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ABSTRACT 
Cross-domain recommendation (CDR) aims to leverage the source 
domain information to provide better recommendation for the tar-
get domain, which is widely adopted in recommender systems 
to alleviate the data sparsity and cold-start problems. However, 
existing CDR methods mostly focus on designing efective model 
architectures to transfer the source domain knowledge, ignoring the 
behavior-level efect during the loss optimization process, where be-
haviors regarding diferent aspects in the source domain may have 
diferent importance for the CDR model optimization. The igno-
rance of the behavior-level efect will cause the carefully designed 
model architectures ending up with sub-optimal parameters, which 
limits the recommendation performance. To tackle the problem, 
we propose a generic behavioral importance-aware optimization 
framework for cross-domain recommendation (BIAO). Specifcally, 
we propose a behavioral perceptron which predicts the importance 
of each source behavior according to the corresponding item’s 
global impact and local user-specifc impact. The joint optimization 
process of the CDR model and the behavioral perceptron is formu-
lated as a bi-level optimization problem. In the lower optimization, 
only the CDR model is updated with weighted source behavior loss 
and the target domain loss, while in the upper optimization, the 
behavioral perceptron is updated with implicit gradient from a de-
veloping dataset obtained through the proposed reorder-and-reuse 
strategy. Extensive experiments show that our proposed optimiza-
tion framework consistently improves the performance of diferent 
cross-domain recommendation models in 7 cross-domain scenarios, 
demonstrating that our method can serve as a generic and powerful 
tool for cross-domain recommendation1. 
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1 INTRODUCTION 
Recommender systems aim to provide personalized recommenda-
tion to users according to their historical behaviors, and have played 
an important role in various applications [6, 28]. However, the ex-
isting recommender systems often sufer from the data sparsity and 
the cold-start problems [8, 9, 28, 29, 31], where the data sparsity 
problem is caused by the insufcient user-item interaction records 
and the cold-start problem is generally caused by the new users. 
To address these problems, cross-domain recommendation, which 
improves the recommendation accuracy in the target domain by 
utilizing the user’s behaviors in the source domain, has achieved 
great success recently [8, 12, 20, 27]. 

Existing cross-domain recommendation(CDR) methods mainly 
focus on designing efective model architectures to transfer knowl-
edge from the source domain to the target domain. In particular, 
EMCDR-based methods [18, 33] aim to share the knowledge in 
the user’s embedding, where in each domain the user’s embed-
ding is optimized with the source and target recommendation loss 
respectively, and then diferent mapping functions like global non-
linear function [18] and user-specifc function [33] are learned to 
align the user’s embedding in two domains. However, the transfer 
mechanism of EMCDR simply focuses on user embedding mapping, 
limiting their performance in recommendation. More advanced ar-
chitectures [8, 12, 13, 17, 20] are recently proposed for more precise 
cross-domain recommendation. CoNet [8] adopts the cross-stitch 
structure in multi-task learning to transfer the source features to 
the target domain. MiNet [20] and DASL [12] design diferent kinds 
of attentive mechanisms to select the target-domain-related inter-
est from the source behaviors. These methods [8, 12, 13, 17, 20] 
share not only user embedding but also deep model parameters 
through utilizing the joint loss of both the source and target domain 
to optimize the whole model, and thus achieve promising target 
recommendation performance. 

Despite the efectiveness of the existing methods, they neglect 
the fact that behaviors regarding diferent aspects in the source 
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domain may have diferent importance for the CDR model opti-
mization. They lack the behavior-level consideration for the joint 
loss to be optimized, which leads to sub-optimal model parameters 
for the carefully designed CDR models. Specifcally, the joint loss 
adopted by existing works [8, 12, 13, 17, 20, 26, 30] is generally 
obtained as follows, (1) average the losses of all the behaviors in 
the target/source domain to obtain the target/source loss, (2) use a 
hyper-parameter weighted to the source loss to balance informa-
tion from the two domains, (3) and add the two loss terms together 
to obtain the joint loss. However, an appropriate behavior-level 
consideration requires that not only should the losses between two 
domains be balanced, but the loss of each behavior in the source do-
main should also be balanced. For example, if we want to utilize the 
user’s behavior in the book domain to help recommendation in the 
target toy domain, interacting with the books related to “children” 
or “toy stories” can provide benefcial information to the target do-
main, but interacting with “love story” books provides little helpful 
information. Additionally, as indicated by Man et al. [18], using 
the losses of users that have only few interactions in the source 
domain tend to harm the target domain recommendation accuracy. 
Therefore, existing works averaging the source behavior losses 
without behavior-level consideration fail to flter out the harmful 
information, thus only obtaining sub-optimal parameters for the 
carefully designed model architectures. 

To address the problem, we propose to consider behavior-level 
importance through assigning an individual importance weight to 
each source behavior loss, which faces two challenges. 

• When assigning a proper behavior-level importance, we will 
have to decide millions of hyper-parameters for each of the 
millions of source behaviors if each weight is regarded as a 
hyper-parameter, which brings explosive computational cost. 

• Even though we can reduce the number of required hyper-
parameters to an afordable level, it still remains a problem 
how we optimize the reduced hyper-parameters. 

To tackle the challenges, we propose a generic behavioral importance-
aware optimization framework (BIAO) for cross-domain recommen-
dation, which involves a novel behavioral perceptron for the frst 
challenge and a tailored bi-level optimization algorithm for the 
second challenge. The proposed behavioral perceptron learns the 
importance of each source behavior (i.e., a user-item pair) according 
to the item’s global impact on the target domain as well as its local 
impact on a specifc user, where the former is modeled by a global 
MLP and the latter is modeled with self-attention followed by a local 
MLP, which reduces the required hyper-parameters from million 
level to thousand level. The tailored bi-level optimization algorithm 
jointly optimizes the recommendation model parameters and the 
behavioral perceptron parameters. In the lower optimization, we 
utilize the target loss together with the importance weighted source 
loss to optimize the recommendation model parameters, while in 
the upper optimization, we update the perceptron parameters with 
implicit gradient from a developing dataset obtained through the 
designed reorder-and-reuse strategy. This strategy makes full use 
of all the target behaviors both in the upper and lower optimiza-
tion, alleviating the potential bias and information loss in previous 
bi-level optimization works [2, 15]. The proposed behavioral per-
ceptron is learned in a bi-level data-driven manner, thus being 

generic enough to automatically ft diferent recommendation mod-
els and datasets. Extensive experiments and analysis show that our 
proposed BIAO framework consistently improves the performance 
of diferent cross-domain recommendation models in seven cross-
domain scenarios. Our contributions are summarized as follows, 

• To the best of our knowledge, we are the frst to consider 
behavior-level efect through assigning an individual im-
portance weight to each source domain behavior loss for 
cross-domain recommendation. 

