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the effectiveness of all experts. (2) Among these experts, FINet con-
tributes more to Item DT, while SimNet and IGNet contribute more
to Box CTR. It confirms that the semantic relevance and informa-
tion gain are more essential factors for guiding users to conduct
extended readings, while the general feature interactions capture
other useful information for predicting dwell time of items. (3) The
multi-critic attention also helps to learn a better R3S model. We
replace M3oE with an average pooling for feature aggregation from
different experts. It implies that the combination of multiple experts
should be carefully customized with M3oE in R3S.

Table 5: Ablation tests for R3S.

Ablation version Item AUC Box AUC

R3S 0.7419 0.8101

– Feature interaction network 0.7336 0.8057
– Similarity network 0.7367 0.8040
– Information gain network 0.7371 0.8037
– Multi-critic attention 0.7348 0.8038

6 CONCLUSION AND FUTUREWORK
In this work, we propose a novel task named recommendation sug-
gestion for relevant items, and design R3S for real-time relevant
box insertion. R3S consists of an Item recommender and a Box trig-
ger, which uses an M3oE strategy to jointly combine multi-aspect
factors including feature interaction, semantic relevance and infor-
mation gain. The improvements in offline and online evaluations
verify the effectiveness of R3S in relevant recommendation.

In the future, we will utilize more types of feature interactions
between seed and target items, and conduct more sophisticated
models to model the semantic relevance and information gain. We
will also explore the joint training of recommendation suggestion
and overall recommendation to better model delay costs. Other
feedback mechanisms and product forms of recommendation sug-
gestion should be investigated to further improve user’s activeness
in recommendation. We will also explore the possibility of applying
R3S (or its M3oE, SimNet, IGNet modules) to other tasks.
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