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ABSTRACT
An effective online recommendation system should jointly capture
users’ long-term and short-term preferences in both users’ inter-
nal behaviors (from the target recommendation task) and external
behaviors (from other tasks). However, it is extremely challenging
to conduct fast adaptations to real-time new trends while making
full use of all historical behaviors in large-scale systems, due to the
real-world limitations in real-time training efficiency and external
behavior acquisition. To address these practical challenges, we pro-
pose a novel Long Short-Term Temporal Meta-learning framework
(LSTTM) for online recommendation. It arranges user multi-source
behaviors in a global long-term graph and an internal short-term
graph, and conducts different GAT-based aggregators and training
strategies to learn user short-term and long-term preferences sepa-
rately. To timely capture users’ real-time interests, we propose a
temporal meta-learning method based on MAML under an asyn-
chronous optimization strategy for fast adaptation, which regards
recommendations at different time periods as different tasks. In
experiments, LSTTM achieves significant improvements on both
offline and online evaluations. It has been deployed on a widely-
used online recommendation system named WeChat Top Stories,
affecting millions of users.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
Real-world industry-level recommendation systems usually need
to interact with complicated practical scenarios. Large-scale on-
line recommendation systems in super platforms such as Google
and Amazon usually have the following two complexities: (1) user
behaviors are multi-source. Super platforms usually have multi-
ple applications with shared user accounts (e.g., search, news, and
video recommendation in Google), which can meet users’ diverse
demands. Users’ various behaviors in multiple applications are re-
lated via shared accounts after user approvals, which can provide
additional information from different aspects for the target recom-
mendation task. In real-world scenarios, recommendation systems
benefit from not only effective algorithms, but also informative
data. A good online recommendation should make full use of both
user internal behaviors (i.e., user behaviors in the target recommen-
dation task) and user external behaviors (i.e., user behaviors in other
applications). (2) User preferences are variable. In large-scale rec-
ommendation systems, millions of new items are daily generated
and added to the candidate pool. Online systems (especially news
and video recommendations) should capture users’ short-term pref-
erences timely and accurately, since users’ concentrations are easily
attracted by new trends and hot topics. In contrast, users’ long-term
preferences could provide users’ aggregated stable interests as effec-
tive supplements to short-term interests. Hence, a good real-world
recommendation should well capture both user variable short-term
preferences and user stable long-term preferences.
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Figure 1: A practical online recommendationwith asynchro-
nous multi-source internal and external behaviors, aiming
to model users’ short-term and long-term preferences.

In this work, we attempt to design an effective and efficient online
recommendation framework, which jointly considers both users’
internal/external behaviors and users’ short-term/long-term
preferences. This online recommendation mainly faces the follow-
ing three challenges: (1) How to jointly consider internal and external
behaviors? As in Fig. 1, users’ multi-source behaviors in various
applications usually have different features. It is difficult to combine
this heterogeneous information. Moreover, in real-world scenarios,
users’ internal and external behaviors are often asynchronous (i.e.,
real-time internal feedbacks V.S. delayed and uncontrollable exter-
nal behaviors), which makes it inconvenient to conduct a stable
joint learning. (2) How to effectively model both short-term and long-
term preferences? Both users’ short-term and long-term interests
are essential in real-world recommendations, while there are biases
between them. Models should capture both short-term and long-
term preferences, and should be able to determine which interest is
more essential in different scenarios. (3) How to conduct a timely
online update to capture short-term preferences? It is crucial to con-
duct an online update to capture user variable interests over time.
However, it is extremely time-consuming (or even impractical) to
conduct a complete model retraining or a complicated fine-tuning
with million-level new behaviors. It is challenging to balance ef-
fectiveness and efficiency in online recommendation. These three
challenges are important in real-world scenarios, while there are
barely any works that jointly address them systematically.

To address these issues, we propose a novel Long Short-Term
Temporal Meta-learning (LSTTM) framework for practical on-
line recommendations. Specifically, we build two heterogeneous
graphs, namely the global long-term graph and the internal short-
term graph, to capture different user preferences from multi-source
behaviors. The global long-term graph is a huge graph containing
all users’ internal and external behaviors. It aims to build a global
view of all multi-source interactions between users and items to
better capture users’ long-term preferences. In contrast, the internal
short-term graph focuses on the short-term behaviors of the target
recommendation task, which is specially optimized for real-time in-
terest evolutions. LSTTM adopts graph attention networks (GATs)
with different neighbor sampling strategies to learn user long-term
and short-term representations from these heterogeneous graphs,
and then combines them via a gating fusion. To better capture long-
/short-term preferences and balance effectiveness and efficiency in
online serving, we further design an asynchronous optimization
method. We propose a temporal MAML training strategy, which

regards recommendations at different time periods as different tasks,
based on a classical meta-learning method named MAML [6]. This
new temporal meta-learning enables fast adaptations to real-time
variable user preferences. The advantages of LSTTM mainly lo-
cate in three aspects: (1) LSTTM makes full use of all internal and
external behaviors via two huge graphs. (2) We conduct different
GAT aggregations and training strategies for two graphs to learn
user short-term and long-term preferences separately, and combine
them via gating. The differential designs enable more refined pref-
erence learning. (3) The asynchronous optimization with temporal
MAML facilitates fast adaptations to new trends under the practical
(data and computation) limitations of real-world systems.

In experiments, we conduct an offline temporal CTR prediction
with competitive baselines on a real-world recommendation sys-
tem, and also conduct an online A/B test. The significant offline and
online improvements show the effectiveness of LSTTM. Moreover,
we also conduct an ablation study to better understand the effec-
tiveness of different components. The contributions of this work
are concluded in four points as follows:

• We first systematically address the practical challenges of
jointly considering users’ internal/external behaviors and
short-/long-term preferences in recommendation via our
new proposed LSTTM framework. LSTTM is effective and
easy to deploy in practical systems.
• We build two graphs focusing on different aspects to make
full use of all internal/external behaviors. Moreover, we set
customized GAT aggregators and training strategies to better
learn user short-/long-term preferences.
• We design a novel temporal meta-learning method based on
MAML, which enables fast adaptations to users’ real-time
preferences. To the best of our knowledge, we are the first
to adopt temporal MAML in online recommendation.
• We achieve significant improvements on offline and online
evaluations. LSTTM has been deployed on a real-world sys-
tem for millions of users. The idea of temporal MAML can
also be easily transferred to other models and tasks.