• We propose a generic behavioral importance-aware optimiza-
tion (BIAO) framework for cross-domain recommendation, 
which includes a novel behavioral perceptron and a tailored 
efective bi-level optimization algorithm. 

• We conduct extensive experiments with diferent models on 
diferent datasets. Empirical results show that our proposed 
BIAO framework brings consistent performance improve-
ment, demonstrating its ability to serve as a generic and 
powerful tool for cross-domain recommendation. 

2 RELATED WORK 
In this section, we review related work for cross-domain recom-
mendation and bi-level optimization. 

Cross-Domain Recommendation. Cross-domain recommenda-
tion aims to utilize the source domain information to provide more 
precise recommendation to users in the target domain. A line of 
typical methods are based on EMCDR [1, 10, 18, 32, 33]. The origi-
nal EMCDR [18] utilizes the latent factor model to learn the user’s 
embedding in the source domain and target domain respectively. 
Then a non-linear mapping from the source user embedding to 
the target domain is learned to transfer the knowledge. [32] pro-
poses task-oriented loss to utilize the mapped embedding to predict 
the target behavior instead of target user embedding. [33] further 
proposes a personalized mapping function for each user and [10] 
gives a more reasonable metric learning for EMCDR. However, 
the EMCDR-based methods simply consider the user embedding 
mapping, limiting its performance in recommendation. More ad-
vanced cross-domain recommendation models were proposed re-
cently [8, 12, 17, 20, 26]. CoNet [8] adopts the cross-stitch structure 
in multi-task learning to share the features between the source and 
target domain. �-Net [17], MiNet [20] and DASL [12] considers the 
sequential cross-domain recommendation, where attention mecha-
nisms are adopted to select the useful source information. Despite 
the efectiveness of the proposed models, they simply utilize the 
linear combination of the source loss and the target loss to optimize 
the model, ignoring diferent impacts of behaviors in the source 
domain. To further exploit the potential of these models, we pro-
pose to conduct the behavioral importance-aware optimization for 
cross-domain recommendation. 

Bi-level Optimization. The bi-level optimization problem arises 
in many scenarios of deep learning, like meta learning [5, 21], neu-
ral architecture search [14], and auxiliary learning [2, 3, 19]. To 
conduct the upper optimization, some works adopt the unrolled dif-
ferentiation to calculate the upper-level gradient [4, 23]. However, 
several steps of unrolling will be memory-consuming [15] and the 
efcient one-step unrolling will sufer from short horizons [25]. The 
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Figure 1: The schematic diagram of typical CDR models. 

implicit gradient is another widely adopted strategy for bi-level op-
timization. However, to fully obtain the implicit gradient, it needs to 
obtain the inverse of the Hessian matrix, which is computationally 
exhausted for deep models. Several works try to approximate the 
inverse of the Hessian, like using identity matrix [16], conjugate 
gradient [22] and truncated Neumann series [15]. All these methods 
generally split the training dataset into two disjoint subsets for the 
lower and upper optimization, which easily causes bias in the upper 
optimization and information loss in the lower optimization. In this 
paper, we adopt [15] to optimize the proposed novel behavioral 
perceptron, but propose a reorder-and-reuse strategy to alleviate 
the potential bias and information loss problems. 

3 THE PROPOSED METHOD 
In this section, we present preliminaries, the proposed behavioral 
perceptron and the efective optimization strategy. 

3.1 Preliminaries 
Assuming that there exists a set of users � that have interactions 
with items in both the source domain � and the target domain � . 
The widely CDR model schematic diagram is shown in Figure 1. 
The CDR dataset includes a source behavior set �� and a target 
behavior set �� , which contains several user-item behavior pairs for 
training. The CDR model generally contains the user’s profle �� 
(like user ID or age), the candidate item in the source domain � � , the 
candidate item in the target domain �� , and some other source/target 
features ��,� � /��,�� as input, where (�, � � ) is a behavior from the 
source behavior set �� and (�, �� ) is from the target behavior set �� . 
The other features in the source/target domain ��,� � /��,�� could be 
some historical sequential features for sequential recommendation. 
The CDR model parameters � generally includes target-only/source-
only parameters �� /�� , like the fnal predictor of each domain in 
MiNet [20] or CoNet [8], and the shared parameters by both do-
mains �� , like the user profle embedding. Given the input data and 
the CDR model, the loss of the target behavior ��,�� and the loss of 
the source behavior ��,� � will be calculated. Finally, the loss of all 
the source behaviors and all the target behaviors are added together 
with a balanced factor � , and the loss sum is used to optimize the 
CDR model parameters � : ∑ ∑ 

��,�� (�� ; �� ) + � ��,� � (�� ; �� ). (1) 
(�,�� ) ∈�� (�,� � ) ∈�� 

The current methods only rely on a global hyper-parameter � 
to balance the source and target information. However, the dif-
ferences of diferent behaviors (�, � � ) ∈ �� to the target domain 
recommendation are ignored, leading to sub-optimal � . 
Note: Although the source and target loss are optimized together, 
CDR model only cares about the performance in the target domain. 

3.2 The Behavioral Perceptron 
To conduct the behavioral importance-aware optimization, our 
proposed optimization objective is as follows,∑ ∑ 

min ��,�� (�� ; �� ) + �� � ��,� � (�� ; �� ), (2) 
� (�,�� ) ∈�� (�,� � ) ∈�� 

where each source behavior loss is given an individual weight so 
that the benefcial behavior can be preserved while the harmful 
ones are discarded. Currently, the most important problem is how to 
decide the weights �� � for the source-domain behavior. We propose 
a behavioral perceptron to perceive the importance of each behavior, 
whose structure is shown in Figure 2. 

Specifcally, for a behavior (�, � � ) in the source domain, the be-
havioral perceptron judges its importance from the global impor-
tance of � � to the target domain and the local importance of � � to 
user � as follows. 

Global item importance. Since diferent kinds of items in the 
source domain have diferent impacts on the target domain, e.g., 
“cartoon” books are more benefcial than “love story” books when 
the target domain is toy, we adopt a multi-layer-perceptron(MLP) 
to map the features of � � to its importance weight. We concatenate 
all felds of its features like its ID, category, etc. to an embedding 
�� � , and then the global item weight is obtained as follows, 

�1,� � = ��� (�� � ; �� ), (3) 

where �� is the learnable parameters of the global MLP. Since 
this weight captures the importance of item � � to the whole target 
domain, we call it the global importance. 

