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ABSTRACT
Personalized recommendation often relies on user historical behav-
iors to provide items for users. It is intuitive that future information
also contains essential messages as supplements to user historical
behaviors. However, we cannot directly encode future information
into models, since we are unable to get future information in on-
line serving. In this work, we propose a novel adversarial future
encoding (AFE) framework to make full use of informative future
features in different types of recommendation models. Specifically,
AFE contains a future-aware discriminator and a generator. The
future-aware discriminator takes both common features and future
features as inputs, working as a recommendation prophet to judge
user-item pairs. In contrast, the generator is considered as a chal-
lenger, which generates items with only common features, aiming
to confuse the future-aware prophet. The future-aware discrimi-
nator can inspire the generator (to be deployed online) to produce
better results. We further conduct a multi-factor optimization to en-
able a fast and stable model convergence via the direct learning and
knowledge distillation losses. Moreover, we have adopted AFE on
both a list-wise RL-based ranking model and a point-wise ranking
model to verify its universality. In experiments, we conduct suffi-
cient evaluations on two large-scale datasets, achieving significant
improvements on both offline and online evaluations. Currently,
we have deployed AFE on a real-world system, affecting millions of
users. The source code is in https://github.com/modriczhang/AFE.
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1 INTRODUCTION
Personalized recommendation aims to provide appropriate items
for users according to their preferences[16, 32]. In recommendation,
user historical behaviors are one of the most important features to
precisely capture user preferences, since the history is viewed as a
mirror to reflect the future. There are lots of works that concentrate
on learning from user historical behaviors via more sophisticated
sequence-based models [21] and neural feature interaction models
[4] to capture users’ diverse and variable preferences.

?

Historical 
behaviors

Current
prediction

Future 
information

Capture additional fine-
grained relationships 
between similar items

?
Learn correlations and 

interest evolutions 
among related topics

Figure 1: Examples and advantages of future information.

In real-world recommendation, it is straightforward and natu-
ral to predict items according to the historical information. How-
ever, the future information (i.e., information that can only be
collected in the future) also contains essential messages as supple-
ments to the current prediction, as long as we could peep into the
future. As shown in Fig. 1, the effectiveness of the future infor-
mation mainly locates in two aspects: (1) in the short term, users
usually focus on one topic, whose historical and future behaviors
are often similar to each other. For example, a user interested in cats
may continuously seek cat-related information. The fine-grained
relationships between these similar behaviors are bidirectional in
the timeline. Hence, the future information can provide additional
information to assist current recommendations. (2) In the long term,
user’s concentrations may switch back and forth among multiple
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topics. In this case, modeling additional future information is more
significant. It helps to capture the coarse-grained correlations be-
tween different but related topics, which enables models to predict
user’s interest evolution in advance (e.g., from gourmet to cooking
in Fig. 1). In conclusion, a recommendation prophet can make full
use of all user behaviors on both sides of the timeline, which greatly
improves our understandings of user preferences.

However, it is extremely challenging to utilize future information
in real-world recommendation. Different from bidirectional sequen-
tial models in NLP tasks [7] that can take the whole sequences as
inputs, online recommendation cannot get future information since
they happen in the future literally. In contrast, directly using future
data as input features of the deployed model in offline training will
result in overfitting on these future features, which will reduce
the performance in the test set and online serving [1]. Moreover,
incautiously using future information in testing will cause the fatal
issue of data leakage, which is studied and should be avoided [22].

There are very few works that consider future information in
recommendation. Recently, with the thriving of pre-training, some
works introduce the masked language model (MLM) pre-training
task in NLP [7] to sequence-based recommendation, which consider
bidirectional information to learn better sequential models via self-
supervised learning (SSL) [26, 40]. The MLM task randomly masks
some items in the user behavior sequence during training, and then
attempts to predict them with the remaining unmasked contexts
[38, 39]. These models can be viewed as indirectly using a specific
future feature (i.e., behaviors after the masked item) under SSL in
sequence-based recommendation. However, there are optimization
biases between the MLM task and the next-item prediction task
of recommendation. Moreover, the MLM-based future modeling
is limited to the specific future information in sequence modeling.
Therefore, we attempt to build a universal framework for using any
type of future information in general recommendation.