2 RELATEDWORKS
Recommender System. In real-world recommendation, Factor-
ization machine (FM) [19], NFM [8], DeepFM [7], AutoInt [20], DFN
[29] are widely used to model feature interactions. User behaviors
are one of the most essential features to learn user preferences. Lots
of models [21, 28, 31, 34, 37] regard user behaviors as sequences
to model user preferences via attention and transformer. Besides
sequence-based models, graph-based models such as SR-GNN [26]
and GCE-GNN [25] use graph neural networks (GNNs) on user
behavior graphs built from sessions. Inspired by these works, we
also adopt GAT [23] to model user internal/external behaviors, and
use DeepFM to model long-/short-term feature interactions.

Both long- and short- term preferences are essential in recom-
mendation. Xiang et al. [27] proposes an injected preference fu-
sion on a session-based temporal graph to model users’ long-term
and short-term preferences simultaneously. STAMP [12] highlights
users’ current interests from the short-term memory of the last
clicks. DIEN [36] explicitly models user’s interest evolutions. Some
works jointly consider short-term and long-term representations

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

1169



[1, 33]. Hu et al. [9] conducts LSTM for short-term interests and
GNNs for long-term preferences. Intent preference decoupling [13]
and online exploration [32] are used for online recommendation.
However, these models cannot capture real-time global hot topics
well, and do not make full use of multiple behaviors. LSTTM builds
two graphs focusing on long-term and short-term interests, and
uses a temporal MAML to highlight short-term interests.

Meta-learning in Recommendation. Meta-learning aims to
transfer themeta knowledge so as to rapidly adapt to new tasks with
a few examples, which is regarded as “learning to learn” [24]. MAML
[6] is a classical model-agnostic meta-learning method widely used
in various fields, which provides a good weight initialization. Some
works have also explored meta-learning on graphs [16, 41].

In recommendation, meta-learning has also been verified on var-
ious cold-start scenarios, including cold-start user [10, 40], item
[22, 39], cross-domain recommendation [4, 38] and model selec-
tion [15]. MeLU [10] brings in MAML to model cold-start users.
Bharadhwaj [2] improves MAML with the dynamic meta-step for
cold-start users. Lu et al. [14] combines MAML with heterogeneous
information networks, considering both semantic-wise and task-
wise adaptations. Besides MAML-based methods, Pan et al. [17]
proposes meta-embeddings for warm-up scenarios. MAMO [3] de-
signs two task-specific and feature-specific memories. SML [35]
focuses on model retraining, which learns a transfer function from
old to new parameters. Different from these models, LSTTM de-
signs a temporal MAML to accelerate model adaptation to users’
short-term preferences. To the best of our knowledge, we are the
first to conduct temporal MAML in recommendation.

3 METHODOLOGY
In this work, we attempt to jointly consider both user internal and
external behaviors to capture users’ short-term/long-term prefer-
ences in online recommendation. We first give brief definitions of
the notions used in this work as follows:
Definition 1: User internal behaviors. In LSTTM, the user be-
haviors of the target recommendation task are viewed as the user
internal behaviors. These behaviors are the main sources of user
preferences inside the target recommendation.
Definition 2: User external behaviors. All user behaviors from
other applications are considered as the user external behaviors.
These user external behaviors are related to their internal behaviors
via the shared user accounts under user approvals. These behaviors
are informative complements to the internal behaviors.
Definition 3: Temporal meta-learning. Meta-learning aims to
fast adapt to new tasks [6]. We define the temporal meta-learning,
which regards recommendations in different time periods as different
tasks, since user preferences can frequently change over time. The
temporal meta-learning concentrates on fast adaptations between
user behaviors at different times for short-term preferences.

3.1 Overall Framework
Fig. 2 displays the overall architecture of LSTTM. The internal
short-term graph regards all users and items in the target recom-
mendation task as nodes, with all user internal behaviors utilized as
edges. A heterogeneous GAT with temporal neighbor sampling is
used for node aggregation to highlight user short-term preferences.

In contrast, the global long-term graph is a much larger heteroge-
neous graph having all user internal and external behaviors, which
focuses on the global view of user long-term preferences in multi-
source behaviors. The long short-term graph fusion module then
conducts a gating strategy to combine two short-/long-term repre-
sentations, followed by a feature interaction module to generate the
final recommendation. We propose an asynchronous optimization
to learn long-term and short-term preferences differently. For the
short-term graph and gating fusion modules, we propose a tem-
poral MAML to highlight short-term interest modeling. While for
the long-term graph, we rely on a multi-hop neighbor-similarity
based loss for efficient long-term preference learning. In this case,
LSTTM can make full use of both internal and external information
to leverage user short-term and long-term preferences, finding an
industrial balance between effectiveness and efficiency in practice.

GAT Temporal GAT

Internal short-term graphGlobal long-term graph

Gating fusion

DeepFM*

target item
user short-term 
representation

user long-term 
representation

target item contexts

forward pass

low-frequent
global update
high-frequent 
temporal MAML

rich feature
embeddings

trainable ID 
embeddings

making full use of 
internal/external 

behaviors

fast adaptations 
to new trends

Temporal MAML loss

Neighbor-
similarity 
based loss

*or other feature 
interaction modeling

Figure 2: Overall architecture of LSTTM.

3.2 Internal Short-term Graph
The internal short-term graph module models user short-term inter-
nal behaviors. Specifically, it has two types of nodes indicating all
users𝑢 ∈ 𝑈 and all items 𝑑 ∈ 𝐷𝐼 in the target recommendation task,
which are linked by user-item click behaviors as edges. 𝑈 and 𝐷𝐼
are the overall user set and internal item set respectively. We use 𝒖0

𝑖

and 𝒅0
𝑖
to represent the 𝑖-th input feature embeddings of users and

items, which are trainable embeddings built from different types of
user attributes and item features (e.g., tag, topic).