User-specifc item importance. Besides the item information, 
we also judge the importance of (�, � � ) from the user’s historical 
interactions. If � � is more related to user’s recent interactions, the 
(�, � � ) behavior should be highly weighted. Specifcally, the recent 
� interactions of user � in the source domain are [�1, �

� 
2 , · · · , �� ],

� � 
and in the target domain are [�1 , �2 · , �� ]. We frst map each 

� � , · · � 
of the historical items to its embedding, and obtain [�1 , �

� 
2 , · · · , �� ]

� � 
and [�1 , �

� 
2 , · · · , �� ]. To make the perceptron fnd the interest 

� � 
that is related to � � , we concatenate the embedding �� � to each 
of item embedding in the two historical sequences, and we obtain 
[�1 , �2 ] and [�1 , �2 ], where �� = [�� ]
�,� �,� , · · · , �

� 
�,� �,� �,� � ; �� � �,� �,� , · · · , �

� 

and �� = [�� ; �� � ] for � ∈ {1, 2, · · · , � }. After obtaining the 
�,� � 

item-aware historical embeddings, we use two Multi-head Atten-
tion(MHA) [24] modules to extract the user’s recent interest about 
� � in the source and target domain respectively. 

[�1 ,�2 ] = ���� ( [�1 , �2 ]; �� ), (4)�,� �,� , · · · ,�
� 

�,� �,� �,� �,� , · · · , �
� 

[�1 ,�2 ] = ���� ( [�1 , �2 ]; �� ), (5)�,� �,� , · · · ,�
� 

�,� �,� �,� �,� , · · · , �
� 

where �� and �� are the parameters of MHA. After the MHA process, 
we use mean pooling to obtain the recent source/taregt interest 
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Figure 2: The proposed BIAO framework for cross-domain recommendation. In the lower optimization, the parameters of the 
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about � � , which are ��,� and �� , � . Then we concatenate them 
together and use an MLP to obtain the fnal importance as follows, 

1 ∑�  ∑�   � 1 � ��,� = � ,� = � ,
 �,� � , �  �,  (6)

� � �
�=1 �=1 

�2,� � = ��� ( [��,� ;�� ], � ; �  )� , (7) 

where �� is the paramters of the local MLP. This importance con-
siders the information from the specifc user �, and we call it the 
local user-specifc importance. 

Finally, we multiply the two importance weights and obtain the 
fnal importance of (�, � � ): 

�� � (�) = � · � (�1,� � · �2,� � ), (8) 

where � is the normalization function, � is the learnable global 
scalar to balance information of the two domains, and �� � is a 
function of � , and � = {�� , �� , �� , � }�, �  contains all the behav-
ioral perceptron parameters. Compared to directly assigning each 
source behavior a weight which requires millions of parameters, the 
behavior perceptron only involves several fully connected layers. 
Assuming that the embedding dimension of the item is �(typical 
value 2 32 or 64), the behavioral perceptron only requires � (� ) pa-
rameters, which is thousand level. However, how to optimize � 
still remains a problem. Directly using Eq. (2) to optimize � will 
easily cause �� � to be zero, a trivial solution that cannot utilize the 
source loss information. Next, we present our bi-level optimization 
framework that jointly optimizes � and � . 

3.3 Overall Bi-level Optimization Formulation 
The proposed behavioral importance-aware optimization frame-
work is shown in Figure 2. Note that our ultimate goal is to obtain 
the optimal behavioral perceptron parameters � which can select 
the most benefcial source behaviors to optimize the CDR model � , 
so that the CDR model performs best in the target domain. This goal 

can be formulated as a bi-level optimization problem as follows, 

� ∗ = arg min ���� (� ∗(�)), (9) 
� 

� .� . � ∗(�) = arg min ������ (� ; �), 
� 

where ������ (� ; �) is the loss in Eq. (2) with �� � obtained through 
Eq. (8). The lower optimization aims to fnd the optimal �∗(�) that 
minimizes ������ (� ; �), i.e., optimize the CDR model parameters 
when the behavioral perceptron is fxed. Note that if � changes, 
� ∗ will also be changed, so �∗ is an implicit function of � , and we 
denote it as � ∗(�). � ∗(��� � (�)) is the loss of the CDR model on a 
new developing dataset � ′  in the target domain. � Assuming that 
if we can obtain an additional dataset in the target domain, our 
fnal optimization goal is that the CDR model � ∗(�) can achieve 
the best performance on the new developing target dataset, whose 
function is just like the validation dataset. Later we will explain 
how existing works and how we obtain the additional developing 
target dataset. Now, we still focus on how to conduct the lower and 
the upper optimization in Eq. (9). 
Lower Optimization. The lower optimization is quite straightfor-
ward. With the parameters of the behavioral perceptron � fxed, 
we can use any optimizer like SGD or Adam [11] to optimize � , so 
that ������ (� ; �) is minimized. 
Upper Optimization. The upper optimization is a little more com-
plex, since ���� (�∗(�)) is the loss on the target domain and it 
directly relies on � instead of � . We cannot use the autograd tools 
like SGD to calculate ∇� � (�� (�∗� �)). Therefore, considering that 
� ∗(�) is an implicit function of � , we utilize the chain rule to obtain 
the implicit gradient as follows, 

∇� �
∗ ∗ ∗( ( )) ∇ ( ( ))∇ ( )��� � �  = � ���� � � �� � , (10) 

where � � ∗∇� ��� ( (�)) is easily obtained using the autograd tools 
and our target now is to obtain ∇��∗(�). Note that � ∗(�) is the 
minimal point of ������ (� ; �), so we have: 

∇� ������ (� ∗(�), �) = 0. (11) 
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Further calculating the gradient with respect to � in both sides of 
Eq. (11), we can obtain the following results: 

∇2 ������ (� ∗(�), �)∇� � 
∗(�) + ∇� ∇� ������ (� ∗(�), �) = 0. (12)

� 

Therefore, the gradient ∇��∗(�) can be obtained as follows (we 
omit the parameters in ������ for the sake of brevity.), 

