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ABSTRACT
Real-world recommendation systems usually have different learn-
ing objectives and evaluation criteria on accuracy, diversity or nov-
elty. Therefore, multi-objective recommendation (MOR) has been
widely explored to jointly model different objectives. Pareto effi-
ciency, where no objective can be further improved without hurting
others, is viewed as an optimal situation in multi-objective optimiza-
tion. Recently, Pareto efficiency model has been introduced to MOR,
while all existing scalarization methods only have shared objective
weights for all instances. To capture users’ objective-level prefer-
ences and enhance personalization in Pareto-efficient recommenda-
tion, we propose a novel Personalized Approximate Pareto-Efficient
Recommendation (PAPERec) framework for multi-objective recom-
mendation. Specifically, we design an approximate Pareto-efficient
learning based on scalarization with KKT conditions that closely
mimics Pareto efficiency, where users have personalized weights on
different objectives. We propose a Pareto-oriented reinforcement
learning module to find appropriate personalized objective weights
for each user, with the weighted sum of multiple objectives’ gradi-
ents considered in reward. In experiments, we conduct extensive
offline and online evaluations on a real-world recommendation
system. The significant improvements verify the effectiveness of
PAPERec in practice. We have deployed PAPERec on WeChat Top
Stories, affecting millions of users. The source codes are released
in https://github.com/onepunch-cyber/PAPERec.
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1 INTRODUCTION
Personalized recommendation aims to provide appropriate items
according to user preferences, which has been widely used in vari-
ous real-world scenarios of video [7], news [50], and E-commerce
[32]. Most recommendation systems mainly concern recommen-
dation accuracy measured by Click-Through-Rate (CTR), while
too much dependence on CTR-oriented objectives may result in
homogenization. Moreover, recommendation systems of different
scenarios usually have different learning objectives and evaluation
criteria. For example, novelty [26], conversion [20] and dwell time
[44] are different essential factors that should be focused in news,
E-commerce and video recommendations. Therefore, real-world
recommendation systems should consider multiple objectives si-
multaneously to satisfy various demands in different scenarios.

Multi-objective optimization aims to jointly fulfill multiple ob-
jectives [17].Multi-objective recommendation (MOR) has been
widely adopted to jointly model diversity [23], user activeness [50],
conversion [47], long-tail result [35], fairness [39], recency and rele-
vancy [2] with recommendation accuracy. In MOR, these objectives
inevitably conflict with each other during model optimization, thus
it is challenging to simultaneously optimize all objectives.

To facilitate the multi-objective optimization, Pareto efficiency
is introduced, which is regarded as an optimal state where no ob-
jective could be further improved without hurting others. Pareto
optimization aims to train the model to reach the Pareto efficiency,
which can be roughly categorized into two groups, namely heuristic
search [8] and scalarization [26]. Heuristic search often uses evo-
lutionary algorithms to detect Pareto-efficient statues. In contrast,
scalarization combines multiple objectives into a joint loss with pre-
defined or dynamic weights, and then optimizes the reformulated
joint objective. In scalarization, Désidéri [10] proposes a Multiple-
gradient descent algorithm (MGDA) for gradient-based Pareto opti-
mization under the Karush-Kuhn-Tucker (KKT) conditions. Sener
and Koltun [29] successfully applies the gradient-based scalariza-
tion to practical Pareto optimization with large-scale embeddings.
Recently, Lin et al. [20] further extends MGDA to jointly optimize
multiple objectives in E-commerce. All existing scalarization-based
methods in MOR optimize a set of shared objective weights for all
users. However, in practical recommendation, the personalization
should locate in not only item level but also objective level, since

3839

https://github.com/onepunch-cyber/PAPERec
https://doi.org/10.1145/3442381.3450039
https://doi.org/10.1145/3442381.3450039
https://doi.org/10.1145/3442381.3450039


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Ruobing Xie, Yanlei Liu, Shaoliang Zhang, Rui Wang, Feng Xia, and Leyu Lin

users may have different preferences on multiple objectives (e.g.,
some users of news recommendation may concern more about
recency, while others may pay more attention to relevancy). The
objective-level preferences should be considered in scalarization-
based Pareto-efficient recommendations.

User A cares dwell time on videos

User B cares CTR metric on news Personalized approximate Pareto-
efficient recommendation

Pareto frontier

CTR

DT
Initialization

optimization with
CTR preference

optimization with
DT preference

Figure 1: User objective-level preferences and PAPERec.

To bring objective-level personalization into Pareto optimization
in recommendation, we propose a novel framework named Person-
alized Approximate Pareto-Efficient Recommendation (PA-
PERec) for multi-objective recommendation. PAPERec is an ap-
proximate model that closely mimics Pareto efficiency, where users
have personalized weights on different objectives. These objective
weights could be viewed as certain reflections of users’ objective-
level preferences. Precisely, PAPERec considers multiple objectives
based on scalarization, and adopts a Pareto-oriented reinforcement
learning (RL) module to learn the personalized objective weights
for all users in list-wise recommendation. Désidéri [10] proves that
the Pareto stationary point is the necessary condition of Pareto
efficiency, and builds an optimization problem that minimizes the
L2-norm of weighted sum of all objectives’ gradients to reach the
Pareto efficiency. Inspired by this, our Pareto-oriented RL module
directly utilizes the negative L2-norm as the reward to achieve the
approximate Pareto-efficient personalized objective weights with
KKT conditions. Different from other Pareto-based recommenda-
tion [20, 26], PAPERec could provide personalized objective weights
to meet the diversified objective-level preferences for different users
and items, improving multiple objectives simultaneously. It helps
both model optimization and fusion.

In experiments, we evaluate PAPERec with competitive baselines
on a real-world MOR dataset of WeChat Top Stories to verify the
necessity of objective-level personalization and the effectiveness of
our PAPERec in modeling such personalization. An online evalua-
tion is also conducted to confirm the online effectiveness. PAPERec
achieves the best overall performances on both offline and online
evaluations, and has been deployed online. The main contributions
of this work are concluded as follows:

• Wepropose a newPersonalizedApproximate Pareto-Efficient
Recommendation model for multi-objective recommenda-
tion. To the best of our knowledge, we are the first attempt to
bring objective-level personalization into scalarization-based
Pareto-oriented recommendation.

• We design a novel Pareto-oriented RL module to learn the
personalized objective weights for all users, which directly

minimizes the L2-norm of weighted aggregation of multi-
objective gradients to reach the Pareto stationarity.

• Sufficient offline and online evaluations have been conducted
to verify the significance of objective-level personalization
and the effectiveness of PAPERec in MOR. We also give an
analysis to better understand the objective weights.

• PAPERec achieves the best overall performances in both on-
line and offline evaluations with various metrics. Currently,
it has been deployed on WeChat Top Stories, which affects
millions of users.

