modeling. To go beyond the limita-
tions of traditional cascade models based on strong assump-
tions and oversimplified formulas, we build our model
based on two heuristic assumptions and employ deep learn-
ing techniques including convolutional neural network and
attention mechanism to implement the assumptions. Exper-
imental results on diffusion identification task demonstrate
the effectiveness and robustness of our proposed model. In
addition, NDM greatly outperforms baseline methods on
diffusion identification at early stage, which shows the appli-
cability and feasibility of NDM for real-world applications.

For future works, we will consider linking neural-based
model with hand-crafted features and statistics to improve
the interpretability of learned models. An intelligible model
is always welcome and can help us better understand the
motivations and behaviors of users in a diffusion process.

The incorporation of extra information for cascade mod-
eling is also an intriguing direction. For example, the times-
tamp information and the description of information items
can be used for more accurate cascade modeling.
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