∇�� ∗(�) = −(∇2 ������ )−1∇� ∇� ������ . (13)
� 

However, (∇2 ������ )−1, the Hessian inverse of the CDR model(a 
�

neural network), is usually intractable. We adopt the �-truncated 
Neumann series to approximate this inverse, where (∇2 ������ )−1 = 

� Í∞ 
�=0 (� − ∇2 ������ )� ≈ 

Í 
�
� 
=0 (� − ∇2 ������ )� . With these deriva-

� �
tions, we can obtain the upper implicit gradient ∇� ���� as follows, 

�∑ 
∇� ���� = −∇� ���� · (� − ∇2 ������ )� · ∇� ∇� ������, (14)

� 
�=0 

which can be efciently calculated by the vector-Jacobi product [15]. 
Now, we can jointly optimize the CDR model parameters � and 

the behavioral perceptron parameters � . Specifcally, in the lower 
optimization, with � fxed, we update the CDR parameters � with 
the popular optimizer like SGD or Adam until convergence, and 
obtain the optimal � ∗(�). When the optimal � ∗(�) is reached, we 
switch to the upper optimization and use the gradient in Eq. (14) 
to update the perceptron parameters � . The lower and upper opti-
mization are conducted in an alternating way until convergence. 

3.4 The Practical Optimization Algorithm 
Note that the optimization strategy discussed so far is still con-

ducted on the whole dataset, which is impractical in real recommen-
dation scenarios. Additionally, conducting the lower optimization 
until � converges in each loop is inefcient and how to obtain the 
additional developing target dataset � ′ still remains unresolved. � 
To tackle these problems, we present a practically efcient and 
efective solution of our optimization algorithm in Algorithm 1. 
Note that there are three key points that make the algorithm more 
practical and efcient compared to previous theoretical analyses. 

Batch Optimization. Note that in both the lower and upper 
optimization, we fetch batches from the whole dataset to calculate 
the loss and the gradient of parameters. Since we always cannot 
calculate the gradient of the whole dataset due to memory limit, 
this kind of batch optimization has been widely adopted in current 
deep learning and is also efective for the bi-level optimization. 

Interval rounds of lower optimization instead of conver-
gence. Theoretically, with fxed � , we need to train the � to its 
optimal point � ∗(�) and then we can conduct the upper optimiza-
tion to update � . However, it is quite time-consuming because each 
time we update � , we need to experience a new complete lower 
training process. To make the algorithm more efective, we only 
conduct a fxed �������� rounds of lower optimization for approxi-
mation, which is found efective in previous works [2, 15, 19]. 

The reorder-and-reuse strategy. As we mentioned before, we 
need an additional developing target dataset to calculate ���� (�∗(�)). 
Previous works [2, 15, 19] usually split a small dataset � ′ from the � 
target dataset �� . These works use the rest set �� −� ′ for lower opti-� 
mization and � ′ for upper optimization. However, this kind of split � 
easily causes bias in the upper optimization and information loss 

Algorithm 1 The BIAO Algorithm. 
Input: source behavior set �� , target behavior set �� , interval between 
two upper optimizations �������� , lower and upper learning rate �1, �2, 
lower optimizer ���1, Neumann series truncated number � ; 
Initialize: CDR model parameter � , behavioral perceptron parameter � ; 
// the reorder and reuse trick 
� ′ = ������_�ℎ��� �� (�� )� 
// the alternating lower and upper optimization loop 
while not converged do 

// lower optimization 
for ����� = 1 to ����� ��� do 

fetch train data batch �� = ����ℎ (�� ), �� = ����ℎ (�� ) ; 
for each behavior (�, � � ) ∈ �� and (�, �� ) ∈ �� do 
��,�� = ��� (�, � � ; � ) , ��,�� = ��� (�, �� ; � ) ; 
obtain �� � (� ) using Eq. (3) - (8); 

end for Í Í 
������ (� ; � ) = (�,�� ) ∈�� ��,�� (� ) + (�,�� ) ∈�� �� � (� )��,�� (� ) ; 
� ← ���1(������ (� ; � ) ,�1) 

end for 
// upper optimization 
fetch dev data batch: �� 

′ = ����ℎ (�� ′ )Í 
���� (� ) = (� ′ ,� ′ ) ∈� ′ �� ′ ,� ′ (� ) ;

� � �

fetch a new train data batch: ��� = ����ℎ (�� ), ��� = ����ℎ (�� )
for each behavior (�, � � ) ∈ ��� and (�, �� ) ∈ ��� do 
��,� � = ��� (�, � � ; � ) , ��,�� = ��� (�, �� ; � ) ; 
obtain �� � (� ) using Eq. (3) - (8); 

end for Í Í 
������ (� ; � ) = (�,�� ) ∈��� ��,�� (� ) + (�,� � ) ∈��� �� � (� )��,�� (� ) ; 
//efcient vector-Jacobi calculation for Eq. (14) 
� = � = ∇� ���� (� ) ; 
for � = 1 to � do 
� = � − � · ∇2 ������ (� ; � )

� 
� = � + � 

end for 
∇� ���� (� ) = −� ∇� ∇� ������ (� ; � )
� ← � − �2 ∇� ���� (� ) ; 

end while 
Return � ∗ (�∗ ) 

in the lower optimization. Specifcally, in the upper optimization, 
we expect � ∗(�) has best performance on the developing dataset. If 
this developing dataset is only a small dataset split from the target 
dataset, it may only contain information of part of the users or 
items, thus easily biased. In the lower optimization in Figure 1, we 
note that the target-only parameter �� is only optimized with the 
target loss. If we only use �� − � ′ in the lower optimization, �� will� 
easily become sub-optimal because of the lost information in � ′ � . 
To tackle this problem, we propose the reorder-and-reuse strategy 
thanks to batch optimization. We reorder the target dataset �� and 
obtain the dataset � ′ and use this reordered dataset to calculating � 
���� (� ∗(�)). This reordered dataset on the whole is the same as 
�� which cannot be regarded as a validation set when using the 
whole dataset for optimization, but luckily, we adopt batch opti-
mization, so the batch �� from �� used in the lower optimization 
is diferent from the batch � ′ from the reordered � ′ in the upper � � 
optimization, and � ′ can be regarded as a validation batch used to � 
tune � . With this strategy, we can reuse �� to efectively conduct 
the bi-level optimization without requiring additional data in the 
target domain. The superiority of the reorder-and-reuse strategy 
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compared to previous methods is validated in the experiments. The 
schematic diagram of the reorder-and-reuse strategy and previous 
methods is in Appendix C. 