2 RELATEDWORKS
2.1 Recommendation
Classical recommendation algorithms such as Collaborative filter-
ing (CF) [28], Matrix factorization [18] and Factorization machine
(FM) [24] mainly concentrate on modeling user-item interactions.
Recently, deep learning based models are proposed for feature inter-
action (e.g., FNN [46], Deep Crossing [30]) and sequential modeling
(e.g., GRU4Rec [15], DSIN [11]). Wide&Deep [5] flexibly combines
deep neural networks in the Deep part with feature engineering in
the Wide part, which has been widely used in practical recommen-
dation systems. DeepFM [13], NFM [14] and AFM [38] adapt FM to
neural networks with DNN and attention. Autoint [31], BERT4Rec
[32] and ICAN [41] further consider self-attention for feature inter-
actions. AFN [6] uses a logarithmic transformation layer to learn
adaptive-order feature interactions. Graph neural networks are also
used in recommendation [22, 37]. Inspired by their successes, we
rely on deep neural models to model feature interactions.

Reinforcement learning (RL) has also been verified in recom-
mendation. It is usually designed for modeling other indirect or
long-term rewards besides CTR-oriented objectives, such as user
activeness [50], long-term accuracy [16, 21], diversity [51], negative
feedbacks [49], and page-wise rewards [48]. Moreover, adversarial
training [4] and supervised training [34, 43] are also combined to
enhance RL-based recommendation. Chen et al. [3] proposes the
top-k off-policy correction to balance exploitation and exploration.
Fujimoto et al. [12] explores the off-policy RL without exploration.
Hierarchical RL is also adapted to recommendation [42, 45]. PA-
PERec attempts to consider session-based objectives in recommen-
dation feed. Therefore, it conducts a Pareto-oriented RL module to
learn the personalized objective weights, and also uses an RL-based
structure for each single-objective model.

2.2 Multi-objective Recommendation
Multi-objective recommendation attempts to simultaneously con-
sider multiple objectives in a joint recommendation framework.
Recommendation accuracy (e.g., CTR-oriented objectives) is the
dominating factor in most real-world systems, while user friendly
systems usually involve with other objectives. Multiple factors such
as diversity [23, 36], user long-term activeness [50], conversion
[47], long-tail performance [35], fairness [39], recency and rele-
vancy [2] are considered in multi-objective recommendation. Some
works use a general recommendation optimization framework with
constraints to jointly optimize multiple goals [17, 27, 40]. Reinforce-
ment learning is also effective that encodes multiple objectives with
appropriate reward combinations [23, 47].
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Pareto efficiency is a situation where no objective can be bet-
ter off without making at least one objective worse off, which is
usually considered in multi-objective optimization. Existing Pareto
optimization can be main categorized into two groups: heuristic
search [8] and scalarization [20]. Désidéri [10] proposes a Multiple-
gradient descent algorithm (MGDA) to combine scalarization with
Pareto-efficient SGD, using KKT condition to guide the updates
of scalarization weights. Sener and Koltun [29] further improves
MGDA with Frank-Wolfe algorithm to fit the large-scale learning
problems in practice. Specifically in recommendation, Ribeiro et al.
[25, 26] jointly consider multiple trained recommendation algo-
rithms with a Pareto-efficient manner. It conducts an evolutionary
algorithm to find the appropriate parameters for weighted model
combination. Some works build their algorithms on trust-aware
recommendation [1], fairness [39] and relation chaining [9] from
a Pareto-efficiency aspect. Lin et al. [20] jointly models GMV and
CTR in E-commerce based on MGDA with a relaxed KKT condi-
tion. All existing scalarization-based methods optimize the global
weights for different objectives. However, the personalization in
recommendation should locate in not only the item level, but also
the objective level. Therefore, our PAPERec conducts a personalized
approximate Pareto-efficient RL framework to understand users’
preferences on different objectives for model training and fusion.

3 METHODOLOGY
To capture users’ objective-level preferences in MOR, we propose
PAPERec for better overall performance in list-wise multi-objective
recommendation. In this section, we first show the basic notions
used in this paper (Sec. 3.1), and then give the overall framework of
PAPERec (Sec. 3.2). Next, we will introduce the core Pareto-oriented
RL module with detailed discussions on its network structure and
training paradigm (Sec. 3.3). Finally, we will introduce its imple-
mentation details (Sec. 3.4) and online development (Sec. 3.5).

3.1 Preliminaries
We first give a brief introduction to Pareto efficiency and the no-
tions used in this paper. Pareto efficiency, also noted as Pareto
optimality, is a situation in multi-objective optimization where no
objective can be further improved without making at least one ob-
jective worse off. Precisely, for K learning objectives {L1, · · · ,LK },
we have the following definitions:

Definition 1 (Situation domination). Given a situationL(θ ) =
{L1(θ ), · · · ,LK (θ )} and another one L(θ ′) = {L1(θ ′), · · · ,LK (θ

′)},
we can say the situation L(θ ) dominates the situation L(θ ′), if we
have Lk (θ ) ≤ Lk (θ

′) for all objective Lk and L(θ ) , L(θ ′).
Definition 2 (Pareto efficiency). A situation L(θ ) is regarded

as Pareto efficient or Pareto optimal, if there is no situation in the
overall situation space that dominates L(θ ).

Generally, Pareto efficient situations are viewed as the optimal re-
sults for multi-objective optimization. All Pareto-efficient situations
are combined to form the Pareto frontier.

3.2 Overall Framework
In PAPERec, we attempt to achieve the approximate Pareto effi-
ciency with objective-level personalization in list-wise MOR. The
inputs are item candidates with contextual and user features, the

output is a recommended list (containing top 10 items in our sys-
tem). Specifically, assuming that there are K objectives in a MOR
system noted as {L1(θ ), · · · ,LK (θ )}, where Li (θ ) represents the
loss for the i-th objective and θ is the model parameter. It is quite
difficult to simultaneously optimize all objectives, since different
objectives often have conflicts. Hence, we adopt the scalarization
method [20, 29], which aggregates these objectives Li (θ ) into a
single L(θ ) with different weights ωi (uj ) as follows:

L(θ ) =
∑
uj ∈U

K∑
i=1

ωi (uj )Li (θ ).

K∑
i=1

ωi (uj ) = 1, ωi (uj ) ≥ 0, ∀uj ∈ U .

(1)

uj ∈ U indicates the j-th user uj in the overall user set U . ωi (uj )
represents the i-th objectiveweight of the j-th user. Different from
conventional scalarization methods, we bring in the objective-level
personalization to these objective weights, which could improve
the overall user experience in MOR.

