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Abstract
Information diffusion prediction is an important
task which studies how information items spread
among users. With the success of deep learning
techniques, recurrent neural networks (RNNs) have
shown their powerful capability in modeling infor-
mation diffusion as sequential data. However, pre-
vious works focused on either microscopic diffu-
sion prediction which aims at guessing the next
influenced user or macroscopic diffusion predic-
tion which estimates the total numbers of influ-
enced users during the diffusion process. To the
best of our knowledge, no previous works have
suggested a unified model for both microscopic
and macroscopic scales. In this paper, we pro-
pose a novel multi-scale diffusion prediction model
based on reinforcement learning (RL). RL incor-
porates the macroscopic diffusion size information
into the RNN-based microscopic diffusion model
by addressing the non-differentiable problem. We
also employ an effective structural context extrac-
tion strategy to utilize the underlying social graph
information. Experimental results show that our
proposed model outperforms state-of-the-art base-
line models on both microscopic and macroscopic
diffusion predictions on three real-world datasets.

1 Introduction
The prediction of information diffusion, also known as cas-
cade prediction, has been studied over a wide range of ap-
plications, such as product adoption [Leskovec et al., 2007;
Watts and Dodds, 2007; Aral and Walker, 2012], epidemi-
ology [Wallinga and Teunis, 2004], social networks [Lappas
et al., 2010; Dow et al., 2013] and the spread of news and
opinions [Liben-Nowell and Kleinberg, 2008; Leskovec et
al., 2009]. Recent works [Li et al., 2017; Cao et al., 2017;
Islam et al., 2018; Wang et al., 2018b] on diffusion predic-
tion took advantage of the success of deep learning tech-
niques by modeling information diffusion as sequential data
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Figure 1: Illustrative examples for microscopic next infected user
prediction (left) and macroscopic cascade size prediction (right).
Conventionally, we usually use “infected” to indicate that a user is
“influenced” by an information item.

based on recurrent neural networks (RNNs) and achieved
promising performances. Existing works [Wang et al., 2017a;
Wang et al., 2018b] also explored the social graph informa-
tion which is available when information diffusion spreads
through a social network service for diffusion prediction.

However, as shown in Fig. 1, previous works focused on
either microscopic diffusion prediction which aims at guess-
ing the next infected user or macroscopic diffusion prediction
which estimates the total numbers of infected users during the
diffusion process. To the best of our knowledge, no previous
works have suggested a unified model for both microscopic
and macroscopic scales. A unified model can utilize more
information in the training data especially for macroscopic
diffusion prediction, e.g. previous works [Li et al., 2017;
Cao et al., 2017] considered cascade size prediction as a re-
gression problem and discarded the information of detailed
infected users and the ordering of their infections.

Also, the handling of social graph information in existing
works [Wang et al., 2017a; Wang et al., 2018b] could be sub-
optimal. [Wang et al., 2017a] only explored user pairs con-
nected by direct social links and [Wang et al., 2018b] com-
puted the similarities of all users and suffered from high time
and space complexity which is square to the number of users.

In this paper, we propose a novel multi-scale diffusion pre-
diction model by endowing a microscopic cascade model the
ability to predict macroscopic cascade properties, i.e. the fi-
nal size of a cascade, by a reinforcement learning (RL) frame-
work. We further employ an efficient and effective structure
context extraction method which was initially proposed for
semi-supervised graph classification [Hamilton et al., 2017]
to utilize the social graph information. Experimental results



show that our proposed model achieves 10% and 12% rel-
atively improvement against state-of-the-art baseline meth-
ods on microscopic and macroscopic diffusion predictions,
respectively.

To sum up, the contributions of this work are 3-fold:
(1) We innovatively propose the problem of multi-scale dif-

fusion prediction by jointly considering the microscopic and
macroscopic diffusion prediction tasks.

(2) We propose a novel reinforcement learning framework
to enable a microscopic cascade model for macroscopic dif-
fusion predictions. We also employ a novel structural context
extraction algorithm to further take advantage of underlying
social graph information.

(3) Experimental results show that our proposed model
outperforms state-of-the-art baseline methods on both micro-
scopic and macroscopic diffusion predictions on three real-
world datasets.