In this work, we build a novel Adversarial future encoding
(AFE) framework to take advantage of useful future information
in different types of recommendations. Specifically, AFE builds a
future-aware discriminator, which is considered as the prophet
to peep into the future. It takes both common features (e.g., user
historical behaviors, item features, contexts) and future features as
inputs, and outputs a ranking score of the current user-item pairs.
Enhanced by the future information, the discriminator becomes
more powerful to score the current user-item instances. In contrast,
AFE also builds a generator, which works as a challenger to fight
against the future-aware discriminator. It takes common features as
inputs like conventional ranking models, and then generates “fake”
items it thinks will be clicked to confuse the discriminator. Through
the minimax game with a stronger future-aware discriminator, the
generator could get a more sufficient training and provide better
recommendations. In online, the generator will be deployed with
common features as inputs. We successfully adopt this future-aware
GAN framework on both a real-world list-wise RL-based recommen-
dation model and a general point-wise ranking model. To ensure a
stable and effective training, we further conduct a direct learning
loss and a future-aware knowledge distillation (KD) loss during the
adversarial training. The advantages of AFE are as follows: (1) AFE
can capture more significant features from user historical behaviors
under the spur of the future-aware discriminator. (2) The generator

to be deployed in online does not directly take future features as
inputs, which prevents the feature inconsistency and overfitting
issues. Moreover, AFE is directly optimized via recommendation
losses (e.g., the next item prediction task), which greatly reduces the
optimization biases in the MLM pre-training task. (3) The future-
aware GAN framework is universal. It is convenient to conduct
AFE with almost all types of recommendation models.

In experiments, we evaluate AFE on two large-scale industrial
datasets from a real-world system. AFE is deployed with both clas-
sical list-wise RL model [32] and point-wise ranking model [20]
to verify its flexibility and universality. AFE achieves significant
improvements compared to various types of competitive baselines
on both offline and online evaluations. Moreover, we also conduct
several ablation tests to demonstrate the effectiveness of different
components. The contributions of AFE are concluded as follows:

• We systematically highlight the significance and challenges
of using future information in general recommendation. To
the best of our knowledge, we are the first to bring in future
information via GAN in general recommendation.

• Wepropose a novel adversarial future encoding, which builds
a future-aware discriminator to boost the generator’s train-
ing. We also combine the adversarial training with a direct
learning loss and a future-aware knowledge distillation loss.

• We achieve significant improvements on offline and online
evaluations with different types of models. AFE has been
deployed on a real-world system for millions of users.

2 RELATEDWORKS
Real-world Recommendation. Matrix factorization (MF) [15]
and Factorization machine (FM) [18] are classical recommendation
models. Recently, neural models [3, 9, 11, 16, 28, 30] have been
successfully verified in modeling (high-order) feature interactions.
AutoInt [20] and AFN [4] further bring in self-attention and loga-
rithmic transformation layer to capture useful feature interactions.
Real-world recommendation algorithms usually need to provide
an item list (rather than a single item) for each user request [32].
Differing from top-N recommendation [34], list-wise recommenda-
tion should further consider the item chemistries (e.g., diversity)
and the quality of the whole list, where reinforcement learning (RL)
methods have been successfully verified [29, 31]. [42] models the se-
quential interactions between users and a recommender system as
a Markov decision process via deep RL. MaHRL [41] and HRL-Rec
[32] further conduct hierarchical RL to model multi-goals abstrac-
tion and multiple channels. In this work, we also adopt an RL-based
model with AFE on a real-world list-wise recommendation.
Future Modeling in Recommendation. There are some works
that indirectly consider future behaviors in sequence-based recom-
mendation [40]. These models are mostly inspired by the masked
language model (MLM) of pre-training [7]. It randomly masks some
tokens in a sequence, and then predicts them via the rest contexts.
Some models [2, 21, 26, 38, 39] adopt the MLM task in sequence-
based recommendation, indirectly considering the future behaviors
after the current position via MLM in training. However, there are
optimization biases between MLM and next-item prediction tasks.
Moreover, the scenario (i.e., sequence-based recommendation) and
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future information type (i.e., user behaviors) of this future modeling
are also limited, which is hard to use in general recommendation.