Specifically, PAPERec mainly contains two parts, including the
Pareto-oriented reinforcement learningmodule and the specific single-
objective model module. Pareto-oriented RL is the central module
that aims to generate personalized objective weights for all users
in MOR, while the specific single-objective model module consists
of K separate models that are designed for multiple objectives. In
model learning, the K single-objective models are first updated via
the joint scalarization loss function in Eq. (1), with the personal-
ized objective weights generated by the Pareto-oriented RL. Next,
we update the Pareto-oriented RL by minimizing the L2-norm of
weighted sum of all objectives’ gradients as rewards. This iterative
optimization can lead PAPERec to an approximate Pareto-efficient
situation. Algorithm 1 gives the detailed pseudo-code of PAPERec.

Algorithm 1 Personalized Approximate Pareto-Efficient
Recommendation (PAPERec):
Input: The K loss functions {L1(θ ), · · · , LK (θ )} of different objectives;

The personalized objective weights ωi (uj ) generated by the Pareto-
efficient RL for all users and objectives.

Output: The K detailed single-objective models’ parameters θ ; The Pareto-
oriented RL module’s parameters ψ and ϕ .

1: Randomly initialize θ , ψ and ϕ ;
2: while not converge do
3: Calculate K objectives Li (θ ) via single-objective models and θ ;
4: Update all Pareto-oriented RL parameters ψ and ϕ via the RL loss

LRL = L(ψ ) + βL(ϕ) in Eq. (13);
5: Generate new objective weights ω′

i (uj ) via the Pareto-oriented
RL module with updated ψ ′ and ϕ′;

6: Update all single-objective models’ parameters θ by optimizing
Lmodel in Eq. (18) with losses weighted by ω′

i (uj );
7: end while

3.3 Pareto-oriented Reinforcement Learning
The Pareto-oriented reinforcement learning module attempts to
generate personalized objective weights in list-wise MOR, which is
the central module in PAPERec. We first introduce the definition
of Pareto stationarity and its relation to Pareto efficiency, and then
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give a detailed introduction to the network structure and training
paradigm of the Pareto-oriented RL.

3.3.1 Pareto Stationarity. Désidéri [10] proposes a multiple gra-
dient descent algorithm (MGDA) for multi-objective optimization
based on scalarization. Precisely, MGDA leverages the KKT condi-
tions and define the Pareto stationarity as follows:

Definition 3 (Pareto stationarity). A situation is regarded
to be Pareto stationary, if there exist ω1, · · · ,ωK ≥ 0 such that∑K
i=1 ωi = 1 and

∑K
i=1 ωi∇θLi (θ ) = 0.

Désidéri [10] proves that if a situation is Pareto efficient, then it
is Pareto stationary. Hence, the Pareto stationarity situation can be
transformed into the optimization problem as:

min. ∥
K∑
i=1

ωi∇θLi (θ )∥
2
2 .

s.t.
K∑
i=1

ωi = 1, ω1, · · · ,ωK ≥ 0.

(2)

Désidéri [10] also verifies that (1) either the solution to this mini-
mization optimization is 0, which indicates that the situation sat-
isfies the KKT conditions and reaches the Pareto stationarity, (2)
or the solution gives a descent direction that can simultaneously
optimize all tasks. Moreover, Sener and Koltun [29] proves that such
Pareto-stationary situation is Pareto efficient in realistic and mild
conditions. Hence, some Pareto-based MOR [20] finds appropriate
objective weights via this minimization optimization problem in
Eq. (2) with weighted sum of objective gradients.

In PAPERec, we replace the shared ωi with the personalized
objective weights ωi (uj ). Instead of directly minimizing Eq. (2),
we propose an RL framework to simulate the scalarization-based
Pareto optimization to approach toward the approximate Pareto
stationarity. The minimization of Eq. (2) is indirectly reached as the
reward in Pareto-oriented RL.

3.3.2 Overall Architecture of Pareto-oriented RL. PAPERec is de-
ployed in a list-wise recommendation. Hence, we design an RL
framework to maximize long-term rewards in all positions. Pre-
cisely, we use the classical DDPG with Actor-Critic framework [19]
in RL, and define the key notions as follows:

• State st : the t-th state describes the current situation when
RL has recommended objective weights for previous t − 1
items in the list. st contains information of user profiles,
user historical behaviors, previous t − 1 objective weights,
recommendation contexts, and the t-th item features.

• Action at : the t-th action at is a set of objective weights at
the t-th position in the list given by the Actor.

• Reward rt : the t-th reward rt is the negative L2-norm of
weighted sum of all objectives’ gradients at the t-th position
introduced in Eq. (2).

• Discount factor γ : the discount factor γ ∈ [0, 1] measures
the importance of future rewards in list-wise MOR.

Note that the Pareto-oriented RL module only generates personal-
ized objective weights ωi (uj ) for different positions and items in
the recommended list. The objective-specific losses Li (θ ) are given
by their corresponding single-objective models in Sec. 3.4.

MultiHead MultiHead

Concatenation

List-level GRU

user fields context fields user click sequencePU Ci

inter
if behav

ifiω

c1d c2d cnd

1f if t-1f

th

... ...

...

th td

MLP&Softmax

'
th td

MLP

Q Value:

tω

t tq(s ,a )

tω

(c) Pareto-oriented Critic

(b) Pareto-oriented Actor

(a) State encoder in Pareto-oriented RL

Figure 2: Overall architecture of Pareto-orientedRL. The left
is (a) state encoder, the right shows (b) PCritic and (c) PActor.

3.3.3 Pareto-oriented Actor (PActor). PActor aims to give appro-
priate personalized objective weights ωi (uj ). Fig. 2 (a) and (b) give
the architecture of PActor. Precisely, when predicting at the t-th
position in the final recommended list, PActor should understand
the current situation of (1) user profiles and historical behaviors, (2)
previous t − 1 objective weights, (3) recommendation contexts, and
(4) current t-th item features. Therefore, we take the previous t − 1
recommended item features { f1, · · · , ft−1} already recommended
by PAPERec as the input sequence.

The i-th item feature embedding fi contains information of
user profiles, user historical behaviors, i-th contexts and i-th item
profiles. Precisely, we first calculate feature interactions f interi
between feature fields in user profilesUp (e.g., age, gender) and the
i-th context Ci (e.g., position) via self-attention as follows:

f interi = Flatten(MultiHead(Up ,Ci )), (3)

where MultiHead(·) is the Multi-head self-attention layer in Song
et al. [31], and Flatten(·) is the 1D flatten operation.Up andCi are
feature field embedding sets of the current user profiles and the i-th
contexts. Next, we also build user behavior feature f behav with
user’s recent click sequence {dc1 , · · · ,dcn } as:

f behavi = Flatten(MultiHead(dc1 , · · · ,dcn )). (4)

Finally, we concatenate the i-th objective weight embedding ωi
with f interi , f behavi to generate the final item feature embedding
fi as follows:

fi = Concat(f interi ,ωi , f
behav
i ). (5)

ωi = {ωi1, · · · ,ωiK } where ωi j represents the j-th objective
weight of the i-th item in the list for user u.