Inspired by Veličković et al. [23], we build an enhanced GAT layer
for short-term oriented node aggregation. For a user 𝑢𝑖 and his/her
click sequence 𝑠𝑒𝑞𝑖 = {𝑑𝑖,1, · · · , 𝑑𝑖,𝑚}, different from conventional
random-based neighbor sampling, we conduct a temporal neighbor
sampling, which only selects the top-K most recent clicked items.
The temporal neighbor sampling generates the neighbor set 𝑁𝑢𝑖 as:

𝑁𝑢𝑖 = Temporal(𝑠𝑒𝑞𝑖 ) = {𝑑𝑖,𝑚−𝐾+1, · · · , 𝑑𝑖,𝑚}. (1)

Similarly, we also generate the sampled neighbor set of items as
𝑁𝑑𝑖 = {𝑢𝑖,𝑚′−𝐾+1, · · · , 𝑢𝑖,𝑚′}. With the temporal neighbor set 𝑁𝑢𝑖 ,
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we build the user representation 𝒖𝑘
𝑖
at the 𝑘-th layer via item em-

beddings in the 𝑘 − 1 layer as follows:

𝒖𝑘𝑖 = 𝜎 (
∑︁

𝑑𝑖,𝑗 ∈𝑁𝑢𝑖

𝛼𝑘𝑖 𝑗𝑾
𝑘
𝑑
𝒅𝑘−1
𝑖, 𝑗 ). (2)

𝑾𝑘
𝑑
is the weighting matrix. 𝛼𝑘

𝑖 𝑗
represents the attention between

𝑢𝑖 and 𝑑𝑖, 𝑗 in this layer, which is formalized as:

𝛼𝑘𝑖 𝑗 =
exp(𝑓 (𝒘⊤ [𝑾𝑢𝒖𝑘−1

𝑖
| |𝑾𝑑𝒅𝑘−1

𝑖, 𝑗
]))∑

𝑑𝑖,𝑙 ∈𝑁𝑢𝑖
exp(𝑓 (𝒘⊤ [𝑾𝑢𝒖𝑘−1

𝑖
| |𝑾𝑑𝒅𝑘−1

𝑖,𝑙
]))

, (3)

where 𝑓 (·) indicates a LeakyReLU activation and | | indicates the
concatenation. 𝒘⊤,𝑾𝑢 and𝑾𝑑 are the weighting vector and ma-
trices. Note that the temporal neighbor set 𝑁𝑢𝑖 changes over time,
since the internal short-term graph is a dynamic graph that is up-
dated via users’ new behaviors. Finally, we conduct a two-layer tem-
poral GAT to generate the user short-term representation 𝒖𝑠

𝑖
= 𝒖2

𝑖
,

which is fed into the next gating fusion module. The aggregation
of items is similar to that of users. We use GAT since it is effective,
efficient, and easy to deploy on billion-level huge graphs. It is also
convenient to conduct other enhanced GNN models in this module.

In internal short-term graph, the temporal neighbor sampling
highlights the individual-level short-term preferences. We also pro-
pose a temporal meta-learning method to update this module, at-
tempting to capture the short-term preferences at the global level,
which will be introduced in Sec. 3.5.

3.3 Global Long-term Graph
The global long-term graph module aims to take advantage of all
user diverse preferences in multiple applications. It considers users
𝑢 ∈ 𝑈 and all internal and external items 𝑑 ∈ 𝐷𝐼

⋃
𝐷𝐸 as nodes,

where 𝐷𝐼 and 𝐷𝐸 represent the overall internal and external item
sets. All heterogeneous user-item interactions in different applica-
tions as regarded as edges. The details of the external behaviors are
in Sec. 4. Since heterogeneous items usually have different feature
fields that are hard to align, we represent all users and items via
trainable ID embeddings �̄�0

𝑖
and 𝒅0

𝑖
in the same space.

We also conduct a two-layer GAT for neighbor aggregation sim-
ilar as Eq. (2) to Eq. (3), where the neighbor set 𝑁𝑢𝑖 are randomly
sampled or selected via certain importances. The user long-term
representation �̄�𝑙

𝑖
= �̄�2

𝑖
is also utilized in the gating fusion module.

Since the overall behaviors are too enormous to be fully retrained
in online, and external behaviors are usually delayed and uncon-
trollable, we conduct an enhanced neighbor-similarity based loss
to train this module asynchronously introduced in Sec. 3.5.

Comparing the internal short-term graph modeling with the
global long-term graph modeling, we can find three main differ-
ences: (1) they adopt different data sources, and thus have different
input feature forms (i.e., detailed user and item features V.S. train-
able ID embeddings). (2) They conduct different neighbor sampling
strategies (i.e., temporal-based V.S. random or importance-based)
due to their different long-/short- term concentrations. (3) They
are updated under different strategies (i.e., temporal meta-learning
V.S. neighbor-similarity based loss), considering the effectiveness
of short-term preference modeling and the efficiency of global user
behavior modeling in practice. We use GNN to capture heteroge-
neous node interactions, and conduct GAT in node aggregation

for efficiency. It is also not difficult to conduct other complicated
heterogeneous information networks in LSTTM.

3.4 Long- Short-term Preference Fusion
This module attempts to combine both user short-term and long-
term representations 𝒖𝑠

𝑖
and �̄�𝑙

𝑖
to generate the ranking score. We

conduct a gating-based fusion to generate the final user representa-
tion 𝒖𝑖 via 𝒖𝑠𝑖 and �̄�𝑙

𝑖
as follows:

𝒖𝑖 = 𝑔(𝒙𝑠𝑖 )𝒖
𝑠
𝑖 + 𝑔(𝒙

𝑙
𝑖 )�̄�

𝑙
𝑖 . (4)

𝑔(·) indicates the gating function, which is measured via the corre-
sponding user embeddings and the target item 𝒅𝑠

𝑗
as:

[𝑔(𝒙𝑠𝑖 ), 𝑔(𝒙
𝑙
𝑖 )] = Softmax( [𝒘𝑠𝑔 [𝒖𝑠𝑖 | |𝒅

𝑠
𝑗 ],𝒘

𝑙
𝑔 [�̄�𝑙𝑖 | |𝒅

𝑠
𝑗 ]]) . (5)

𝒘𝑠𝑔 and𝒘𝑙𝑔 areweighting vectors. 𝒅𝑠𝑗 is a trainable item ID embedding
that is randomly initialized. With this gating-based fusion, users
can get personalized weights on long-/short- term preferences for
different items, which helps to improve the performances.

After gating fusion, the final user representation 𝒖𝑖 is aggregated
with the recommendation contexts 𝒄 and target item embedding
𝒅𝑠
𝑗
, and then fed into the downstream neural ranking models. We

conduct a widely-used DeepFM [7] to model the feature field inter-
actions between user, item and contexts as follows:

𝑝 (𝑖, 𝑗) = DeepFM(𝒖𝑖 , 𝒅𝑠𝑗 , 𝒄). (6)

𝑝 (𝑖, 𝑗) is the click probability for 𝑢𝑖 and 𝑑 𝑗 . It is also easy to adopt
other feature interaction models for feature interactions.