In general recommendation, there are very few works that con-
sider future data. [17] considers other users’ behaviors after the last
historical behavior (but before the current time) of the target user
as future information, which is not real future data. PFD [33] is the
most related work, which adopts a KD block to model privileged
features (i.e., important features of the current items that cannot
be used in offline). However, PFD is not purposefully verified in fu-
ture information. Differing from these methods, our AFE explicitly
considers future features in a universal adversarial framework.
Adversarial Training in Recommendation. Generative adver-
sarial network (GAN) proposes a minimax game framework for
estimating generative models via adversarial networks [8]. IRGAN
[24] brings GAN into information retrieval tasks. It conducts a
generator to provide fake documents for the discriminator, using a
policy gradient based RL to update the generator. Adversarial train-
ing has also been utilized in social recommendation [37], adversarial
attack [5], and feature transfer [10]. In this work, we encode future
information into the discriminator. It encourages the generator to
win the minimax game against the strong prophet.

3 METHODOLOGY
3.1 Overall Framework
Fig. 2 displays the overall framework of AFE. We can find that the
input features are roughly divided into two types, namely the com-
mon feature and the future feature. The common feature consists
of classical features in recommendation such as user features, item
features, recommendation contexts, and user historical behaviors,
which are combined to model the current and previous states. In
contrast, the future feature represents the future information of
the user, item, and system. In AFE, the common features are fed
to both generator and discriminator, while the future features are
only given to the discriminator. During the minimax game, the
generator aims to generate appropriate items that look like the
ground-truth clicked items, whereas the future-aware discrimina-
tor will try to clearly distinguish the real clicked items from the
generated “fake” clicked items with the help of additional future
features. The discriminator is regarded as a prophet armed with
powerful future features, which multiplies the challenges of the
generator in confusing the discriminator but also encourages the
generator to learn better representations. Besides the GAN training,
we further conduct a multi-factor optimization containing a direct
learning loss and a future-aware KD loss, which ensures a more
effective and stable training with complicated practical models.

3.2 Future Information
We define the future information as all information that can only
be collected in the future. The future information is an inclusive
and broad concept, which could be any types and forms of useful
information deriving from users, items, recommendation contexts,
and systems in the future of the current prediction. For example,
it could consist of user’s multi-type behaviors (e.g., click, unclick),
item popularity, updated user profiles, and hot topics in the future.

Specifically in this work, we consider the target user’s future click
behaviors and the future clicked taxonomy information (containing

tag, category, item type) as the future information. For a user’s
future click behavior {𝑑𝑡+1, · · · , 𝑑𝑡+𝑛} after time 𝑡 , we first adopt
their trainable ID embeddings {𝒅𝑡+1, · · · , 𝒅𝑡+𝑛} of items as the ID
feature field of the future information. For the taxonomy feature
field, we first project all tags, categories, and types of these future
clicked items into taxonomy embeddings. Next, all tag embeddings
are then aggregated via an average pooling to get the tag field
embedding 𝒕𝑔 . The category and item type field embedding 𝒕𝑐 and
𝒕𝑦 are built the same as 𝒕𝑔 . Item tag and category model user’s fine-
grained and coarse-grained interests respectively, and item type
reflects user’s preferences on different content forms (e.g., video,
article). The future feature 𝑓𝑓 contains 3 + 𝑛 fields of future items
and taxonomies, noted as {𝒅𝑡+1, · · · , 𝒅𝑡+𝑛, 𝒕𝑔, 𝒕𝑐 , 𝒕𝑦}. We use these
trainable ID embeddings and taxonomies as future information in
AFE, since they (1) reflect useful future information from different
aspects, (2) perform well in online scenarios, and (3) are easy to
collect for training and serving. Note that we only consider the
future behaviors in the same session of the current prediction in
order to improve efficiency and remove noise. It is also convenient
to adopt other future features in our AFE framework.