Following [15], we use an RNN with GRU unit as the sequential
encoder for the recommended item sequence as:

ht = GRU({ f1, · · · , ft−1}). (6)

ht is the last output state in GRU. The operation from Eq. (3) to Eq.
(6) is regarded as the state encoder of PActor. Finally, we concatenate
ht with the t-th item profile embedding dt , and feed them into a
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softmax layer to generate the final objective weight distribution
embeddingωt ∈ RK , which is formalized as:

ωt = Softmax(ReLU(Concat(ht ,dt )W a + ba )). (7)

W a and ba are the weights and bias. The objective weight embed-
dingωt is regarded as the action of Pareto-oriented RL.

3.3.4 Pareto-oriented Critic (PCritic). PCritic aims to value the
current state st given an action at . The Q value Q(st ,at ) reflects
the expected return of Pareto-related rewards in the recommended
list. We build the Q value as:

Q(st ,at ) = Est+1,rt∼E [rt + γ1Q(st+1,at+1)]. (8)

γ1 is a discount factor that measures the influence of position biases
in list-wise recommendation. It forces RL module to concern more
about the top items. To optimize PAPERec towards Pareto efficiency,
we define the reward rt as the negative L2-norm of weighted sum of
all objectives’ gradients at the t-th position, simulating the Pareto
stationarity optimization introduced in Eq. (2) as follows:

rt = −∥

K∑
j=1

ωt j∇θ L̄j (θ )∥
2
2 . (9)

ωt j is the personalized objective weight generated by the PActor,
and the gradient of the j-th objective-specific loss ∇θ L̄j (θ ) is gen-
erated by the corresponding single-objective model with the t-th
item. Theoretically under ideal conditions, through a sufficient RL
training of this Pareto-oriented optimization with Eq. (8) and Eq.
(9), more rt will reach their maximization in realistic conditions
as in [29]. In this case, ωt are learned to either satisfy the KKT
conditions (when rt = 0), or give an approximate descent direction
that simultaneously optimizes all objectives as stated in Eq. (2).
Therefore, the RL module can approximately approach the Pareto
stationarity with personalized objective weights.

Specifically, we utilize a similar state encoder in PActor to build
PCritic. Besides user profile and contexts, we also add feature fields
of the t-th target item profiles dt and actionωt in Eq. (3) to capture
item-level feature interaction. Next, we follow Eq. (3) - Eq. (6) as the
state encoder of PCritic to build the final hidden state h′t via Multi-
head and GRU encoders. Finally, as in Fig. 2 (c), we concatenate h′t
with both the t-th item profile dt and the t-th actionωt given by
PActor to predict the t-th Q value q(st ,at ) as:

q(st ,at ) = ReLU(Concat(h′t ,dt ,ωt )w
c + bc ). (10)

wc and bc are the weighs and bias of PCritic.

3.3.5 Optimization Objectives. In RL training, we use DDPG [19]
to train both PActor and PCritic with off-policy strategy, and adopt
the double strategy [33] with online and target networks. Similar
to Zhao et al. [48], we adopt the classical mean squared loss (MSE)
to train the PCritic with Q values as:

L(ψ ) = Est ,at ,rt∼E [(yt −Qψ (st ,at ))
2],

yt = rt + γ1Qψ ′(st+1, µ
′(st+1)).

(11)

ψ and ψ ′ are parameters of the online and target networks. ψ is
updated during training, whileψ ′ is the previous RL parameters in
experience pool fixed during optimization. ylt is the target Q value

learned from the current reward rt and future Q value in t+1 gener-
ated by the target networkψ ′. µ ′(st+1) indicates the deterministic
target policy that provides objective weights.Qψ (st ,at ) is given by
the online networkψ via Eq. (8), which will be trained.

The Q value predicted by PCritic is used to update PActor with
policy gradient. Specifically, we maximize the expected return to
learn the parameter ϕ in PActor as:

L(ϕ) = −Ea∈πϕ [logπϕ (s,a)Qψ (s,a)]. (12)

πϕ is the online policy probability given state and action in Eq. (7),
and ϕ is the PActor’s parameters to be updated. Finally, the overall
RL loss LRL is aggregated as follows:

LRL = L(ψ ) + βL(ϕ). (13)

β is the weight empirically set as 1. We also add some Gaussian
noises an ∼ N (0,σ 2) to actions, which bring in additional model
explorations to the RL training, improving the generalization and
robustness of PAPERec. Note that the Pareto-oriented RL could also
be easily adapted to point-wise recommendation by considering
rewards in future impressions when predicting.

3.4 Implementation Details on List-wise MOR
In this subsection, we introduce the implementation details of the
list-wise single-objective models used in PAPERec. Precisely, we
consider two essential objectives widely used in industrial recom-
mendation systems, namely the Click-Through-Rate (CTR) and
the dwell time (DT) [44]. CTR is one of the most important metrics
to measure recommendation accuracy in practice. However, simply
focusing on CTR will inevitably lead to homogeneity, and may also
be easily contaminated by clickbait. In contrast, dwell time, which
indicates the time a user spends on an item, is regarded as a more
quantitative recommendation accuracy metric. Comparing with
CTR, dwell time could better reflect users’ real preferences on items
to alleviate the influence of clickbait. However, dwell time can be
easily affected by the type of items (e.g., videos usually have a much
longer dwell time than news) and the length of item contents. More-
over, DT is more difficult to be predicted accurately. In real-world
scenarios, we usually jointly consider both CTR and DT to comple-
ment each other. However, there are often conflicts between CTR
and DT, making it difficult to simultaneously optimize these two
metrics. Hence, we propose PAPERec to address this MOR issue.

Specifically, we implement two RL-based list-wise models in-
spired by [42] as the single-objective models for CTR and DT. For
consistency, we directly use the same features and state encoder
network introduced in Sec. 3.3. The inputs of both CTR- and DT-
oriented models contain user profiles, user historical behaviors,
recommendation contexts, and target item profiles. We also adopt
the same MultiHead and GRU feature extractors from Eq. (3) to Eq.
(6) to build the hidden states hCt and hDt for CTR and DT. We adopt
a double DQN [33] to optimize both models in list-wise scenario.
Taking CTR for example, we use the MSE loss as the optimization
objective similar to Eq. (11). For a user uj at his t-th position in the
impressed list, we formalize the loss LCt (uj ) as:

LCt (uj ) = (rCt + γ2Q
′
C (st+1,at+1) −QC (st ,at ))

2. (14)
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The Q value QC (st ,at ) in CTR is calculated via the hidden states
hCt and the t-th target item dt , which is noted as:

QC (st ,at ) = ReLU(Concat(hCt ,dt )w
C + bC ). (15)

The reward rCt is 1 if dt is clicked, and otherwise equals 0. Similarly,
we also build the MSE loss for DT as follows:

LDt (uj ) = (rDt + γ2Q
′
D (st+1,at+1) −QD (st ,at ))

2. (16)

The Q value QD (st ,at ) in DT is calculated as Eq. (15):

QD (st ,at ) = ReLU(Concat(hDt ,dt )w
D + bD ). (17)

The reward rDt is the discretized dwell time ofdt after normalization.
Finally, following the scalarization-based loss L(θ ) in Eq. (1), we
aggregate LCt (uj ) and L

D
t (uj ) with the personalized weightsωt (uj )

given by the Pareto-oriented RL in Eq. (7). We have:

Lmodel =
∑
uj ∈U

∑
(uj ,dt )∈I

ωt1(uj )L
C
t (uj ) +ωt2(uj )L

D
t (uj ).