3.5 Optimization with Temporal MAML
The asynchronous optimization with temporal MAML is the key
contribution of LSTTM. In practice, timely model updating is sig-
nificant in online recommendation, while there are two challenges
in real-world systems. (1) It is extremely difficult to conduct a full
model retraining or a complicated fine-tuning in real-time for GNN
models with large-scale graphs, especially with the nearly billion-
level interactions in the huge global graph. (2) Moreover, multi-
source behaviors are usually obtained asynchronously (e.g., external
behaviors are often delayed) due to some practical system limita-
tions. Hence, we decouple the training of internal short-term graph
and global long-term graph into two asynchronous optimization
objectives, including a temporal MAML based cross-entropy loss
and a multi-hop neighbor-similarity based loss. It enables LSTTM
to be smoothly and timely updated.

3.5.1 Temporal Meta-learning. To enhance LSTTM with the capa-
bility of fast adaptation to user short-term interests, we propose a
novel temporal MAML training strategy based on [6]. Different
from conventional meta-learning based recommendations that usu-
ally consider each user or domain as a task, our temporal MAML
regards recommendation in each time period as a task.

Specifically, we first divide all training instances into different
sets according to their time periods (e.g., we view each hour as a
time period for the practical demands). In temporal MAML training,
we regard instances in two adjacent hours as a task. The support set
contains instances of the former hour, while the query set contains
instances of the latter hour. Note that an instance can belong to
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both a support set and a query set in two tasks. We could further
divide these temporal tasks into more fine-granularity tasks, where
all instances in a task derive from the same user group (which is
built via similar basic profiles or user interests) at the same time.
Through these fine-granularity tasks, the instances in the support
set and the query set will be more relevant. In this case, the temporal
MAML will focus on the new trends in certain user communities
instead of whole user groups. We can choose different temporal
MAML settings according to the practical needs of systems.

In training, we sample different temporal tasks containing train-
ing instances in different time periods to form a batch. To make
sure our temporal MAML can learn a better initialization for fast
adaptation on all time periods, we diversify the sampled temporal
tasks to make them dissimilar to each other (e.g., selecting tasks in
different hours and days). The inner update (line 6) with support
sets and the outer update (line 8) with query sets are similar to the
original MAML. We conduct one gradient update in both inner and
outer updates for efficiency. In online, we also conduct one gradient
update for all new user feedbacks similar to MAML, which enables
high-frequent (or even real-time) online model learning. Algorithm
1 gives the pseudo-code of temporal MAML with temporal tasks.

Algorithm 1 Temporal MAML:
Input: The distribution over temporal tasks 𝑝 (𝑇 )
Output: The parameter set 𝜃 = (𝜃𝑠 , 𝜃 𝑓 ) of the internal short-term graph

module 𝜃𝑠 and the long- short-term preference fusion 𝜃 𝑓
1: Randomly initialize 𝜃
2: while not converge do
3: Sample batch of diversified temporal tasks𝑇𝑖 ∼ 𝑝 (𝑇 )
4: for all𝑇𝑖 do
5: Evaluate ∇𝜃𝐿𝑇𝑖 (𝑓𝜃 ) with respect to 𝐾 examples in each

support set, using the graphs in𝑇𝑖 ’s time period
6: Compute adapted parameters with gradient descent via

the inner step size 𝛼 : 𝜃 ′
𝑖
= 𝜃 − 𝛼∇𝜃𝐿𝑇𝑖 (𝑓𝜃 )

7: end for
8: Update the parameter 𝜃 via the outer step size 𝛽 : 𝜃 ← 𝜃−

𝛽∇𝜃
∑
𝑇𝑖∼𝑝 (𝑇 ) 𝐿𝑇𝑖 (𝑓𝜃 ′𝑖 ) with all query sets

9: end while

Under the temporal MAML training framework, we conduct a
classical cross entropy loss 𝐿𝑇 with the click probability 𝑝 (𝑖, 𝑗) of
user 𝑢𝑖 and item 𝑑 𝑗 on the positive set (clicked user-item instances)
𝑆𝑝 and negative set (unclicked user-item instances) 𝑆𝑛 as follows:

𝐿𝑇 = − 1
𝑁
(
∑︁
𝑆𝑝

log𝑝 (𝑖, 𝑗) +
∑︁
𝑆𝑛

log(1 − 𝑝 (𝑖, 𝑗))). (7)

Note that the 𝐿𝑇 is only used for updating the internal short-term
graph and the long- short-term preference fusion modules via the
temporal MAML as in Fig. 2. A gradient block is conducted to the
global long-term graph module, since it is responsible for modeling
users’ stable long-term preferences from multi-source behaviors,
and thus should be fully trained on all behaviors.
Motivations and advantages of temporal MAML. The moti-
vations and advantages of the temporal MAML are concluded as
follows: (1) we attempt to capture new trends and hot topics timely
in practical recency-sensitive recommendation systems. The tem-
poral MAML highlights the model’s capability in capturing global

user interest evolutions via temporal tasks, which enables fast adap-
tations to users’ variable short-term interests on the global new
trends. (2) MAML can fast adapt to new tasks [6], while classical
MAML-based models mainly regard individual users as tasks, and
thus cannot model the global temporal factors well. Hence, we pro-
pose the temporal MAML focusing on the temporal tasks. (3) The
internal short-term graph modeling can also provide short-term
interests via the temporal neighbor sampling (see Eq. (1)). However,
it merely concentrates on the individual user-related short-term
behaviors, ignoring the global short-term behaviors generated by
other users (which is essential especially when the user does not
have recent behaviors). The temporal MAML and the short-term
graph modeling are strong supplements to each other in capturing
user real-time preferences. (4) The temporal MAML is also natu-
rally suitable for the asynchronous online learning with large-scale
instances, since it only needs a one-step update.

3.5.2 Multi-hop Neighbor-similarity Based Loss. Differing from the
internal short-term graph, the global long-term graph (1) aims to
model user long-term behaviors, (2) contains far more internal and
external behaviors, and (3) might have uncontrollable and delayed
behavior acquisitions. To make a compromise between efficiency,
effectiveness, and robustness, we conduct a multi-hop neighbor-
similarity based loss instead of the online temporal MAML.