Generator
(for online)

Future-aware 
discriminator

common 
features

future
features

Adversarial
training

Direct 
learning

training 
instances

forward model update

Knowledge
distillation

Figure 2: Overall framework of AFE.

3.3 Adversarial Future Encoding
The key challenge of this work is how to make full use of future
information. We propose a novel and universal AFE framework,
which indirectly learns from informative future features via GAN.

3.3.1 Generator and Future-aware Discriminator. Specifically, for a
user 𝑢 and a target item 𝑑 , the ranking model should give a ranking
score of the user-item pair. The common feature of the past and
present is noted as 𝑓𝑐 , while the future feature is represented as 𝑓𝑓 .
Precisely, we build the generator and discriminator as:
• Generator. The generator attempts to generate appropriate
items according to the common features 𝑓𝑐 . We use 𝑝𝜃 (𝑑 |𝑢, 𝑓𝑐 )
to represent the probability of item 𝑑 clicked by 𝑢 given by the
generator with parameter 𝜃 . The goal of the generator is to
simulate the user-item click probability distribution of real data.
The generator will be deployed for online recommendation.

• Future-aware discriminator. The future-aware discrimina-
tor aims to distinguish real clicked items from both unclicked
items and generated “fake” clicked items, with the help of both
common features and future features. We use ℎ𝜙 (𝑢,𝑑 |𝑓𝑐 , 𝑓𝑓 ) to
represent the ranking score of item 𝑑 for user 𝑢 with parameter
𝜙 . Enhanced by the future information, the discriminator can
fully stimulate the potential of the generator.
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Through the adversarial minimax game, the generator and future-
aware discriminator can improve each other. Note that we do not
use future features in both offline training and online serving for
the online deployed model (i.e., the generator). The formalization of
𝑝𝜃 (·) and ℎ𝜙 (·) can be flexible according to the practical demands.
We also give a specification of adopting AFE on a real-world list-
wise RL-based recommendation model in Sec. 3.4.

Classical GAN-based recommendations such as IRGAN [24] en-
courage the generators to select high-quality negative samples via
the minimax game, which aims to enhance the discriminator for
recommendation inspired by the catfish effect. Different from these
models, AFE builds a much stronger future-aware discriminator
(which cannot be deployed in online) to improve the generator. It is
because that in general GAN-based tasks, the discriminator is often
(and should be) stronger than the generator for a stable training
[6, 37]. However, if equipped with the future features, the generator
is likely to have a much more powerful modeling ability than the
discriminator, which may disturb the training of the discriminator.
Hence, we encode future features into the discriminator, and deploy
the generator in online serving.

3.3.2 Minimax Optimization Objective. Inspired by [24], we also
train the generator and the discriminator via a minimax game. We
use 𝐷𝑝𝑜𝑠 (𝑢) and 𝐷𝑛𝑒𝑔 (𝑢) to represent the clicked and unclicked
item distributions of user 𝑢 ∈ 𝑈 in the training data. Without loss
of generality, the optimization objective is formalized as follows:

𝐿𝐺
∗,𝐷∗

= min
𝜃

max
𝜙

∑︁
𝑢∈𝑈

(E𝑑∼𝐷𝑝𝑜𝑠 (𝑢) [log(𝜎 (ℎ𝜙 (𝑢,𝑑 |𝑓𝑐 , 𝑓𝑓 )))]

+ E𝑑∼𝐷𝑛𝑒𝑔 (𝑢) [log(1 − 𝜎 (ℎ𝜙 (𝑢,𝑑 |𝑓𝑐 , 𝑓𝑓 )))]
+ E𝑑∼𝑝𝜃 (𝑑 |𝑢,𝑓𝑐 ) [log(1 − 𝜎 (ℎ𝜙 (𝑢,𝑑 |𝑓𝑐 , 𝑓𝑓 )))]) .