ωt1(uj ) +ωt2(uj ) = 1, ωt i (uj ) ≥ 0, ∀uj ∈ U .

(18)

(uj ,dt ) ∈ I indicates that the t-th item dt has been impressed to
user uj . Different user-item pairs have different objective weights
ωt i (uj ), which could satisfy various user preferences on CTR and
DT objectives. The overall loss function L is weighted by the Pareto-
oriented RL loss LRL in Eq. (13) and the scalarization loss Lmodel
in Eq. (18), which is formalized as follows:

L = λLRL + (1 − λ)Lmodel . (19)

The Pareto-oriented RL module and single-objective models are
trained alternately, and λ is a hyper-parameter empirically set as 0.5.
Note that other recommendation models such as DeepFM and AFN
could be easily adopted as single-objective models in PAPERec. It is
convenient to add more objectives in PAPERec such as diversity and
novelty. We just need to build an additional single-objective model
for each new objective, and modify the output of Pareto-oriented
RL to fit the number of objectives.

3.5 Online Deployment
3.5.1 Online System. Pareto-efficient multi-objective recommen-
dation aims to simultaneously improve all objectives, while online
experiments can provide convincing evaluations to verify the ef-
fectiveness in practice. Hence, we deploy PAPERec on a real-world
recommendation system namedWeChat Top Stories. WeChat Top
Stories is an integrated recommendation feed inWeChat, which has
billion-level daily interactions onmillion-level heterogeneous items,
including articles, news, and videos. The online recommendation
system mainly consists of candidate generation (i.e., matching) and
ranking modules as [7]. We have deployed PAPERec on ranking
for more than three months. PAPERec can converge smoothly and
achieve good performances with different training data.

3.5.2 Online Serving. We consider two representative objectives in
online for MOR, namely CTR and item-level dwell time (DT). Here,
the item-level DT is calculated by the time users spend on each
item. PAPERec takes top 200 items pre-retrieved by the matching
module as item candidates, and outputs top 10 items (i.e., the final
recommended list) for each user request (e.g., enter or refresh the
system). Specifically, PAPERec sequentially recommends items and

updates RL states from position 1 to 10 to generate the final list. At
each position, for all item candidates, PAPERec first calculates two
single-objective scores (e.g., the Q values in Eq. (15) and Eq. (17)) for
CTR and DT objectives. Next, the Pareto-oriented RL module gener-
ates the objective weights given by PActor in Eq. (7). The final score
is the weighted addition of all objective scores as in Eq. (18). PA-
PERec then sorts all item candidates according to the final weighted
objective scores. In this case, the objective weights can be viewed
as certain reflections of users’ objective-level preferences. We im-
plement PAPERec with Tensorflow, using 50 parameter servers and
100 workers (4-core CPU with 8G memory). We spend nearly 4
hours for daily model updating, which is acceptable for industrial
systems. It is convenient to adopt PAPERec in other systems.

4 EXPERIMENTS
We propose PAPERec for list-wise multi-objective recommendation,
which is widely applied in real-world scenarios. In this section, we
conduct extensive offline and online experiments, aiming to an-
swer the following three research questions: (RQ1): How does
our proposed PAPERec model perform against the state-of-the-art
single-objective models and multi-objective models on all objec-
tives (see Sec. 4.4)? (RQ2): How does PAPERec perform in online
system with various online multi-aspect evaluation metrics (see
Sec. 4.5)? (RQ3): What do the personalized objective weights learn
and reflect? Are they reasonable (see Sec. 4.6)? We focus on CTR
and dwell time (DT) in our offline and online evaluations.

4.1 Dataset
Since there are few large-scale open datasets for list-wise multiple-
objective recommendation, we build a new dataset LMOR-1.5B
from a real-world recommendation system named WeChat Top
Stories widely used by millions of people. Precisely, we randomly
collect nearly 145 million impressed lists of 12 million users after
data masking to protect user’s privacy. Each list contains 10 items,
and the overall dataset contains 141 million click and 1.5 billion
impression instances. These instances cover 7.2 million items of
news, articles and videos. Since PAPERec aims to deal with both
CTR and dwell time (DT) objectives, the dwell time (i.e., the time a
user spends on a clicked item) is also recorded. We split the dataset
into a train set and a test set using the chronological order, getting
1.3 billion impressions in train set and 182 million impressions in
test set. Table 1 shows the detailed statistics of LMOR-1.5B.

Table 1: Statistics of the LMOR-1.5B dataset.

#user #item #click #instance

11,942,985 7,196,349 141,387,409 1,452,567,072

4.2 Competitors
We implement several widely-used and competitive recommenda-
tion models as baselines to compare with PAPERec.

4.2.1 Single-objective Optimization Methods. We first implement
some classical single-objective recommendation models to learn
user preferences from a single CTR/DT objective as follows:
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• FM [24]. Factorization machine (FM) is a classical method
that models second-order feature interactions with latent
vectors. It is widely used in practical systems.

• NFM [14]. NFM uses a neural FM layer before DNN to cap-
ture different feature interactions.

• DeepFM [13]. DeepFM combines FM with DNN in parallel
to model feature interactions.

• AutoInt [31]. AutoInt introduces self-attentive neural net-
work for better feature interactions.

• AFN [6]. AFN is a recent SOTA feature interaction model
which could learn adaptive-order feature interactions via a
logarithmic transformation layer.

We focus on CTR and DT objectives in this work and online system.
Therefore, for these single-objective methods, besides their original
versions that are trained under the CTR-based cross entropy loss,
we also implement their DT versions trained under the DT-oriented
objective for a comprehensive comparison. Precisely, we replace
the CTR-based cross entropy loss with the similar DT-based MSE
loss in Sec. 3.4 for model optimization. We utilize model-CTR and
model-DT to represent the corresponding model with CTR and DT
oriented objectives respectively.