We assume that both users’ and items’ long-term representations
�̄�𝑙
𝑖
and 𝒅𝑙

𝑗
learned in Sec. 3.3 should be similar to their k-hop neigh-

bors on the global long-term graph enhanced from [11] and [30].
The multi-hop neighbor-similarity based loss on the global user-
item graph can be viewed as an extended matrix factorization (MF)
model, which considers multi-hop user-item paths on the global
graph as multi-source user/item correlations. Precisely, we consider
the 10-hop neighbors via DeepWalk based path sampling [18] to
bring in more interactions via users’ multi-source behaviors. We
formalize our k-hop neighbor-similarity based loss 𝐿𝑁 as follows:

𝐿𝑁 = −
∑︁
𝑝∈𝑃

∑︁
𝑞𝑖 ,𝑞 𝑗 ∈𝑝

(log(𝜎 (�̄�𝑙⊤𝑖 �̄�𝑙𝑗 ))) . (8)

𝑝 is a k-length randompath in the path set 𝑃 generated byDeepWalk.
𝑞𝑖 , 𝑞 𝑗 ∈ 𝑝 are different nodes in the path 𝑝 . We have �̄�𝑙

𝑖
= �̄�𝑙

𝑖
for user

nodes and �̄�𝑙
𝑗
= 𝒅𝑙

𝑗
for item nodes. 𝜎 is the sigmoid function. The

multi-hop neighbor-similarity based loss focuses more on the global
view of user and item representations learned from all long-term
internal/external behaviors. Generally, the global long-term graph
trains far less frequently than the short-term graph considering its
motivation and training efficiency.

The advantages of using the multi-hop neighbor-similarity based
loss for the global long-term graph are as follows: (1) the 𝐿𝑁 loss
is simple, efficient, and effective, which can directly optimize the
cross-source interactions via the multi-hop connections. (2) Based
on the neighbor-similarity based loss, it is more convenient to in-
troduce other heterogeneous nodes (e.g., content or tag in [30]) and
their interactions in this work. Other node representation learning
methods are also easy to be adopted in our framework.

3.5.3 Overall loss. The overall loss 𝐿 is the weighted aggregation
of these two losses 𝐿𝑇 and 𝐿𝑁 as follows:

𝐿 = 𝜆𝑇 𝐿𝑇 + 𝜆𝑁 𝐿𝑁 . (9)
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We empirically set 𝜆𝑇 = 𝜆𝑁 = 1. In LSTTM, the neighbor-similarity
based loss 𝐿𝑇 works as an auxiliary task for the temporal MAML
loss 𝐿𝑇 , since 𝐿𝑇 is directly related to the ranking objectives.

The advantages of our asynchronous optimization are listed as
follows: (1) it decouples the short-term and long-term preference
modeling, making both modules more flexible, specialized, and
robust to capture different user preferences. (2) It proposes an in-
dustrial solution to jointly consider large-scale external and internal
behaviors, improving the robustness against the high disturbances
and uncontrollability in practical systems (e.g., the delay and noises
of external behaviors have little influence on the internal short-term
preference modeling). (3) The asynchronous optimization is flexible
and easy to deploy. It is also convenient to use other representation
learning models in this asynchronous framework.

4 ONLINE DEPLOYMENT
Online System.We have deployed LSTTM on a real-world recom-
mendation system of WeChat. This online recommendation system
is a feed stream that has nearly million-level users and daily views.
It contains heterogeneous domains, including news and videos. User
behaviors of the target recommendation task are viewed as the in-
ternal behaviors. After user approvals, other behaviors (e.g., clicks
in other recommendation domains) linked by the same user account
in the platform are regarded as the external behaviors, which also
provide additional information to reflect user preferences.
Online Serving.We conduct an asynchronous optimization and
online updating for different modules. In offline training, we con-
duct a daily complete training to update all modules via the asyn-
chronous optimization of temporal MAML and neighbor-similarity
based losses on all behaviors. It constructs an industrial balance be-
tween effectiveness and efficiency, since the access to user external
behaviors is usually delayed, and the full training on billion-level
global graphs cannot be conducted in real-time. In online serving,
the global graph module is fixed within a day for modeling long-
term preferences, while the internal graph and fusion modules are
frequently updated (according to the online computing capability)
to capture user short-term preferences. When recommending at
the 𝑡-th time period, we consider all previous 𝑡 − 1 time periods in
this day as the support set, simulating the offline temporal MAML
training. Hence, we just need to conduct the general one-step gradient
updates on new user behaviors, regarding them as the support set of
the current recommendation. It enables a fast online learning since
the online time complexity of temporal MAML is equivalent to the
classical one-step fine-tuning.
Online Efficiency. We train our model once over all training in-
stances in online updating considering the efficiency. The online
computation does not involve the global long-term graph modeling.
The online time complexity of LSTTM is 𝑂 (𝑘 (𝑇𝑖 +𝑇𝑓 )), where 𝑘 is
the number of candidates (e.g., top 200 items retrieved by the previ-
ous matching module). 𝑇𝑖 and 𝑇𝑓 represent the computation costs
of the internal short-term graph (2-layer GAT with the dynamic
temporal neighbors) and the fusion. For the online memory cost,
the model should store the temporal MAML model and the fixed
user long-term representations. Specifically, we implement LSTTM
on a self-developed distributed deep learning framework. We have
30 parameter servers and 20 workers for training. Each server has

10G memory with 3 CPUs, and each worker has 10G memory with
5 CPUs. We spend nearly 4 hours for daily complete retraining.

5 EXPERIMENTS
In this section, we conduct experiments to answer the following
research questions: (RQ1): How does LSTTM perform in offline
temporal CTR prediction that simulates practical scenarios (Sec.
5.4)? (RQ2): How does LSTTM perform in online A/B tests (Sec.
5.5)? (RQ3): What are the effects of different components (Sec. 5.6)?

5.1 Dataset
Since there is no large-scale real-world dataset that contains both
hourly-updated hot spots and user external behaviors, we build
a new dataset NewsRec-21B extracted from a widely-used news
recommendation system in WeChat. Precisely, we randomly select
58 million users and get nearly 1 billion user internal behaviors with
timestamps in the target news domain. We also use these users’
20 billion external click behaviors from other recommendation
domains in the same platform after user approval to build the global
long-term graph. These internal and external behaviors are in the
same platform, which are linked via the shared user accounts. All
data are preprocessed via data masking to protect user privacy. The
instances in the former eight days are regarded as the train set, and
the last day’s internal behaviors are considered as the test set. We
follow Sec. 3.2 and Sec. 3.3 to build two huge graphs with the train
set. Table 1 shows the detailed statistics of NewsRec-21B.

#user #item #internal #external

58,284,406 626,736 1,022,589,888 20,087,883,624

Table 1: Statistics of the NewsRec-21B dataset.