(1)

𝜎 is the sigmoid function. 𝑑 ∼ 𝑝𝜃 (𝑑 |𝑢, 𝑓𝑐 ) indicates the items gen-
erated by the generator. We regard all generated 𝑑 as the positive
instance if 𝑑 ∈ 𝐷𝑝𝑜𝑠 (𝑢). Note that the negative samples consist
of both the generated “fake” clicked items and the real unclicked
items. During the minimax game, the generator and discrimina-
tor are learned iteratively by maximizing (for discriminator) and
minimizing (for generator) the objective in Eq. (1).

Specifically for the discriminator, the objective is to maximize the
log-likelihood of correctly judging positive and negative instances
in Eq. (1). It is convenient to adopt stochastic gradient descent (SGD)
based updating to approximate the arg max𝜙 . In contrast, for the
generator, its objective is to minimize Eq. (1), leading the generated
items to confuse the discriminator. Different from GANs in CV [8],
the generator of AFE provides discrete items instead of continuous
feature embeddings. Therefore, we adopt a policy gradient based RL
method (i.e., REINFORCE [25]) for the generator’s training, which
is similar to [24]. Formally, the gradient ∇𝜃𝐿𝐺 (𝑢) for is written as:

∇𝜃𝐿𝐺 (𝑢) ≃
1
𝐾

𝐾∑︁
𝑘=1

∇𝜃 log𝑝𝜃 (𝑑𝑘 |𝑢, 𝑓𝑐 ) log(1 − 𝜎 (ℎ𝜙 (𝑢,𝑑𝑘 |𝑓𝑐 , 𝑓𝑓 ))).

(2)

For each user, we conduct a sampling approximation to select top
K items given by the generator, and feed them to the discriminator
as negative samples. With the REINFORCE terminology, the term
log 𝑝𝜃 (𝑑𝑘 |𝑢, 𝑓𝑐 ) is considered as the policy, while the term log(1 −
𝜎 (ℎ𝜙 (𝑢,𝑑𝑘 |𝑓𝑐 , 𝑓𝑓 ))) is regarded as the reward. Through Eq. (2), the

generator will be learned to give a higher generation probability for
𝑑𝑘 that has a higher ranking score given by the discriminator (i.e.,
generating fake items that successfully confuse the discriminator).
𝑓𝑐 and 𝑓𝑓 are also updated via Eq. (1). Besides the adversarial loss,
we also conduct a direct learning and a future-aware knowledge
distillation for better training, which are shown in Sec. 3.5.

3.4 Specification on List-wise Recommendation
AFE is an effective and universal framework. However, it is non-
trivial to adopt AFE on a real-world list-wise recommendation due
to its practical complexity. In this subsection, we show the imple-
mentation details of conducting AFE on a list-wise RL-based model.
It is also easy to adopt AFE on other point-wise recommendation
models (e.g., AutoInt [20], see the offline evaluation in Sec. 5.4).

3.4.1 Overall List-wise RL Framework with AFE. List-wise recom-
mendation aims to generate an item list for each request, which
is widely adopted in practice [42]. Reinforcement learning (RL) is
naturally suitable for considering long-term rewards in the list-wise
prediction [32]. Similarly, we model the list-wise recommendation
as a sequential item prediction task with a value-based RL model
Double-DQN [23]. The key notions are defined as follows:

• State 𝑠𝑡 : the 𝑡-th state in list-wise RL should not only model
the user preferences and the current item’s features, but
also model the whole list’s information. 𝑠𝑡 is built from user
profiles, user historical behaviors, recommendation contexts,
the 𝑡-th item features, and previous 𝑡 − 1 item features in the
list. Note that the list-wise RL discriminator further considers
the future features as supplements in its state encoder.