Fairness of comparisons: It should be emphasized that we use
the same features and train set that are used in PAPERec for all base-
lines. Moreover, for more challenging comparisons, we directly use
the outputs of the same list-wise DQN-based single-objective models
in Sec. 3.4 as additional features for all baselines. These additional
features provide refined list-wise CTR/DT information generated
by the same network structure used in PAPERec. Baselines trained
solely under CTR-oriented objectives can achieve better DT perfor-
mances with the help of such refined DT features, and vice versa.
In this case, we force the model comparisons to focus more on
the Pareto-efficient learning rather than the list-wise DQN-based
network structure of our single-objective models. Although it raises
the difficulty of getting significant improvements, it also makes the
conclusions much more solid.

4.2.2 Multi-objective Optimization Methods. We also implement
several competitive multi-objective optimization methods as the
second baseline group for both offline and online evaluations.

• PO-EA-OE. PO-EA [26] is a previous state-of-the-art multi-
objective Pareto-efficient model for general recommenda-
tion, which aims to search the Pareto-efficient solutions to
aggregate scores from separately pre-trained and fixed single-
objectivemodels. PO-EA conducts an evolutionary algorithm
to find the appropriate parameters for weighted aggregation,
where the objective weights are shared by all users. Inspired
by the trial-and-error procedure in reinforcement learning,
we further add an online exploration strategy to optimize our
evolutionary algorithm with real-world user feedbacks. This
enhanced PO-EA version armed with online exploration is
noted as PO-EA-OE in experiments. PO-EA-OE is a strong
baseline previously deployed in online.

• POW-RL. Personalized objective weighting with RL (POW-
RL) is another competitive baseline we propose and deploy in
online system. Differing from conventional Pareto-efficient
MOR models, it brings in objective-level personalization to
single-objective model aggregation. Precisely, it conducts

reinforcement learning to generate personalized objective
weights using double DQN. The list-wise MOR reward is the
weighted aggregation of CTR and DT rewards. Note that the
objective weights of rewards are shared and fixed, which are
empirically pre-defined by posterior online performances
and customized online strategies. POW-RL can be viewed as
a semi-objective-personalized model.

PO-EA-OE and POW-RL focus on finding appropriate general or
personalized balances between CTR and DT oriented objectives. For
fair comparisons, we use the same double DQN model and training
strategy in PAPERec to optimize their single-objective models as in
Sec. 3.4. Note that we do not compare with some Pareto-efficient
models such as PE-LTR [20], since it is difficult to directly adopt
those models to list-wise MOR tasks. Moreover, PE-LTR takes a
lot of effort on Pareto frontier generation and solution selection
specially in E-commerce, which does not fit well for our integrated
recommendation feed scenario.

4.2.3 Ablation Settings. We further implement different PAPERec
versions as an ablation study. PAPERec(CTR) indicates the PAPERec
version that only utilizes the scores of CTR-based single-objective
model trained under the original PAPERec framework. Similarly,
PAPERec(DT) represents the version only considering the scores
of DT-based single-objective model. Moreover, we also add a ran-
dom ensemble model PAPERec(RD) in online evaluation, which
randomly generates objective weights for model aggregation.

4.3 Experimental Settings
PAPERec takes top 200 items in each channel as inputs and output
top 10 heterogeneous items. The maximum length of user click se-
quence is 10 in Pareto-oriented RL module and two single-objective
models. The dimension of input feature field embeddings of Trans-
former in Up and Ci is 8, while the Transformer is 4-head. The
dimension of hidden state ht is 128, and the dimension of item
dt is 32. The discount factors of Pareto-oriented RL γ1 and single-
objective models γ2 balance the future rewards in list-wise recom-
mendation. We empirically set γ1 = 0.1 and γ2 = 0.3 according to
the overall performances in online and validation set. In training,
both Pareto-oriented RL and single-objective models are optimized
as Algorithm 1. We use Adam for optimization with the batch size
set as 256. We conduct a grid search for parameter selection. All
models share the same experimental settings and features also used
in PAPERec for fair comparisons.

4.4 CTR and DT Prediction (RQ1)
The offline evaluation aims to verify the effectiveness of PAPERec
in multi-objective recommendation. Precisely, we focus on CTR
and DT Prediction with the real-world LMOR-1.5B dataset.

4.4.1 Evaluation Protocol. For CTR prediction, we use three classi-
cal metrics for offline evaluation, including hit rate@K (HIT@K),
mean average precision (MAP) and area under curve (AUC), which
are widely utilized in recommendation tasks [6, 13]. HIT@N mea-
sures whether clicked items will be ranked in top N items in the
list predicted by models. MAP concerns about the ranks of clicked
items. AUC calculates the probability that a random positive exam-
ple scores higher than a random negative example. In LMOR-1.5B,

3845



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Ruobing Xie, Yanlei Liu, Shaoliang Zhang, Rui Wang, Feng Xia, and Leyu Lin

Table 2: Results of CTR and DT Prediction. The biggest improvements of PAPERec are significant with p < 0.01.

Model CTR-related metrics DT-related metrics

HIT@1 HIT@3 HIT@5 MAP AUC WHIT@1 WHIT@3 WHIT@5 WMAP AUC

FM-CTR 0.2108 0.5084 0.7123 0.5107 0.7828 0.6905 1.6340 2.2705 1.6291 0.5204
NFM-CTR 0.2505 0.5548 0.7511 0.5537 0.7936 0.8204 1.7824 2.3888 1.7679 0.5244
DeepFM-CTR 0.2559 0.5610 0.7594 0.5603 0.8093 0.8341 1.7969 2.4133 1.7858 0.5155
AutoInt-CTR 0.2573 0.5613 0.7555 0.5605 0.8070 0.8507 1.8155 2.4148 1.8006 0.5254
AFN-CTR 0.2601 0.5695 0.7653 0.5656 0.8127 0.8605 1.8445 2.4489 1.8185 0.5245

FM-DT 0.2070 0.5057 0.7113 0.5076 0.7698 0.6876 1.6406 2.2795 1.6317 0.5762
NFM-DT 0.2494 0.5536 0.7522 0.5531 0.7732 0.8387 1.8100 2.4201 1.7928 0.5763
DeepFM-DT 0.2528 0.5565 0.7539 0.5595 0.7974 0.8604 1.8398 2.4431 1.8192 0.5857
AutoInt-DT 0.2555 0.5582 0.7530 0.5580 0.7980 0.8530 1.8184 2.4170 1.8029 0.5734
AFN-DT 0.2570 0.5640 0.7608 0.5616 0.8037 0.8811 1.8704 2.4621 1.8444 0.5883

PO-EA-OE 0.2532 0.5544 0.7523 0.5594 0.8010 0.8510 1.8159 2.4152 1.8016 0.5535
POW-RL 0.2558 0.5577 0.7540 0.5610 0.8020 0.8704 1.8390 2.4298 1.8364 0.5945

PAPERec(CTR) 0.2650 0.5740 0.7678 0.5704 0.8149 0.8729 1.8550 2.4530 1.8306 0.5243
PAPERec(DT) 0.2534 0.5557 0.7526 0.5560 0.7930 0.8843 1.8654 2.4568 1.8469 0.6204
PAPERec 0.2591 0.5649 0.7606 0.5632 0.8042 0.8896 1.8742 2.4655 1.8866 0.5951

all clicked items are viewed as positive examples, while all unclicked
items are regarded as negative examples.