2 Related Works
Our work is related to microscopic and macroscopic diffusion
prediction algorithms based on deep learning techniques. We
further group them into embedding-based and RNN-based
methods according to their models. We summarize related
work in Table ??. “History” and “Graph” indicate whether
a method uses the ordering or social graph of infected users.
“Micro” and “Macro” are short for microscopic and macro-
scopic tasks.

Method History Graph Micro Macro

Embedded IC X
Inf2vec X X

DeepCas X X X
DeepHawkes X X
CYAN-RNN X X
TopoLSTM X X X
DeepDiffuse X X

NDM X X
SNIDSA X X X
this work X X X X

Table 1: Summary of related works.

2.1 Embedding-based Methods
Embedding-based methods target on microscopic level pre-
dictions by extending IC-model [Kempe et al., 2003] which
assumed an independent diffusion probability for every user
pair. [Bourigault et al., 2014; Gao et al., 2017] projected
users into real-valued user embeddings and simplified the IC
model by assuming that infected users are determined only
by the source user. Embedded IC [Bourigault et al., 2016]
modeled the diffusion probability between two users by a
function of their user embeddings instead of assigning a real
number to each user pair. Inf2vec [Feng et al., 2018] fur-
ther considered global user similarity context as an exten-
sion. However, embedding-based methods failed to model
the infection history, e.g. the ordering of infected users,
for next infected user prediction and have been shown to

be suboptimal choices in the experiments of recent RNN-
based approaches [Wang et al., 2017a; Wang et al., 2018b;
Yang et al., 2018].

2.2 RNN-based Methods
For macroscopic cascade models, DeepCas [Li et al., 2017]
sampled sequences from social graph and observed cascades,
and then employed RNN to encode the sequences and pre-
dict the eventual size of a cascade. DeepHawkes [Cao et al.,
2017] explored Hawkes self-exciting point process based on
RNN architecture to utilize the infection timestamp informa-
tion instead of social graph.

For microscopic cascade models, TopoLSTM [Wang et
al., 2017a] extended the standard LSTM model by structur-
ing the hidden states as a directed acyclic graph extracted
from the social graph. CYAN-RNN [Wang et al., 2017b],
DAN [Wang et al., 2018a] and DeepDiffuse [Islam et al.,
2018] all employed RNN and attention model to utilize the
infection timestamp information. NDM [Yang et al., 2018]
built a microscopic cascade model based on self-attention and
convolution neural networks motivated by two heuristic as-
sumptions. SNIDSA [Wang et al., 2018b] computed pairwise
similarities of all user pairs and incorporated the structural in-
formation into RNN by a gating mechanism. However, to the
best of our knowledge, no previous works have suggested a
unified model for both microscopic and macroscopic scales.

3 Method
In this section, we will first formalize the diffusion predic-
tion problem on both microscopic and macroscopic scales.
Then we will propose a novel structural context extraction al-
gorithm which was originally introduced for semi-supervised
graph classification [Hamilton et al., 2017] to build an RNN-
based microscopic cascade model. We further incorporate the
ability of macroscopic prediction, i.e. estimating the eventual
size of a cascade, into the model by reinforcement learning.
Finally, we will present the overall algorithm and implemen-
tation details.

3.1 Problem Formalization
Given user set V , cascade set C, each cascade ci ∈ C is
a sequence of users {vi1, vi2 . . . , vi|ci|} ranked by their infec-
tion timestamps where |ci| is the size of cascade ci, i.e. the
number of users infected by the corresponding item. In this
paper, we only keep the ordering of users and ignore the ex-
act timestamps as previous works did [Wang et al., 2017a;
Wang et al., 2018b; Yang et al., 2018] and leave the model-
ing of timestamps as future works. Also, an underlying social
graph G = (V,E) among users will be available when in-
formation diffusion occurs on a social network service. The
social graph G will be considered as additional structural in-
puts for diffusion prediction.

In this work, we target on both microscopic and macro-
scopic diffusion predictions which focus on fine-grained
short-term modeling and coarse-grained long-term estima-
tion, respectively. We formalize the problems as below.