5.2 Competitors
We implement several competitive baselines for evaluation. First,
we conduct four widely-used ranking models as follows:
• FM [19]. FM is a simple and effective model that captures
second-order feature interactions via latent vectors.
• NFM [8]. NFM combines the neural FM layer with the DNN
layer sequentially to model high-order feature interactions.
• DeepFM [7]. DeepFM follows the Wide&Deep framework
and improves the Wide part with a neural FM layer. It is also
used in the long-/short- term gating fusion of LSTTM.
• AutoInt [20]. AutoInt is a strong feature interaction mod-
eling method, which adopts self-attention layers.

These baselines use the same features of the users, internal behav-
iors and contexts that are also used in LSTTM, and are optimized
via the same training set with the cross-entropy loss.

For fair comparisons, we also implement two enhanced DeepFM
models armed with external behaviors and sequence modeling.
• DeepFM (+external).We add the features of user external
behaviors to DeepFM, noted as DeepFM (+external). It has
the same input features as the LSTTM model.
• DIN+DeepFM (+external). Based on DeepFM (+external),
we further bring in the ability of sequence-based modeling
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on user’s internal and external behaviors to better model
the short-term and long-term preferences. Inspired by [29],
we conduct two DIN encoders [37] to model internal and
external behaviors respectively. These behavior features are
considered as the input feature fields of DeepFM (+external).

Finally, since we conduct the temporal MAML for online updat-
ing, we also implement two SOTA meta-learning methods based
on SML [35] in online news recommendation as follows:
• SML [35]. SML is the SOTAmeta-learning based recommen-
dation model designed for model retraining verified in online
new recommendation [35]. It is the most related baseline
of our task. SML attempts to learn a transfer function from
old to new parameters via a sequential training over time.
Following the original SML’s implementation, we also build
SML based on an MF model.
• SML+DeepFM. We further improve the original SML by
replacing the MF model with the best performing DeepFM
model, noted as SML+DeepFM. This model also utilizes the
same features as LSTTM for fair comparisons.

Note that we do not compare with other meta-learning recommen-
dation methods such as MeLU [10], since they focus on different
tasks (e.g., cold-start users or domains) and are not suitable for our
temporal setting. To further verify the effectiveness of different
components and features in LSTTM, we implement four ablation
versions of LSTTM, whose results are discussed in Sec. 5.6.

5.3 Experimental Settings
We randomly select up to 30 neighbors in global graph and 30 most
recent behaviors in internal graph for aggregation. The dimensions
of the output embeddings in both graphs are 16. We use 6 fields
for users (e.g., user profiles such as age and gender) and items (e.g.,
item features such as tag and provider), and the dimension of each
trainable feature field embedding is 16. In temporal MAML, the task
number of each batch, batch size, and learning rate are essential
parameters. We have tested the task number among {4, 8, 16}, the
support and query set size among {32, 64, 128, 256}, and the learning
rate among {0.001, 0.01, 0.02}. Finally, we let each batch size contain
8 temporal tasks of different days and hours, where each support set
and query set contain 128 items.We use Adagrad [5] and empirically
set the same learning rate as 0.01 for inner and outer updates. Note
that all instances could belong to a certain query set used in Line
8, Algorithm 1, which directly updates model parameters. We only
conduct a one-step gradient in temporal MAML for online efficiency.
We conduct a grid search for parameter selection. All models share
the same experimental settings.

5.4 Temporal CTR Prediction (RQ1)
We first simulate the real-world online recommendation and con-
duct the temporal CTR prediction task for offline evaluation.

5.4.1 Evaluation Protocol. We evaluate models on our real-world
dataset NewsRec-21B. To simulate the online recommendation, we
first train all models with the train set (the former few days), and
divide the test set (the last day) into 24 hours. Each hour is regarded
as a temporal task for evaluation, with all instances of former hours
in the test set used as the support set. Considering both accuracy

and online efficiency, all models including LSTTM and baselines
are fine-tuned via one gradient update for fair comparisons (SML
is updated via its transfer method [35]). We use AUC as our metric,
which is widely utilized as the main metric in real-world systems
[7, 20, 37]. For a better display, we group 24 hours into 3 periods
(0:00-8:00, 8:00-16:00, 16:00-0:00+1), and report the average AUC in
each period in Table 2. We conduct 3 runs for each model.

AUC period1 period2 period3

FM (Rendle 2010) 0.8086 0.8021 0.8072
NFM (He and Chua 2017) 0.8140 0.8035 0.8154
DeepFM (Guo et al. 2017) 0.8253 0.8306 0.8296
AutoInt (Song et al. 2019) 0.8236 0.8282 0.8272

DeepFM (+external) 0.8282 0.8335 0.8327
DIN+DeepFM (+external) 0.8287 0.8346 0.8337

SML (Zhang et al. 2020) 0.7926 0.7991 0.8063
SML+DeepFM 0.8250 0.8307 0.8299

LSTTM (w/o Meta) 0.8373 0.8428 0.8421
LSTTM (final) 0.8395 0.8504 0.8502

Table 2: Results of the temporal CTR prediction task. The
improvements of LSTTM are significant (t-test with p<0.01).
Note that period1 focuses on the performances of models in
a short time after complete training, while period3 focuses
on the performances in a long time after complete training.

5.4.2 Experimental Results. From Table 2 we can observe that:
(1) LSTTM achieves significant improvements on all baselines in

three periods, with the significance level 𝛼 = 0.01. It consistently
outperforms strong baselines in all 24 hours (see Fig. 3). The de-
viation is less than ±0.002. Considering the large size of our test
set, the 1.1% − 1.7% AUC improvements over the best baseline are
impressive and solid. It verifies the effectiveness and robustness of
LSTTM in modeling both short-term and long-term preferences
from users’ internal and external behaviors.

(2) LSTTM (final) consistently outperforms LSTTM (w/o Meta)
and SML on all tasks. It confirms the advantages of temporal MAML
in Sec. 3.5.1. Thanks to the MAML-based training, LSTTM is more
sensitive to global new trends in communities. Hence, it can better
capture users’ short-term preferences via good model initialization,
and thus can fast adapt to hot topics over time in online recommen-
dation. Nevertheless, LSTTM (w/o Meta) still performs better than
baselines, which reflects the effectiveness of our global long-term
and internal short-term graphs as well as the gating fusion. Sec. 5.6
gives more details of different ablation versions.