For DT prediction, we hope that items with higher dwell time
should (i) have higher ranks, and (ii) considered more significant
in evaluation. Different from clicks in CTR prediction, dwell time
is a continuous value. We suppose that the evaluation metrics of
DT prediction should take the specific value of dwell time into
consideration. Therefore, we evaluate all models with the enhanced
versions of HIT@K, MAP and AUC. Following the similar metrics
in [20], we propose WHIT@K and WMAP considering the specific
value of dwell time as weights, which are formalized as follows:

WHIT@K =
1
N

N∑
i=1

dwell_timei × is_hit(i,K). (20)

N indicates the number of clicks, and dwell_timei is the DT of the
i-th item. is_hit(i,K) = 1 denotes that the i-th item is ranked in top
K according to the model’s scores, and otherwise equals 0. We also
have WMAP enhanced from MAP as follows:

WMAP =
1
Nl

Nl∑
k=1

WAPk , WAPk =
∑Nr
i=1 p@i · dwell_timeki

Ck
.

(21)

Nl indicates the number of lists, Nr represents the number of items
in a list (Nr = 10 in PAPERec), andCk is the clicked item amount of
the k-th list. p@i represents the precision of top i items in the k-th
list, and dwell_timeki reflects the dwell time of the i-th item in the
k-th list. The AUC of DT prediction also reflects the probability a
random higher-DT example scores higher than a random lower-DT
example. We conduct a maximum truncation for dwell time to avoid
extreme examples. All models follow the same evaluation manner.

4.4.2 Experimental Results. Table 2 shows the results of ten CTR-
related and DT-related metrics on list-wise multi-objective recom-
mendation, from which we can observe that:
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Figure 3: Visualization of PAPERec and different baselines.

(1) PAPERec models achieve the best performances on all CTR
and DT related metrics. Considering the overall MOR performance,
PAPERec models significantly outperform all single-objective opti-
mization and multi-objective optimization methods with the sig-
nificance level p < 0.01. It verifies the effectiveness of the Pareto-
oriented RL. In PAPERec, Pareto-oriented RL guides both CTR and
DT based single-objective models to reach the approximate Pareto
efficient situations with personalized objective weights. In this case,
both single-objective models can be trained more sufficiently and
wisely to handle with the general characters and conflicts in MOR.
Fig. 3 visualizes the CTR and DT related performances of different
models, which also verify the advantages of PAPERec intuitively.

(2) Comparing among different PAPERec versions, we find that
PAPERec achieves the best overall performance (PAPERec has the
best WHIT@N and WMAP of DT and the second-best results for
the rest CTR and DT metrics). The advantages of PAPERec over
single CTR/DT model versions mainly come from the personalized
objective weights via Pareto-efficient training, which can benefit on-
line single-objective model fusion. The advantages of personalized
objective weights are also reflected in online evaluation metrics of
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CTR, DT and diversity, which will be discussed in Sec. 4.5. We will
also give a detailed analysis of the objective-level personalization
in Sec. 4.6 from multiple user, item and type aspects. Moreover, we
also conduct PAPERec with different discount factors in RL mod-
ules, and find that PAPERec with γ1 = 0.1 and γ2 = 0.3 achieves the
best performance. It further confirms the effectiveness of RL-based
modeling and future rewards in list-wise MOR.

(3) PAPERec even surprisingly outperforms PAPERec(DT) in DT
prediction. Note that dwell time can be viewed as a quantitative CTR
metric that is extremely challenging to predict, for the reward of
DT is continuous and the DT prediction is much harder than binary
click prediction. The improvements of PAPERec in DT may owe
to the smart fusion of CTR and DT objectives, since CTR-oriented
models can provide a coarse-grained judgment, which might be
beneficial for DT prediction.

(4) In baselines, AFN models achieve relatively good overall per-
formances. Nevertheless, PAPERec still outperforms AFN in overall.
Multi-objective models such as PO-EA-OE and POW-RL also per-
formwell in balancing CTR and DT. These models are trained under
both CTR and DT supervised information and have improvements.
However, they still perform worse than PAPERec, which shows that
the personalized objective weights of PAPERec are more effective.
Simple joint optimization may not improve the overall performance.
We should highlight that all single-objective optimization baselines
are enhanced with the list-wise single-objective DQN models used
in PAPERec (see Sec. 4.2). These challenging comparisons further
confirm the effectiveness and robustness of PAPERec in MOR.

4.5 Online Evaluation (RQ2)
The CTR and DT predictions confirm the effectiveness of PAPERec
with offline CTR and DT related metrics. However, the chain chem-
ical reaction of multi-objective recommendation should be com-
prehensively exposed via online evaluation on real-world systems.
Hence, we conduct an online evaluation for PAPERec.

4.5.1 Evaluation Protocol. We have deployed PAPERec on a real-
world MOR system in WeChat Top Stories as introduced in Sec.
3.5. Precisely, we implement different PAPERec versions and multi-
objective methods, which are deployed in ranking with other online
modules unchanged. The online base model is a weighted combina-
tion with two double DQN based single-objective CTR/DT models,
where the objective weights are empirically set and fixed according
to previous overall online performances.

For comprehensive comparisons, we concentrate on five online
metrics to evaluate models frommultiple aspects including CTR, DT
and diversity. We have: (a) CTR, which is a classical ranking metric
that measures online click-oriented performance. (b) Has-click rate
(HCR), which indicates the proportion of users who have clicked
any items of the day. (c) Dwell time in system per capita (DT-s),
which represents the average time users spend on the online system
(including both main feed and item’s content page). (d) Dwell time
on item per capita (DT-i), which represents the average valid time
users spend on items’ content pages. (e) Clicked tag number per
capita (CTN), which is a diversity metric that is calculated by the
number of clicked deduplicated tags in items.We conduct the online
evaluation for 7 days with more than 6 million users involved, and
report the improvement percentages instead of the specific values.

Table 3: Online evaluation on a real-world system with mul-
tiple CTR, DT and diversity related metrics.