• Action 𝑎𝑡 : the 𝑡-th action 𝑎𝑡 represents generating an item
for the 𝑡-th position in the recommended list.

• Reward 𝑟𝑡 : the 𝑡-th reward 𝑟𝑡 is measured via the click num-
ber of the 𝑡-th item in the recommended list.

The list-wise RL model will sequentially recommend items having
the highest Q values until the entire list is generated.

In AFE, we build two similar list-wise RL models as the generator
and future-aware discriminator. At each position, the generator
considers the common features as inputs, and generates the “fake”
clicked items according to the Q value distribution of items. The
discriminator, enhanced by future information, will distinguish the
“fake” clicked items from real ones. Through the iterative adversarial
training in Eq. (1), the generator is optimized to recommend high-
quality items that can achieve high Q values from the discriminator.

3.4.2 Model Architecture. Inspired by [32], we take the previous
𝑡 − 1 item features {𝒇1, · · · ,𝒇𝑡−1} already recommended by the list-
wise RL as the input sequence for the current prediction at the 𝑡-th
position. In the generator, the 𝑖-th item feature embedding 𝒇𝐺

𝑖
is

built from the interactions betweenmultiple feature fields, including
the user profile set𝑈𝑝 (e.g., age), the user historical behavior feature
set𝑈𝑐 (e.g., clicks), the 𝑖-th recommendation contexts set 𝐶𝑖 (e.g.,
position), and the 𝑖-th item profile set 𝐷𝑖 (e.g., tag). First, we follow
a recent powerful feature interaction modeling method AFN [4] to
build the 𝑖-th item feature embedding 𝒇𝐺

𝑖
as follows:

𝒇𝐺𝑖 = AFN(𝑼𝑝 , 𝑼𝑐 , 𝑪𝑖 ,𝑫𝑖 ), (3)
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where AFN(·) indicates the Logarithmic transformation layer. Next,
we conduct a GRU [12] to model the sequential information as:

𝒔𝐺𝑡 = MLP(GRU({𝒇𝐺1 , · · · ,𝒇
𝐺
𝑡−1})) . (4)

𝒔𝐺𝑡 is the state embedding that well represents the 𝑡-th state in the
list-wise RL. MLP(·) is a Multi-layer perceptron. Finally, we combine
the state embedding with the target item embedding 𝒅𝑡 (i.e., the
action), and feed them into another MLP layer as follows:

𝑞𝐺 (𝑠𝑡 , 𝑎𝑡 ) = ReLU(MLP(Concat(𝒔𝐺𝑡 , 𝒅𝑡 ))) . (5)

𝑞𝐺 (𝑠𝑡 , 𝑎𝑡 ) is the predicted Q value given by the generator. In the
list-wise recommendation, the Q value is defined as the expected
return of the current and future items in the list. We have:

𝑄𝐺 (𝑠𝑡 , 𝑎𝑡 ) = E𝑠𝑡+1,𝑟𝑡∼𝐸 [𝑟𝑡 + 𝛾𝑄
𝐺 (𝑠𝑡+1, 𝑎𝑡+1)] . (6)

𝑟𝑡 is the reward calculated as the clicked number of the 𝑡-th item. 𝛾
is the discount factor that decreases the importances of low-rank
items in list-wise recommendation. In training and online serving,
the item 𝑑𝑡 with the highest 𝑞𝐺 (𝑠𝑡 , 𝑎𝑡 ) is regarded as the 𝑡-th action.
Fig. 3 shows the model architecture of the list-wise AFE.

 Adaptive Factorization Network

List-level GRU & MLP

user profiles user behaviors contexts

1f if t-1f... ...

Q Value: t tq(s ,a )

item profiles future features

(common features used in both generator and discriminator) (only in discriminator)

FC & ReLU

... ...
td ts

Figure 3: Model architecture of list-wise AFE.