(3) We also find that models armed with external behaviors con-
sistently outperform the same models without external behaviors
(e.g., see LSTTM in Sec. 5.6 and DeepFM in Table 2). It verifies the
importance of external behaviors in real-world scenarios, which
works as a strong supplement to the internal behaviors. The exter-
nal behaviors will be more significant in few-shot scenarios.

(4) Comparing models in different periods, we know that LSTTM
achieves larger improvements in period 2 and 3 compared to LSTTM
(w/o Meta). It is because that (a) humans and hot spots are often
more active in period 2 and 3, where temporal MAML is superior
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to baselines in capturing user real-time preferences. (b) In period3,
all models have not been fully trained for at least 16 hours. LSTTM
has a better online fine-tuning to catch up with new global interest
evolutions. The cumulative effects of temporalMAMLwill gradually
show up over time with growing hot topics. Fig. 3 shows the hour-
level AUC trends of four representative models.

0.82

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

LSTTM LSTTM (w/o Meta) DIN+DeepFM (+external) SML+DeepFM

Figure 3: AUC trends in different hours.

5.5 Online A/B Tests (RQ2)
5.5.1 Evaluation Protocol. To evaluate LSTTM in real-world sys-
tems, we conduct an online A/B test onWeChat Top Stories. Follow-
ing Sec. 4, we deploy our LSTTM in the ranking module of the news
domain with other modules unchanged. The online base model is
DeepFM with the same online update frequency of LSTTM. In on-
line evaluation, we focus on four representative metrics, including
Click-through-rate (CTR), average click number per capita (ACN),
user has-click rate (HCR), and average dwell time per capita (DT)
to measure recommendation accuracy and user satisfaction, which
are formalized as follows:

CTR =
# of all clicks

# of all impressions
, ACN =

# of all clicks
# of all users

,

HCR =
# of users having clicks

# of all users
, DT =

all duration
# of all users

.

(10)

We conduct the A/B test for 5 days.

5.5.2 Experimental Results. Table 3 shows the improvement per-
centages over the base model. We can observe that:

(1) LSTTM achieves significant improvements on all metrics with
the significance level 𝛼 = 0.01. It reconfirms the effectiveness of
LSTTM in online. Through the asynchronous online updating with
the temporal MAML, LSTTM can (a) fast adapt to new topics and
hot spots, and (b) successfully combine both external and internal
behaviors in online ranking without many computation costs.

(2) The improvement on CTR indicates that more appropriate
items have been impressed to users (reflecting item-aspect accu-
racy), while the improvement on ACN represents that users are
more willing to click items (reflecting user-aspect accuracy and
activeness). HCR models the coverage of users that have clicked
news, which implies the impacts of our recommendation function.
LSTTM also outperforms the online baseline on dwell time of items,
which reflects the real user satisfaction on the item contents. In

conclusion, LSTTM achieves comprehensive improvements on all
online metrics, which confirms the robustness of our model.

metrics CTR ACN HCR DT

LSTTM +9.60% +9.93% +3.42% +2.52%

Table 3: Online A/B tests on a widely-used system.

5.6 Ablation Tests (RQ3)
We further conduct an ablation test to verify the effectiveness of
different components in LSTTM. Table 4 shows the results of differ-
ent ablation settings. We observe that all components significantly
benefit the recommendation. Precisely, we find that:

(1) the temporal MAML can precisely capture user’s variable
short-term interests without additional online computation costs.
The improvements are larger when more new trends are involved
as time passes by, such as in period 2 and 3.

(2) The second ablation version only considers internal behaviors
by removing the global long-term graph. It verifies the effectiveness
of the user external behaviors as well as the global long-term graph
modeling in Sec. 3.3. The advantages of external behaviors will be
more significant if we deploy LSTTM on cold-start scenarios.

(3) The gating-based fusion is also effective compared to con-
catenation, which provides personalized strategies in combining
internal short-term and global long-term representations.

(4) The fourth ablation version removes the GAT-based aggrega-
tion in Eq. (2) and the multi-hop neighbor-similarity based loss in
Eq. (8) (only use the raw features of internal and external behaviors
as inputs). The GAT-based aggregation and the multi-hop neighbor-
similarity based loss enable more sufficient multi-domain user-item
interactions, which are beneficial in capturing user variable and
diverse preferences in practice.

models period1 period2 period3

LSTTM (final) 0.8395 0.8504 0.8502

– temporal MAML 0.8373 0.8428 0.8421
– user external behaviors 0.8385 0.8459 0.8459
– gating-based fusion 0.8378 0.8488 0.8489
– GAT aggregation & 𝐿𝑁 0.8304 0.8410 0.8411

Table 4: Ablation tests on NewsRec-21B.

6 CONCLUSION AND FUTUREWORK
In this work, we propose an LSTTM for online recommendation,
which captures user long-term and short-term preferences from in-
ternal/external behaviors. The temporal MAML enables fast adapta-
tions to new topics in recommendation. The effectiveness of LSTTM
is verified in offline and online real-world evaluations.

In the future, we will polish the temporal MAML to build a more
robust adaptation, and transfer the idea of temporal MAML to other
temporal tasks. We will also explore some enhanced combinations
with other online learning and meta-learning methods.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

1175



REFERENCES
[1] Mingxiao An, Fangzhao Wu, Chuhan Wu, Kun Zhang, Zheng Liu, and Xing Xie.

2019. Neural news recommendation with long-and short-term user representa-
tions. In Proceedings of ACL.

[2] Homanga Bharadhwaj. 2019. Meta-Learning for User Cold-Start Recommenda-
tion. In Proceedings of IJCNN.

[3] Manqing Dong, Feng Yuan, Lina Yao, Xiwei Xu, and Liming Zhu. 2020. MAMO:
Memory-Augmented Meta-Optimization for Cold-start Recommendation. In
Proceedings of KDD.

[4] Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, and Jie Tang. 2019.
Sequential Scenario-Specific Meta Learner for Online Recommendation. In Pro-
ceedings of KDD.

[5] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods
for online learning and stochastic optimization. JMLR (2011).

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings of ICML.

[7] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. In
Proceedings of IJCAI.

[8] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In Proceedings of SIGIR.

[9] Linmei Hu, Chen Li, Chuan Shi, Cheng Yang, and Chao Shao. 2020. Graph
neural news recommendation with long-term and short-term interest modeling.
Information Processing & Management (2020).

[10] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.
MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation.
In Proceedings of KDD.

[11] Qi Liu, Ruobing Xie, Lei Chen, Shukai Liu, Ke Tu, Peng Cui, Bo Zhang, and
Leyu Lin. 2020. Graph Neural Network for Tag Ranking in Tag-enhanced Video
Recommendation. In Proceedings of CIKM.