Metrics CTR HCR DT-s DT-i CTN

PO-EA-OE +0.14% -0.05% +0.41% +0.88% +1.10%
POW-RL +0.58% -0.01% +0.85% +2.11% +5.39%

PAPERec(RD) +1.05% +0.05% +0.59% +2.33% +15.60%
PAPERec(CTR) +1.63% +0.15% +0.95% +2.97% +13.28%
PAPERec(DT) +1.32% +0.11% +0.86% +3.00% +15.76%
PAPERec +1.11% +0.23% +1.33% +3.26% +15.34%

4.5.2 Experimental Results. Table 3 shows the online evaluation
results with multiple metrics. We can find that:

(1) All PAPERec models have consistent improvements over the
base model, which achieve the best performances on all types of
online metrics. PAPERec achieves the best performances on three
metrics including both click and dwell time related metrics, with
the significance level p < 0.05 for HCR and p < 0.01 for DT-s
and DT-i. The simultaneous improvement on both CTR (+1.11%)
and DT-i (+3.26%) are rare and impressive in online evaluation. It
verifies that PAPERec can improve multiple CTR and DT objectives
simultaneously in online, and reconfirms the significance of Pareto-
oriented RL to model optimization and online fusion.

(2) PAPERec(CTR) achieves the best CTR result. However, com-
pared with other PAPERec versions, PAPERec(CTR) has the worst
diversity result in CTN. It implies that too many concentrations
on CTR-oriented objectives may inevitably result in homogeneity.
Nevertheless, it still outperforms other baselines on CTN, which
may benefit from the sufficient Pareto-oriented training. The im-
provements of PAPERec over its random ensemble version (RD)
also proves that the objective weights are essential and sensitive.

(3) Other multi-objective baselines like PO-EA-OE and POW-RL
also have improvements on several CTR and DT metrics. It recon-
firms the importance of multi-objective fusion in online systems.
POW-RL has better performance due to the personalized objective
weights learned from RL-based fusion module. However, PAPERec
still outperforms these models by a large margin, since its person-
alized objective weights learned from Pareto-oriented RL can help
both single-objective model training and model fusion.

(4) We also find that PAPERec has 0.24% improvements on user
stickiness. User stickiness is the core indicator of real-world sys-
tems, which is calculated by the proportion of yesterday’s users
who also utilize our system today. It is extremely difficult to have
user stickiness improved by simple model optimization. The user
stickiness improvement verifies the online effectiveness of PAPERec
indirectly from another aspect.

4.6 Analysis on Objective-level Personalization
(RQ3)

In this subsection, we aim to explore what the personalized objec-
tive weights have learned and implied, and whether the Pareto-
based objective-level personalization is reasonable. We analyze the
objective weights at user, item and item type levels.

4.6.1 Evaluation Protocol. The personalized objective weights gen-
erated by Pareto-oriented RL are influenced by both users and
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items. Therefore, we want to know what characters of users and
items will affect objective-level personalization and whether they
are reasonable. Specifically, for user aspect, we first cluster all im-
pression instances in the test set by users. Next, we rank all users
by their average objective weights ωCTR and ωDT generated by
Pareto-oriented RL. Third, we select users with the top 10% CTR
and DT weights, regarded as the user groups with CTR/DT objec-
tive preferences respectively predicted by PAPERec. Similarly, we
also build the corresponding item groups with CTR/DT preferences,
and filter out users and items that are below certain click thresh-
olds to alleviate bias. Finally, we calculate the average CTR of user
groups and the average dwell time per click (DT/c) of item groups
to show the validity and effectiveness of our personalized objective
weights. Moreover, LMOR-1.5B is an integrated recommendation
dataset containing various types of items including video, article
and news, for which users may have inherent objective-level pref-
erences. Hence, we also display the proportions of different item
types for items with polarized CTR/DT objective weights.

Table 4: Results of CTR and dwell time per click for users
and items with polarized CTR/DT objective preferences.

Aspect Metric Top 10% CTR weight Top 10% DT weight

user CTR +33.8% -36.3%
item DT/c -6.4% +3.8%

Table 5: Results of the proportions of different item types
for items with polarized CTR/DT objective preferences.

Item type video article news

Top 10% CTR weight 15.4% 71.9% 13.7%
Top 10% DT weight 21.2% 66.2% 12.6%

4.6.2 Experimental Results. Table 4 shows the relative values of
CTR and DT/c compared with the average results of all users and
items, and Table 5 displays the proportions of video/article/news
with different CTR/DT weights, from which we can find that:

(1) In user aspect, the CTR of users having top 10% CTR weight
is 33.8% higher than the average CTR of all users, while the users
with top 10% DT weight have 36.3% lower CTR. The CTR deviation
is reasonable. CTR is calculated by dividing clicks by impressions.
A user having a higher CTR indicates that the user is more willing
to click items under the same amount of impressions. This type of
user should care more about CTR-related objectives. The results
imply that PAPERec has successfully found out users who care more
about clicks, and gives those users higher CTR objective weights
for better objective-level personalization. A similar CTR deviation
could also be found in the item groups.

(2) In item aspect, the DT/c of items having top 10% CTR weight
is 6.4% lower than the average number, while that having top 10%
DT weight is 3.8% higher. DT/c indicates the dwell time per click.
An item with a higher DT/c represents that users will spend more
time on reading its contents per click, where DT should be more

considered. Hence, the DT/c deviation is also reasonable, indicating
the successful objective-level personalization at the item level.

(3) From Table 5 we can observe that: videos usually have larger
DT weights and focus more on dwell time, while article and news
have larger CTR weights. These results are in line with the actual
demands in integrated recommendation systems, since video rec-
ommendation should pay more attention to DT metrics that can
truly reflect user’s satisfaction. It reconfirms the effectiveness of PA-
PERec in learning reasonable objective weights for objective-level
personalization at the item type level.

5 CONCLUSION AND FUTUREWORK
In this work, we propose a new Personalized Approximate Pareto-
Efficient Recommendation (PAPERec) framework to simultaneously
improve all objectives in multi-objective recommendation. We con-
duct a Pareto-oriented RL to generate the personalized objective
weights in scalarization, which can help single-objective models to
approximately optimize toward Pareto-efficient situations. The pro-
posed objective-level personalization is beneficial for both model
optimization and online fusion. In experiments, PAPERec achieves
significant improvements on both offline and online evaluations
with CTR/DT related metrics. Analyses on objective-level personal-
ization also verify its effectiveness. Currently, PAPERec has been
deployed on WeChat Top Stories, affecting millions of users.

In the future, we will conduct further discussions on the Pareto
frontier of PAPERec to flexibly generate different overall objective
preferences for different online scenarios. We will also explore and
add the prior knowledge of user objective-level preferences to our
Pareto-oriented RL module, along with more sophisticated neural
structures. Finally, we will also attempt to complete the theoretical
part of the personalized approximate Pareto-efficient learning in
order to inspire and facilitate the model design.
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