4 EXPERIMENTAL RESULTS 
In this section, we empirically assess the efcacy of our proposed 
method on various datasets with diferent base models. Additionally, 
we provide ablations to show how our proposed method works. 

4.1 Dataset 
We conduct our experiments on the Amazon datasets [7], which 
contain users with their behaviors in diferent domains like book, 
movie and clothing. Specifcally, to validate the generalization abil-
ity of our proposed method, we totally choose 7 domains from 
the Amazon datasets, which are Books, Movies, CDs, Cloth, Elec-
tronics(Elec), Home&Kitchen(Kitchen) and Toys. Based on these 
selected domains, we create 7 source-target cross-domain scenarios, 
i.e., Books-Movies, Books-CDs, Books-Elec, Books-Toys, CDs-Cloth, 
CDs-Kitchen, Elec-Cloth. These scenarios include both the intu-
itively highly-correlated domains like Books-Movies and intuitively 
less correlated domains like Elec-Cloth. The behaviors of the source 
and target domains are fltered by the common users between do-
mains. Detailed statistics of the fltered datasets are presented in 
the appendix. The target domain behavior numbers of diferent 
scenarios are also quite diferent, e.g., the target behavior number 
of Books-Movies is 792,319 and CDs-Cloth only 36,319. The dataset 
split for the target domain is the same as that of [8, 20], where the 
test set is composed of the last behavior of each user, the validation 
set is composed of the second to last behavior, and the rest behav-
iors belong to the training set. The feature adopted for each user 
is its ID information, and the features for each item contain both 
its ID and category. Note that we keep the users with less than 5 
ratings and items without metadata, diferent from [20], and thus 
our setting is closer to real scenarios. 

4.2 Competitors and Evaluation Metrics 
We choose CoNet [8] and MiNet [20], two typical models for cross-
domain recommendation, as our base models, to which we apply our 
proposed method. Additionally, we also investigate other variants 
of the two base models to better present how the source domain 
information infuences the model performance. Specifcally, details 
of diferent models are as follows, 

• CoNet [8] is a cross-domain recommendation model which 
adopts the cross-stitch structure in multi-task learning to 
share information between the source and target domain. 

• MiNet [20] jointly considers the user’s long-term interest 
across domains, short term interest from the target domain 
and the source domain with attentive mechanisms. 

• Base-0 indicates the variant that keeps the source branch 
information from the base model, but sets the coefcient for 
the source domain loss to 0.0, where the base model can be 
CoNet or MiNet. This variant can be used to validate whether 
the loss on the source domain can help the cross-domain 
recommendation, and can be regarded as the version where 
we only use the source domain features to help the target 
domain recommendation. 

• Base-S indicates the variant that removes the source branch 
information from the base model. This variant not only re-
moves the source loss, but also removes the features from 
the source domain. This variant is a single-domain version 
of the base model. 

• Base+ours is the variant that utilizes our proposed BIAO 
method to reweight the loss of each source behavior. 

We adopt AUC and RelaImpr, the same metrics as that of [20], to 
evaluate the models. Higher values indicate better performances. 

4.3 Implementation 
We implement all the methods with PyTorch. We optimize all the 
base models with Adam [11] optimizer, whose learning rate is 
searched from {1e-3, 5e-3, 1e-2} to ft diferent datasets, where the 
batch size is the same as that of the original paper. As for the hyper-
parameters in the upper optimization, the truncated number � is 
fxed to 3 as adopted by previous works [2, 15], the �������� for 
conducting upper optimization is searched from {20, 100, 500}, the 
length of the historical sequence used in the behavioral perceptron 
is 20 for MiNet and 50 for CoNet, the head number of the multi-
head attention is 4, and the adopted upper optimizer is SGD with 
learning rate 1e-2 for all the scenarios. Note that the embedding 
table used in the perceptron is the same as that of the CDR model, 
but we stop its gradient in the perceptron so that the embeddings 
can be regarded as input instead of learnable parameters of the 
perceptron. 

Time Complexity Analysis. During optimization, regarding 
the optimization time of MiNet/CoNet as unit "1", and considering 
that the additional computation brought by our method mainly 
comes from the backward process for the upper gradient, the time 
complexity of our method is as follows: In one lower-upper loop, 
the model conducts �������� times of lower optimization and 1 up-
per optimization. The original MiNet/CoNet only needs �������� 
lower backwards. Our method has the additional upper optimiza-
tion which requires (�+2) backwards for the Jacobi calculation 
where � is the truncated number, so it needs total ��������+�+2 
backwards, which results in � ((��������+�+2)/��������) complex-
ity compared to the unit. Since � in our experiments is fxed to 3, 
our method needs about O(1+5/�������� ) complexity. During infer-
ence, we do not change the model structure but only the parameters, 
the inference complexity is the same as that of the original model. 

4.4 Recommendation Performance 
The overall recommendation performance of diferent models is 
presented in Table 1. We have the following observations: 
• Our proposed BIAO method brings consistent improve-
ments. Whether utilizing MiNet or CoNet as the base model, our 
proposed method brings further improvement to the base model 
on all the datasets. Especially under the MiNet on Books-Toys, 
Elec-Cloth, and the CoNet on CDs-Cloth and Elec-Cloth settings, 
our BIAO method brings more than 10% RelaImpr improvement 
without changing model structures. 

• Our method has greater potential in tackling less irrele-
vant source-target transfer and cold-start scenarios. It’s 
worth noting that our proposed method achieves about 0.3% 
absolute AUC improvement in the Books-Movies scenario, but 
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Table 1: Overall recommendation performance. We run each method with 5 random seeds and report the mean performance. 
The * indicates 0.05 level, paired t-test of our method vs. the best baselines. 