[12] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: short-
term attention/memory priority model for session-based recommendation. In
Proceedings of KDD.

[13] Zhaoyang Liu, Haokun Chen, Fei Sun, Xu Xie, Jinyang Gao, Bolin Ding, and
Yanyan Shen. 2020. Intent Preference Decoupling for User Representation on
Online Recommender System. In Proceedings of IJCAI.

[14] Yuanfu Lu, Yuan Fang, and Chuan Shi. 2020. Meta-learning on Heterogeneous
Information Networks for Cold-start Recommendation. In Proceedings of KDD.

[15] Mi Luo, Fei Chen, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Jiashi Feng,
and Zhenguo Li. 2020. MetaSelector: Meta-Learning for Recommendation with
User-Level Adaptive Model Selection. In Proceedings of WWW.

[16] Yadan Luo, Zi Huang, Zheng Zhang, Ziwei Wang, Mahsa Baktashmotlagh, and
Yang Yang. 2020. Learning from the Past: Continual Meta-Learning with Bayesian
Graph Neural Networks. In Proceedings of AAAI.

[17] Feiyang Pan, Shuokai Li, Xiang Ao, Pingzhong Tang, and Qing He. 2019. Warm
up cold-start advertisements: Improving ctr predictions via learning to learn id
embeddings. In Proceedings of SIGIR.

[18] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of KDD.

[19] Steffen Rendle. 2010. Factorization machines. In Proceedings of ICDM.
[20] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,

and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of CIKM.

[21] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Repre-
sentations from Transformer. In Proceedings of CIKM.

[22] Manasi Vartak, Arvind Thiagarajan, ConradoMiranda, Jeshua Bratman, andHugo
Larochelle. 2017. A meta-learning perspective on cold-start recommendations
for items. In Proceedings of NIPS.

[23] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In Proceedings of ICLR.

[24] Ricardo Vilalta and Youssef Drissi. 2002. A perspective view and survey of
meta-learning. Artificial intelligence review (2002).

[25] Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, and Minghui
Qiu. 2020. Global context enhanced graph neural networks for session-based
recommendation. In Proceedings of SIGIR.

[26] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based Recommendation with Graph Neural Networks. In Proceedings of
AAAI.

[27] Liang Xiang, Quan Yuan, Shiwan Zhao, Li Chen, Xiatian Zhang, Qing Yang, and
Jimeng Sun. 2010. Temporal recommendation on graphs via long-and short-term
preference fusion. In Proceedings of KDD.

[28] Chaojun Xiao, Ruobing Xie, Yuan Yao, Zhiyuan Liu, Maosong Sun, Xu Zhang,
and Leyu Lin. 2021. UPRec: User-Aware Pre-training for Recommender Systems.
arXiv preprint arXiv:2102.10989 (2021).

[29] Ruobing Xie, Cheng Ling, Yalong Wang, Rui Wang, Feng Xia, and Leyu Lin. 2020.
Deep Feedback Network for Recommendation. In Proceedings of IJCAI.

[30] Ruobing Xie, Qi Liu, Shukai Liu, Ziwei Zhang, Peng Cui, Bo Zhang, and Leyu
Lin. 2021. Improving Accuracy and Diversity in Matching of Recommendation
with Diversified Preference Network. IEEE Transactions on Big Data (2021).

[31] Ruobing Xie, Zhijie Qiu, Jun Rao, Yi Liu, Bo Zhang, and Leyu Lin. 2020. Internal
and Contextual Attention Network for Cold-start Multi-channel Matching in
Recommendation. In Proceedings of IJCAI.

[32] Ruobing Xie, Shaoliang Zhang, Rui Wang, Feng Xia, and Leyu Lin. 2021. Hierar-
chical Reinforcement Learning for Integrated Recommendation. In Proceedings
of AAAI.

[33] Zeping Yu, Jianxun Lian, Ahmad Mahmoody, Gongshen Liu, and Xing Xie. 2019.
Adaptive User Modeling with Long and Short-Term Preferences for Personalized
Recommendation.. In Proceedings of IJCAI.

[34] Zheni Zeng, Chaojun Xiao, Yuan Yao, Ruobing Xie, Zhiyuan Liu, Fen Lin, Leyu Lin,
andMaosong Sun. 2021. Knowledge transfer via pre-training for recommendation:
A review and prospect. Frontiers in big Data (2021).

[35] Yang Zhang, Fuli Feng, Chenxu Wang, Xiangnan He, Meng Wang, Yan Li, and
Yongdong Zhang. 2020. How to Retrain Recommender System? A Sequential
Meta-Learning Method. In Proceedings of SIGIR.

[36] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang
Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate
prediction. In Proceedings of AAAI.

[37] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through
rate prediction. In Proceedings of KDD.

[38] Yongchun Zhu, kaikai Ge, Fuzhen Zhuang, Ruobing Xie, Dongbo Xi, Xu Zhang,
Leyu Lin, and Qing He. 2021. Transfer-Meta Framework for Cross-domain
Recommendation to Cold-Start Users. In Proceedings of SIGIR.

[39] Yongchun Zhu, Yudan Liu, Ruobing Xie, Fuzhen Zhuang, Xiaobo Hao, Kaikai Ge,
Xu Zhang, Leyu Lin, and Juan Cao. 2021. Learn to Expand Audience via Meta
Hybrid Experts and Critics for Recommendation and Advertising. In Proceedings
of KDD.

[40] Yongchun Zhu, Ruobing Xie, Fuzhen Zhuang, Kaikai Ge, Ying Sun, Xu Zhang,
Leyu Lin, and Juan Cao. 2021. Learning to Warm Up Cold Item Embeddings
for Cold-start Recommendation with Meta Scaling and Shifting Networks. In
Proceedings of SIGIR.

[41] Daniel Zügner and Stephan Günnemann. 2019. Adversarial attacks on graph
neural networks via meta learning. In Proceedings of ICLR.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

1176


	Abstract
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Overall Framework
	3.2 Internal Short-term Graph
	3.3 Global Long-term Graph
	3.4 Long- Short-term Preference Fusion
	3.5 Optimization with Temporal MAML

	4 Online Deployment
	5 Experiments
	5.1 Dataset
	5.2 Competitors
	5.3 Experimental Settings
	5.4 Temporal CTR Prediction (RQ1)
	5.5 Online A/B Tests (RQ2)
	5.6 Ablation Tests (RQ3)

	6 Conclusion and Future Work
	References