For the future-aware discriminator, when building the 𝑖-th item
feature embedding 𝒇𝐷

𝑖
, we further consider the 𝑖-th future feature

set 𝐹𝑓𝑖 built in Sec. 3.2 besides the common features. Formally, we
calculate 𝒇𝐷

𝑖
encoded with future features 𝑭𝑓𝑖 as follows:

𝒇𝐷𝑖 = AFN(𝑼𝑝 , 𝑼𝑐 , 𝑪𝑖 ,𝑫𝑖 , 𝑭𝑓𝑖 ). (7)

Next, we follow the same GRU and MLP structure in Eq. (4) to get
𝒔𝐷𝑡 , and follow Eq. (5) with different model parameters to generate
the predicted Q value 𝑞𝐷 (𝑠𝑡 , 𝑎𝑡 ) of discriminator as follows:

𝑞𝐷 (𝑠𝑡 , 𝑎𝑡 ) = ReLU(MLP(Concat(𝒔𝐷𝑡 , 𝒅 ′𝑡 ))) . (8)

Here, 𝑑 ′𝑡 may come from both real impressed items and fake clicked
items given by the generator. We also model 𝑄𝐷 (𝑠𝑡 , 𝑎𝑡 ) with the
TD error in Eq. (6) using the same 𝛾 and reward 𝑟𝑡 .

3.5 Multi-factor Optimization
In real-world scenarios, the complicated list-wise RL models are
challenging to have a stable convergence. The challenges even mul-
tiply when we enhance them with the GAN-based AFE framework.
Hence, besides the adversarial loss in Sec. 3.3.2, we further bring
two additional losses including a direct learning loss and a future-
aware knowledge distillation loss for a stable and effective training.
They can also be easily adopted on other AFE implementations.

3.5.1 Minimax adversarial loss. We follow Eq. (1) to play the mini-
max game. We set 𝐸𝑟𝑒𝑎𝑙 as the real training dataset and (𝑠𝑡 , 𝑎𝑡 ) ∈
𝐸𝑟𝑒𝑎𝑙 as the real state-action pair. We also use 𝐺𝑡𝑜𝑝𝐾 (𝑠𝑡 |𝜃 ) to rep-
resent the top K “fake” clicked item set of state 𝑠𝑡 given by the
generator. The minimax adversarial loss 𝐿𝐺,𝐷 is then defined as:

𝐿𝐺,𝐷 = min
𝜃

max
𝜙

∑︁
𝑢∈𝑈

(E𝑠𝑡 ,𝑎𝑡∼𝐸𝑟𝑒𝑎𝑙 [(𝑦𝑡 − 𝑞
𝐷 (𝑠𝑡 , 𝑎𝑡 |𝜙))2]

+ E𝑎𝑡∼𝐺𝑡𝑜𝑝𝐾 (𝑠𝑡 |𝜃 ) [log(1 − 𝜎 (𝑞𝐷 (𝑠𝑡 , 𝑎𝑡 |𝜙) − 𝑏𝑞))]) .
(9)

Here, 𝜃 and 𝜙 are parameters in the generator and discriminator.
𝑞𝐷 (𝑠𝑡 , 𝑎𝑡 |𝜙) is the predicted Q value in Eq. (8), and 𝑏𝑞 is a Q value
bias. The first term of the loss indicates the classical mean squared
error (MSE) for value-based RL training in the discriminator, which
is updated via all list-wise training instances. We define the 𝑦𝑡 as
the 𝑡-th target Q value, which is formalized as:

𝑦𝑡 = 𝑟𝑡 + 𝛾𝑞𝐷 (𝑠𝑡+1, argmax𝑎𝑞
𝐷 (𝑠𝑡+1, 𝑎 |𝜙) |𝜙) . (10)

𝜙 is the target discriminator’s parameters from Double-DQN [23].
𝑟𝑡 is the 𝑡-th reward. The second term in Eq. (9) aims to distinguish
generated “fake” items from real clicked items and give them lower
Q values. Note that if an generated item is clicked by user in 𝐸𝑟𝑒𝑎𝑙 ,
it will be viewed as a positive instance and not used in𝐺𝑡𝑜𝑝𝐾 (𝑠𝑡 |𝜃 ).