Microscopic Diffusion Prediction aims at predicting the
next infected user vik+1 given previously infected users



{vi1, vi2 . . . , vik} in cascade ci for k = 1, 2 . . . , |ci| − 1.
Macroscopic Diffusion Prediction aims at predicting the

eventual size |ci| of cascade ci, i.e. the total number of in-
fected users, given the first K infected users {vi1, vi2 . . . , viK}.

3.2 Microscopic Cascade Modeling
In this subsection, we will first present the Gated Recurrent
Unit (GRU), a variant of RNNs, as the basis of microscopic
cascade modeling. Then we introduce the structural context
extraction algorithm to utilize the social graph information.
Afterward, we show how to combine these features for mi-
croscopic diffusion prediction.

Recurrent Networks
RNNs have shown their effectiveness in sequential data
modeling in many areas, such as natural language process-
ing [Mikolov et al., 2010]. Previous works [Wang et al.,
2017a; Wang et al., 2018b; Islam et al., 2018] also ex-
plored RNNs for cascade modeling and achieved promis-
ing results. Specifically, we employ Gated Recurrent Unit
(GRU) as the basis of our model. Given the cascade sequence
{v1, v2 . . . , vk}, GRU takes user vt as input and computes a
hidden state ht at each step t = 1, 2 . . . , k. We use Eq. 1 to
denote the computation process of t-th step hidden state ht.

ht = GRU(ht−1, xvt), (1)

where xvt ∈ Rd is the d-dimensional embedding of user vt.
The hidden state hk ∈ Rd encodes the history informa-

tion of all previously infected users {v1, v2 . . . , vk} in the
cascade. Now we go on to encode the structural information
to take advantage of the underlying social graph.

Structural Context Extraction
For each user v, we assume f

(0)
v as its user features which

can be obtained from user profiles or pretrained node embed-
dings. Our goal is to incorporate the structural information
into the feature vector f

(0)
v . Inspired by the recent success

in semi-supervised graph learning [Kipf and Welling, 2017;
Hamilton et al., 2017], we employ an efficient structural con-
text extraction algorithm based on neighborhood sampling for
the purpose.

Formally, we first sample Z users {u1, u2 . . . , uZ} from v
and its neighbors N(v). Then we update the feature vector
f
(0)
v by aggregating the neighborhood features by Eq. 2.

f (1)
v = relu(W · 1

Z

Z∑
k=1

f (0)
uk

+ b) (2)

where uk is uniformly sampled from user set {v} ∪N(v) for
k = 1, 2 . . . Z, W, b are weight matrix and bias vector, and
activation function relu(·) = max(·, 0).

The updated user feature vector f (1)
v encodes structural in-

formation by aggregating features from v’s first-order neigh-
bors. As shown in Fig. 2, Eq. 2 can also be processed re-
cursively to explore a larger neighborhood of user v. Empir-
ically, a two-step neighborhood exploration is time-efficient
and enough to give promising results. We will use fv to de-
note the final user features for simplification.

Though initially proposed for semi-supervised graph clas-
sification, we find the algorithm suitable for our problem.

Figure 2: An illustrative example of structural context extraction
of the orange node by neighbor sampling and feature aggregation.
(Best viewed in color)

Compared with previous works [Wang et al., 2018b] which
takes O(|V |2) space and time complexity for structural con-
text extraction, the neighborhood sampling and aggregation
strategy only take O(|V |) time and constant space complex-
ity. Also, the algorithm can explore the two-step neighbor-
hood besides directly connected neighbors.

Microscopic Diffusion Prediction
Now we go back to the next infected user prediction prob-
lem by combining the GRU and structural context. Given
previously infected users {vi1, vi2 . . . , vik} in cascade ci, the
k-step hidden state hi

k of GRU encodes the sequential history
and user feature vectors fvi

1
, fvi

2
, . . . fvi

k
encode the underly-

ing social graph information.
Intuitively, the structural context of recent infected users

should contribute to the next infected user prediction because
the diffusion may spread through the social links. Since
we ignore the exact timestamps, we define “recent infected
users” as the last m users {vik−m+1, v

i
k−m+2 . . . , v

i
k} where

m is a hyper-parameter controlling this window size. We fur-
ther employ mean pooling1 to aggregate the feature vectors
as sik = mean(fvi

k−m+1
, fvi

k−m+2
, . . . fvi

k
).