Dataset Books-Movies Books-CDs Books-Elec Books-Toys CDs-Cloth CDs-Kitchen Elec-Cloth 
Model AUC RelaI AUC RelaI AUC RelaI AUC RelaI AUC RelaI AUC RelaI AUC RelaI 
MiNet-S 0.7557 0.00% 0.7019 0.00% 0.6585 0.00% 0.6706 0.00% 0.5913 0.00% 0.6161 0.00% 0.6001 0.00% 
MiNet-0 0.7508 -1.92% 0.6995 -1.19% 0.6523 -3.91% 0.6658 -2.81% 0.5950 4.05% 0.6094 -5.77% 0.5885 -11.59% 
MiNet 0.7616 2.31% 0.7080 3.02% 0.6540 -2.84% 0.6711 0.29% 0.5876 -4.05% 0.6079 -7.06% 0.5966 -3.50% 
MiNet+ours 0.7639* 3.21% 0.7145* 6.24% 0.6678* 5.87% 0.6883* 10.38% 0.6020* 11.72% 0.6212* 4.39% 0.6099* 9.79% 

CoNet-S 0.7633 0.00% 0.7165 0.00% 0.6758 0.00% 0.6918 0.00% 0.5999 0.00% 0.6465 0.00% 0.6152 0.00% 
CoNet-0 0.7643 0.38% 0.7196 1.43% 0.6808 2.84% 0.6927 0.47% 0.6134 13.51% 0.6471 0.41% 0.6206 4.69% 
CoNet 0.7693 2.28% 0.7239 3.42% 0.6764 0.34% 0.6989 3.70% 0.6110 11.11% 0.6471 0.41% 0.6238 7.47% 
CoNet+ours 0.7721* 3.34% 0.7274* 5.03% 0.6864* 6.03% 0.7048* 6.78% 0.6176* 17.72% 0.6558* 6.35% 0.6308* 13.54% 

Table 2: Efectiveness of behavioral perceptron modules. We run each method with 5 seeds and report the mean performance. 

Dataset Books-Movies Books-CDs Books-Elec Books-Toys CDs-Cloth CDs-Kitchen Elec-Cloth 
Model AUC RelaI AUC RelaI AUC RelaI AUC RelaI AUC RelaI AUC RelaI AUC RelaI 
MiNet+ours 0.7639 3.21% 0.7145 6.24% 0.6678 5.87% 0.6883 10.38% 0.6020 11.72% 0.6212 4.39% 0.6099 9.79% 
w/o global 0.7632 2.93% 0.7110 4.51% 0.6645 3.79% 0.6843 8.03% 0.6016 11.28% 0.6194 2.84% 0.6060 5.89% 
w/o user 0.7618 2.39% 0.7050 1.54% 0.6657 4.54% 0.6792 5.04% 0.5910 -0.33% 0.6216 4.74% 0.6048 4.70% 

CoNet+ours 0.7721 3.34% 0.7274 5.03% 0.6864 6.03% 0.7048 6.78% 0.6176 17.72% 0.6558 6.35% 0.6308 13.54% 
w/o global 0.7715 3.11% 0.7265 4.62% 0.6827 3.92% 0.7032 5.94% 0.6172 17.32% 0.6524 4.03% 0.6266 9.90% 
w/o user 0.7692 2.24% 0.7254 4.11% 0.6829 4.04% 0.6935 0.89% 0.6176 17.72% 0.6521 3.82% 0.6263 9.64% 

achieves more signifcant improvement in other scenarios like 
Books-Toys and CDs-Cloth. In the Books-Movies setting, the 
source domain and target domain information is quite similar, 
thus the optimal weights for diferent behaviors do not have large 
diferences(which is also validated in 4.5), making the improve-
ment brought by our method comparatively small. However, in 
the Books-Toys setting, where only specifc categories of books 
have intuitive infuence on recommendation in toys, our method 
brings signifcant improvement. Additionally, the RelaImpr of 
our method in the CDs-Cloth and Elec-Cloth is quite signifcant 
compared to other settings, where target behaviors in these two 
settings are quite inadequate, demonstrating the potential of our 
method to tackle the cold-start problem. 

• Our method has the ability of exploiting the benefcial in-
formation and discarding the harmful information in the 
source domain. Note that under the Books-Elec, CDs-Kitchen 
and Elec-Cloth settings, both MiNet-0 and MiNet perform worse 
than the single-domain MiNet-S. This means both the feature 
and the loss from the source domain on average are harmful to 
the target domain. However, our method still surprisingly brings 
improvement compared to the MiNet-S baseline, indicating the 
strong ability of our method to discover the benefcial informa-
tion from the on average harmful source domain behaviors. 

4.5 The Learned Behavioral Weight 
We record the learned weight of each source behavior loss on the 
Books-Movies and Books-Toys dataset with MiNet, and analyze 
their statistical characteristics. Figure 3 shows the average weight 
of items within each category. We have the following observations: 

• The behavioral perceptron selects highly-related behav-
iors from the source domain. For example, on the Books-Toys 

dataset, the books with topics about “Children, Education, Hu-
mor, Computer” are highly weighted, indicating that the behavior 
of buying these books has greater infuence on the user’s behav-
ior in the target toy domain. These highly weighted categories 
indeed have higher correlation with toys from human intuitions. 
Additionally, the books about “Rental” and “Law” are regarded 
as less important to the user’s interest in toys. 

• The weight distribution varies with the datasets. On the 
Books-Movies dataset, the weights of diferent categories are 
closer to each other, while on the Books-Toys dataset, the weights 
of diferent categories are quite diferent. It’s not hard to under-
stand this phenomenon. Compared to Books-Toys, Books and 
Movies are more similar. Almost for each category in books, we 
can fnd a similar category in Movies. Therefore, diferent cat-
egories in Books tend to have equal contributions to the target 
Movies domain. However, the Books and Toys are two less simi-
lar domains. Only the categories about toys in the Books domain 
will have obvious infuence, like “Children”. 

Children Parenting

Computer
&Tech

Christian

SewingCookbook
Romance

Computer
&Tech

Education
Children Humor

Rental
Law

(a) Books-Movies (b) Books-Toys 

Figure 3: The average weight for items of each category in 
the source domain. 
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Besides the item categories, we also want to know whether the 
length of user historical behaviors in the source/target domain has 
infuence on the learned weights. The x-axis of Figure 4 means the 
diference between the user’s source behavior length and the target 
length(e.g., if a user has 5 interactions in the source domain and 10 
interactions in the target domain, the diference is 5-10=-5). The y-
axis means the learned average weight under each diference value. 
We can see that larger diference tends to lead to larger weights. 
This phenomenon is also intuitive. If a user has more interactions in 
the source domain and fewer interactions in the target domain, the 
source behavior of this user has higher probability to be valuable, 
which is consistent with [18]. Case analysis of the learned user-
specifc importance is given in Appendix B. 

−18 −9 0 9 18
len(his_s)-len(his_t)

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

Av
er

ag
e 

we
ig

ht
s

−18 −9 0 9 18
len(his_s)-len(his_t)

0.30
0.35
0.40
0.45
0.50
0.55
0.60

Av
er

ag
e 

we
ig

ht
s

(a) Books-Movies (b) Books-Toys 

Figure 4: The weight changes with the user source-target 
behavior number. 