Finally, the probability of the next infected user is com-
puted as

pik = softmax(Wp · concat(hi
k, s

i
k) + bp), (3)

where pik ∈ R|V | is the multinomial probability distribution
over all users, concat(·, ·) is the concatenation operation and
Wp, bp are weight matrix and bias vector, respectively.

The training objective of microscopic diffusion prediction
is to maximize the log-likelihood of all cascades

Jmicro(Θ) =

|C|∑
i=1

|ci|−1∑
k=1

log pik[vik+1], (4)

where p[j] indicates the j-th dimension of vector p and Θ
denotes all parameters in the microscopic cascade model.

1We also investigate other aggregation strategies such as atten-
tion mechanism or concatenation. We find that other options will
lead to model overfitting and suboptimal performances.



3.3 Macroscopic Cascade Modeling
The key of this work lies in how to endow a microscopic cas-
cade model the ability to predict macroscopic cascade proper-
ties, i.e. the size of a cascade. We divide our method into four
steps: (a) encode observed K users by a microscopic cascade
model; (b) enable the microscopic cascade model to predict
the size of a cascade by cascade simulations; (c) use Mean-
Square Log-Transformed Error (MSLE) as the supervision
signal for macroscopic predictions; and (d) employ a rein-
forcement learning framework to update parameters through
policy gradient algorithm. The overall workflow is illustrated
in Fig. 3.

Figure 3: The workflow of adopting microscopic cascade model for
macroscopic size prediction by reinforcement learning.

Encoding Observed Users
We feed observed K users of ci into the microscopic cas-
cade model and get the last hidden state hi

K as shown in step
(a) of Fig. 3. Also, we explicitly encode the positional in-
formation which makes the model aware of how many users
have been inputted into GRU at each step. In specific, we
assign a positional embedding POSt ∈ Rdpos for each step
t = 1, 2 . . .maxlen where maxlen is the maximum length
of cascades. At the t-th step of GRU in Eq. 1, we concatenate
the user embedding xvt and positional embedding POSt as
the input vector instead.

Cascade Simulation for Macroscopic Prediction
To adopt the microscopic cascade model for cascade size pre-
diction in step (b), we firstly append a virtual user <STOP>
to the end of every cascade and ask the model to predict it
as well. To estimate the size of a cascade given the first K
infected users, we recursively sample a user according to the
predicted probability distribution in Eq. 3, take it as the next
input and make further predictions. Once the <STOP> sig-
nal is predicted, we can count the users have been predicted
already as the final size of the cascade. Such cascade simu-
lation will be processed for multiple times to reduce the vari-
ance of estimations.

Supervision Signals for Macroscopic Prediction
Though the modified microscopic cascade model can pre-
dict the size of cascades by simulations, the model still
has no supervision signals to guide the way towards bet-
ter performances. In this paper, we employ Mean Square
Log-transformed Error (MSLE), which was used in previous
works [Li et al., 2017; Cao et al., 2017] as the evaluation
metric of cascade size prediction, for the supervision signal in

step (c) of Fig. 3: MSLE= 1
|C|

∑|C|
i=1(log(|ci|)−log(predi))

2

where predi is the predicted size of cascade ci.
However, the sampling operation used in cascade size es-

timation is non-differentiable and makes it impossible to up-
date the parameters by backward propagation. To overcome
this problem, we put the simulation process into the reinforce-
ment learning (RL) framework and then employ policy gradi-
ent to update the parameters as shown in step (d) of Fig. 3.

Policy Gradient for Parameter Updating
We map the GRU and its hidden state (including structural
context) to the agent and state concepts in RL. The action
at each step is to choose the next infected user and the pol-
icy which decides the probability of actions given the current
state is defined by Eq. 3. When the <STOP> action is cho-
sen, a reward will be given as the opposite number of MSLE2.

Formally, for the size prediction of cascade ci, the first K
users of ci are fed into the microscopic cascade model and
the last hidden state hi

K is used for the initial state of RL.
For every action sequence seq = {a1, a2 . . . amaxlen} where
aj is the selected user in the j-th action, we can compute the
reward reward(seq, ci) by the opposite number of MSLE.
Then we aim to maximize the expectation of reward for cas-
cade ci as

J i
RL(Θ) =

∑
seq

Pr(seq; Θ, hi
K)reward(seq, ci), (5)

where Pr(seq; Θ, hi
K) is the probability of choosing action

sequence seq and can be decomposed into the product of the
probability of each action aj . Note that seq is in the space of
|V |maxlen and can not be enumerated to compute J i

RL. In-
stead, the gradients of J i

RL can be computed by REINFORCE
algorithm [Williams, 1992]:

∇ΘJ
i
RL =

∑
seq

∇Θ Pr(seq; Θ, hi
K) · reward(seq, ci)

=
∑
seq

Pr(seq; Θ, hi
K)∇Θ log Pr(seq; Θ, hi

K) · reward(seq, ci)

= Eseq[∇Θ log Pr(seq; Θ, hi
K) · reward(seq, ci)]

' 1

M

M∑
m=1

∇Θ log Pr(seqm; Θ, hi
K) · reward(seqm, ci),

(6)
where seqm for m = 1, 2 . . .M are M samples from
Pr(seq; Θ, hi

K) and the expectation over the whole action se-
quence is approximated by Monte Carlo simulations at the
last step. Finally, parameters Θ will be updated by gradient
ascent to maximize the expectation of reward, i.e. the super-
vision signal for macroscopic prediction.

3.4 Implementation Details
For the joint training of both microscopic and macroscopic
objectives, we first train the microscopic cascade model for
10 epochs as warming up. The warming up phase will ensure
the next infected user prediction pik generates high-quality

2If the <STOP> action is not chosen when the maximum length
maxlen is reached, we assume this action sequence predicts the size
as 2×maxlen.
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Figure 4: Experimental results on microscopic diffusion prediction. For both MAP and HITS metrics, scores are the higher the better.

cascade simulations and help the RL training converge more
quickly. Then we iteratively update the parameters to max-
imize the microscopic and macroscopic objectives until we
reach the best performance on validation data. We employ
Adam [Kingma and Ba, 2015] optimizer for gradient ascent.

For hyper-parameter settings, the dimension of hidden state
and user feature vector d = 64, controlling window size m =
3, neighbors sampled in structural context extraction Z1 =
25, Z2 = 10 for first-order and second-order aggregation, the
dimension of positional embedding dpos = 8 and training
data are grouped into mini-batches with batch size 16.

We name our method as reinFOrced REcurrent networks
with STructural context (FOREST). The source code of
this paper can be found at https://github.com/albertyang33/
FOREST.

4 Experiments
We conduct experiments on both microscopic and macro-
scopic cascade predictions to demonstrate the effectiveness
of our proposed model.

4.1 Datasets
Twitter [Hodas and Lerman, 2014] dataset records the tweets
containing URLs during October 2010. Each URL is inter-
preted as an information item spreading among users.

Douban [Zhong et al., 2012] is a Chinese social website
where users can update their book reading statuses and follow
the statuses of other users. Each book is considered as an
information item and a user is infected if she reads the book.

Memetracker [Leskovec et al., 2009] collects a million of
news stories and blog posts from online websites and track the
most frequent quotes and phrases, i.e. memes, to analyze the

Dataset # Users # Links # Cascades Avg. Length

Twitter 12,627 309,631 3,442 32.60
Douban 23,123 348,280 10,602 27.14

Memetracker 4,709 - 12,661 16.24

Table 2: Statistics of datasets.

migration of memes among people. Each meme is regarded
as an information item and each URL of websites is treated as
a user. Note that this dataset has no underlying social graph.

We randomly sample 80% of cascades for training, 10% for
validation and the rest 10% for test. The statistics of datasets
are listed in Table 2.

4.2 Baselines
For a thorough comparison, we consider five very recent
baseline methods on both microscopic and macroscopic cas-
cade predictions. Microscopic cascade prediction models:

TopoLSTM [Wang et al., 2017a] extends the standard
LSTM model by structuring the hidden states as a directed
acyclic graph which is extracted from the social graph.

DeepDiffuse [Islam et al., 2018] employs embedding tech-
nique and attention model to utilize the infection timestamp
information. We replace the timestamps by infection steps as
we ignore the exact timestamps in the datasets.