4.6 Behavioral Perceptron Efectiveness 
We conduct an ablation study to validate the efectiveness of the 
designed Global item importance and the User-specifc item impor-
tance. We report the performance of the model that removes any 
of the two components in Table 2. The w/o global refers to the 
variant that removes Global item importance and w/o user is the 
variant that removes the User-specifc item importance. The results 
show that in almost all the settings, both of the two components 
are efective for the cross-domain recommendation. 

4.7 Reorder-and-Reuse Strategy Efectiveness 
Previous works [2, 19] that utilize bi-level optimization split a small 
dataset from the training set, and use this small dataset for upper 
optimization. However, our proposed method reuses the whole 

Table 3: Efectiveness of the Reorder-and-Reuse strategy. The 
top and bottom parts of the table give the results using MiNet 
and CoNet as base models, respectively. 

Dataset Books-CDs CDs-Cloth Elec-Cloth 
Split AUC RelaI AUC RelaI AUC RelaI 
split 0.01 0.7037 0.89% 0.6016 11.28% 0.5996 -0.53% 
split 0.05 0.7019 0.00% 0.5982 7.56% 0.5993 -0.80% 
split 0.1 0.6960 -2.92% 0.5945 3.50% 0.5970 -3.10% 
ours 0.7145 6.24% 0.6020 11.72% 0.6099 9.79% 

split 0.01 0.7227 2.88% 0.6176 17.72% 0.6244 8.02% 
split 0.05 0.7204 1.79% 0.6160 16.15% 0.6237 7.41% 
split 0.1 0.7176 0.52% 0.6114 11.54% 0.6254 8.88% 
ours 0.7274 5.03% 0.6176 17.72% 0.6308 13.54% 

Hong Chen, Xin Wang, Ruobing Xie, Yuwei Zhou, and Wenwu Zhu 

training set and relies on batch optimization to make the data in the 
lower and upper optimization diferent during training. We compare 
our proposed method with the previous methods which utilize 
diferent split ratios. Specifcally, we split 0.01, 0.05 and 0.1 of the 
whole target set for upper optimization, and the rest 0.99, 0.95 and 
0.9 for lower optimization, respectively. Results in Table 3 show that 
the previous way to split a small dataset from the whole training set 
is not as efective as our proposed reorder-and-reuse method, where 
splitting too few samples makes the upper optimization biased and 
splitting too many samples does harm to the lower optimization. 
In most cases, splitting 0.1 data from the training set results in the 
worst performance, indicating that the benefts from weighting the 
source behavior cannot compensate for the degradation caused by 
worse lower optimization of the target-only parameters �� . The 
proposed simple but efective reorder-and-reuse strategy can also 
be applied to other bi-level optimization problems. 

4.8 Hyper-parameter Sensitivity 
Almost all the hyper-parameters involved in the optimization frame-
work are fxed, except for the �������� between two upper optimiza-
tions searched from {20, 100, 500}. Figure 5 shows the impact of 
�������� on Books-Toys and Books-Elec with both MiNet and CoNet, 
�������� set to {20, 100, 200, 300, 400, 500}. A larger �������� makes 
� in the upper optimization update more slowly, but the approx-
imation errors of the implicit gradient will be smaller. Although 
the best �������� varies with the base model and the dataset, our 
optimization brings consistent improvement with diferent �������� 
compared to the original MiNet or CoNet(the dotted line named 
dataset w/o ours in the fgure). Therefore, our method brings lit-
tle HPO (Hyper-Parameter Optimization) burden for performance 
improvement and can be easily adopted. 
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Figure 5: Impact of the �������� hyper-parameter, which de-
termines how frequently we conduct the upper optimization. 

5 CONCLUSION 
In this paper, we propose a behavioral importance-aware optimiza-
tion framework for cross-domain recommendation, which automat-
ically selects the most benefcial behaviors from the source domain 
to improve the target recommendation performance. The proposed 
framework involves the behavioral perceptron and the bi-level op-
timization based strategy, whose efectiveness has been validated 
through extensive experiments. Our proposed method can be com-
bined with various cross-domain recommendation methods that 
jointly optimize the source and target loss, serving as a powerful 
tool for cross-domain recommendation. Future work like exploring 
more efective behavioral perceptron designs is interesting. 
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User-specific 

weight

0.3973

Source candidate 

item

Mystery&Thriller 

Source historical 

sequences

1.Business&Money,  2.Tech(Assembly Code),  3.Arts&Photography,  

4.Literature&Fiction, 5.Literature&Fiction, 6.Literature&Fiction

Target historical 

sequences

1.Games(TABLETOPICS Family), 2.Games(Beat The Parents Board Game), 

3.Novelty& Gag Toys, Puzzles(Nanoblock Empire State Building), 

4.Puzzles(Tower of Pisa 1500 Piece Puzzle)

(a) case1 

User-specific 

weight

0.3847

Source candidate 

item

Arts&Photography

Source historical 

sequences

1.Cookbooks&Food&Wine, 2.(Miss Anne in Harlem: The White Women of the Black 

Renaissance), 3.(Send in the Clowns, A Paul Chang Mystery), 4.(Destroying Angel: 

Righteous Series #5), 5.(Granny Is My Wingman), 6.(Sidney Sheldon's The Tides of 

Memory), 7.Novel(Leaving Haven), 8.(Dog Whistle Politics: How Coded Racial Appeals Have 

Reinvented Racism and Wrecked the Middle Class), 9.(Top Down: A Novel of the Kennedy 

Assassination)

Target historical 

sequences

1. Electronics for Kids(LeapFrog LeapReader Deluxe Writing Workbook: Learn to Write 

Letters with Mr. Pencil)

2. Dolls & Accessories(Disney's Minnie Mouse Bowtique: Pampering Pets Salon)

3. Dolls & Accessories(Polly Pocket Wall Party Mall on The Wall Fashion Doll Playset)

4. Baby & Toddler Toys(WOW Flora's Fairy Garden - Fantasy (3 Piece Set))

5. Dolls & Accessories(Alexander Dolls Baby Cuddles Feeding Baby 14&quot)

6. Action Figures & Statues(Fisher-Price Disney's Jake and The Never Land Pirates: 

Jake's Magical Tiki Hideout Playset)