NDM [Yang et al., 2018] builds a microscopic cascade
model based on self-attention and convolution neural net-
works to alleviate the long-term dependency problem.

SNIDSA [Wang et al., 2018b] computes pairwise similar-
ities of all user pairs and incorporates the structural informa-
tion into RNN by a gating mechanism.

https://github.com/albertyang33/FOREST
https://github.com/albertyang33/FOREST
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Figure 5: Experimental results on macroscopic diffusion prediction. The scores are the lower the better. FOREST-RL is the variant of
FOREST by removing the RL part. We omit the results of TopoLSTM because its scores are larger than 10 and cannot be fit into the figure.

Macroscopic cascade prediction models:
DeepCas [Li et al., 2017] is the state-of-the-art cascade

size prediction algorithm which considers both cascade in-
formation and underlying social graph.

4.3 Experimental Settings
For microscopic prediction, we consider the next infected
user prediction as a retrieval task by ranking the uninfected
users by their infection probabilities in Eq. 3. We report the
Mean Average Precision (MAP) and HITS scores. The same
settings are used in [Wang et al., 2017a; Islam et al., 2018].

For macroscopic prediction, the first K = 5 users in a
cascade are given to predict the size of a cascade. We use
MSLE which is detailed in section 3.3 for evaluation. The
same evaluation metric is used in [Li et al., 2017]. Also, all
microscopic baselines are adopted for macroscopic cascade
size prediction by appending an additional <STOP> signal
to the training cascades.

For Twitter and Douban datasets, we use pretrained Deep-
Walk [Perozzi et al., 2014] embedding with dimension d =

64 as initial user feature vectors f
(0)
v . We excludes TopoL-

STM and SNIDSA for Memetracker because of the absence
of underlying social graph.

4.4 Experimental Results
Figure 4 and 5 present the experimental results on micro-
scopic and macroscopic diffusion predictions, respectively.
We have the following observations:

(1) FOREST consistently outperforms all state-of-the-art
baseline methods on microscopic diffusion prediction by a
relative improvement of more than 10% in terms of HITS
and MAP scores. Compared with TopoLSTM and SNIDSA,
the improvements mostly come from the encoding of struc-
tural context. The structural context extraction algorithm of
FOREST considers second-order neighborhoods while previ-
ous works only considered the first-order neighbors.

(2) FOREST consistently outperforms other baselines in-
cluding DeepCas, the state-of-the-art macroscopic diffusion
prediction method, on cascade size prediction by a relative
improvement of more than 12% in terms of MSLE. Com-
pared with FOREST-RL where the reinforcement training of
macroscopic size prediction is removed, FOREST achieves

more promising and robust performances by incorporating
macroscopic supervision signals for parameter training.

(3) Compared with DeepCas, microscopic cascade models
are able to take advantage of more information in the training
data, i.e. the detailed infected users and the ordering of their
infections. Thus microscopic cascade models are able to give
comparable and even better results on macroscopic diffusion
prediction task. This finding would encourage microscopic
cascade models to replace macroscopic ones in future works.

(4) We omit the ablation study of FOREST-RL and FOR-
EST in microscopic prediction because the benefit from RL
for microscopic prediction is not as significant as that for
macroscopic prediction (30%-80% relative improvement in
Fig. 5). This is because reinforcement learning focuses
on long-term modeling and microscopic prediction (next in-
fected user prediction) is short-term. We will consider a long-
term microscopic prediction setting for future work.

5 Conclusion
In this paper, we propose a novel multi-scale diffusion predic-
tion model, FOREST, for both microscopic and macroscopic
predictions. In specific, we adopt microscopic cascade mod-
els for macroscopic cascade size prediction by a reinforce-
ment learning framework which incorporates macroscopic
supervision and achieves promising performances. Also, we
employ an effective structural context extraction method to
utilize the underlying social graph information. Experimen-
tal results on next infected user and cascade size predictions
demonstrate the effectiveness of our method.

For future works, an intriguing direction is to consider the
exact timestamp information which is ignored in this work for
modeling. We will also investigate the possibility of applying
the RL module on other microscopic cascade models.
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