7. Learning & Education(Educational Insights Geosafari Jr. Animal Eye Viewers, Set Of 3), 

8. Baby & Toddler Toys(Adora SnuggleTime 13&quot; Plush Doll, Pink), 

9. Dress Up & Pretend Play(Black and Decker Jr Electronic Tool, Drill)

(b) case2 

User-specific 

weight

0.7558

Source candidate 

item

Health&Fitness

Source historical 

sequences

1. (SOS (Stop Only Sugar) Diet: You Won't Even Know You're On A Diet!]), 

2. (True Hollywood Noir: Filmland Mysteries and Murders), 

3. (The Otter, the Spotted Frog &amp; the Great Flood: A Creek Indian Story), 

4. Children‘s Books 5. (Kojo the Sea Dragon Gets Lost), 6.Health&Fitness, 7.(100 

Healthy Smoothie Recipes), 8. Reference 9. Cookbooks&Food&Wine  10.Humor & 

Entertainment 11.Children’s Books,  12.(Moose‘s Big Idea (Moose and Hildy)),  13.(An 

Apple Pie for Dinner)

Target historical 

sequences

1. Learning & Education(Bee Happy Dancing Solar Flower, Set of 2 by efuture), 

2. Toy Remote Control & Play Vehicles (Thomas Wooden Railway - Tidmouth Timber 

Company Deluxe Figure 8 Set),  3. Toy Remote Control & Play Vehicles(Thomas Wooden 

Railway - Battery-Operated Hiro), 4. Puzzles(The Standoff 300-Piece Puzzle), 5. Dress Up 

& Pretend Play(Nerf CS-18 N-Strike Elite Rapidstrike), 6. Stuffed Animals & Plush(Gund 

Brush Your Teeth Bear Animated 2&quot; Plush), 7.Sports & Outdoor Play(Nerf N-Strike 

Stampede ECS), 8.Baby & Toddler Toys(Fisher-Price Disney's Minnie Mouse Bowtique 

Cheerin' Minnie)

(c) case3 

User-specific 

weight

0.7203

Source candidate 

item

Children's Books

Source historical 

sequences

1. (10 Christians Everyone Should Know: Lives of the Faithful and What They Mean to You), 

2. (Unleash!: Breaking Free from Normalcy),

3. (Pride and Prejudice (Penguin Classics)),

4. (The Making of a Leader: Recognizing the Lessons and Stages of Leadership 

Development),

5. (Orangey the Goldfish (Book 1)), 6. (All New Square Foot Gardening), 

7. Children‘s Books, 8. Children’s Books, 9. (The Search for Melchizedek),  10.

Children‘s Books, 11. Reference, 12. Children's Books, 13. (Seasons of the Heart: A Year 

of Devotions from One Generation of Women to Another)

Target historical 

sequences

1. Electronics for Kids(Playskool Showcam 2-in-1 Digital Camera and Projector (Gray)), 

2. Learning & Education(Melissa &amp; Doug Rainbow Stacker), 

3. Party Supplies(Pink 1st Birthday Polka Dot Candle), 

4. Electronics for Kids(VTech InnoTab Planes Game Software)

(d) case4 

Figure 6: Case study for user-specifc importance weights 
in Books-Toys. Each sub-fgure gives 4 aspects of a source 
behavior, i.e., the fnal learned user-specifc weight, the item 
in the source behavior, the user’s historical sequences in 
the source domain, and the user’s historical sequences in 
the target domain. Each item is represented in the form of 
category(title) if existed. Case3 and case4 assign high weights 
to the source behavior, where in case4 the source candidate 
item is related to the target domain and the users’ recent 
behaviors, while in case3 the ’Health&Fitness’ source item 
is less related to the target domain in global sense but quite 
fts the user’s specifc interests in both domains. 
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Figure 7: Comparison between the reorder-and-reuse strategy 
and previous methods. 

A DATASET STATISTICS 
We provide the data statistics of our experiments in Table 4. We also 
conduct several experiments on a more recent backbone DASL [12]. 
And the results are shown in Table 5. The results further show 
that our proposed optimization method can be applied to various 
current CDR models. 

B USER-SPECIFIC IMPORTANCE CASE STUDY 
In section 4.5, we analyze the statistical characteristics of the learned 
weights. The learned average weights under each category show 
that the global item importance is important. In this section, we 
further provide some case studies in the Books-Toys scenario to 
analyze the user-specifc importance weights in Figure 6. In case1 
and case2, the two behaviors are assigned to low user-specifc 
weights because the source item has very low correlations with 
the source historical behaviors and target historical behaviors. For 
example, in case2, the candidate source item is about photography, 
but the source sequences are almost about novel and the target 
sequences are about kid’s toys, making this source behavior less 
worth learning. In case3 and case4, the source candidate item has 
high correlations with both source and target historical sequences 
(highlighted in red), thus are assigned higher weights to learn. 
Particularly, in case3, the behavior “Health&Fitness” book in the 
source domain intuitively will have little importance to the target 
toy domain. However, due to the user’s specifc interest in “health” 
and “sports” shown in his historical behaviors, it is assigned a 
high weight. This phenomenon also indicates the signifcance of 
considering the local user-specifc importance. 

C COMPARISON BETWEEN PREVIOUS 
METHODS AND THE PROPOSED 
REORDER-AND-REUSE STRATEGY 

Figure 7 presents how previous bi-level optimization methods ob-
tain the developing target dataset and how our proposed reorder-
and-reuse strategy obtains the developing dataset. In previous meth-
ods, they split the original target dataset �� into two disjoint dataset 
for the lower and upper optimization, respectively. This kind of split 
easily causes bias and information loss as analyzed in the paper, 
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Table 4: Data Statistics 

Books-Movies Books-CDs Books-Elec Books-Toys CDs-Cloth CDs-Kitchen Elec-Cloth 
#source behavior 944,533 418,653 735,683 317,646 71,491 160,358 99,594 
#target behavior 792,319 380,675 364,267 84,564 36,319 96,670 66,470 
#users 37,388 16,738 28,506 7,576 4,283 8,144 8,235 
#source item 269,301 191,942 229,189 134,350 26,178 36,018 25,816 
#target item 49,273 61,201 52,134 11,567 15,445 22,550 18,703 

Table 5: Additional experiments with the DASL backbone. especially in the cross-domain recommendation setting where the 
behaviors in the target domain are quite sparse. However, the pro-

Model DASL-S DASL-0 DASL DASL+ours posed reorder-and-reuse strategy enables that both the lower and 
Books-CDs 0.7106 0.7128 0.7100 0.7165 upper optimization make full use of all the target data, alleviating 
Books-Toys 0.6771 0.6786 0.6734 0.6842 the potential bias and information loss. 
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