3.5.2 Direct Learning Loss. Since we deploy the generator in online
system, we conduct a direct RL-based training on the generator for
direct optimization. Similar to the MSE loss of the discriminator in
Eq. (9), we design the direct learning loss 𝐿𝑀𝑆𝐸 as follows:

𝐿𝑀𝑆𝐸 =
∑︁
𝑢∈𝑈

(E𝑠𝑡 ,𝑎𝑡∼𝐸𝑟𝑒𝑎𝑙 [(𝑦
′
𝑡 − 𝑞𝐺 (𝑠𝑡 , 𝑎𝑡 |𝜃 ))2]

𝑦′𝑡 = 𝑟𝑡 + 𝛾𝑞𝐺 (𝑠𝑡+1, argmax𝑎𝑞
𝐺 (𝑠𝑡+1, 𝑎 |𝜃 ) |𝜃 ) .

(11)

𝜃 is the target generator’s parameters. This loss enables the gen-
erator to directly learn from real positive and negative instances
besides the minimax game with the discriminator, which improves
both effectiveness and robustness of AFE’s training.

3.5.3 Future-aware Knowledge Distillation Loss. In Sec. 3.3, the fu-
ture information mainly influences the generator via the adversarial
training. To improve the efficiency of future encoding, we further
conduct the knowledge distillation (KD) [13] to transfer future in-
formation from the discriminator to the generator. Precisely, the
discriminator and generator of AFE are also viewed as the teacher
and student of KD respectively. We combine the MSE-based KD
loss of q values with the Hint loss [19] of intermediate embeddings
to calculate the future-aware KD loss 𝐿𝐾𝐷 as follows:

𝐿𝐾𝐷 =

|𝐸𝑟𝑒𝑎𝑙 |∑︁
𝑡=1

( | |𝑞𝐺 (𝑠𝑡 , 𝑎𝑡 |𝜃 ) − 𝑞𝐷 (𝑠𝑡 , 𝑎𝑡 |𝜙) | |22 + 𝜆ℎ | |𝒉
𝐺
𝑖 − 𝒉𝐷𝑖 | |

2
2) .

(12)

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

1181



𝒉𝐺
𝑖
and 𝒉𝐷

𝑖
are the intermediate embeddings after the penultimate

MLP layer in Eq. (5) and Eq. (8) of the generator and discriminator.
𝜆ℎ is a KD weight empirically set to be 1. The KD loss 𝐿𝐾𝐷 can be
regarded as a KD-based future encoding, which works as a supple-
ment to the adversarial future encoding in Sec. 3.3. It encourages
the generator to provide similar q values and state embeddings as
the discriminator’s, which also indirectly teaches the generator to
find hidden relations between historical and future information.

3.5.4 Overall Loss. Finally, we jointly train the discriminator and
the generator under the weighted combination of all three losses
above to form the final loss 𝐿 as follows:

𝐿 = 𝜆1𝐿
𝐺,𝐷 + 𝜆2𝐿

𝑀𝑆𝐸 + 𝜆3𝐿
𝐾𝐷 . (13)

𝜆1 : 𝜆2 : 𝜆3 is empirically set as 1 : 4 : 1, emphasizing the impacts
of real feedbacks. The effectiveness of different components and
losses are evaluated in Sec. 5.6. To demonstrate the universality of
AFE, we further adopt AFE on a classical ranking model AutoInt
[20] with the same multi-factor optimization in Eq. (13).

4 ONLINE DEPLOYMENT
We have deployed AFE on a real-world recommendation system
named WeChat Top Stories, which is a list-wise recommendation
widely used by millions of users. As stated in Sec. 3.4, the generator
of AFE is deployed on the ranking module. Hence, the online effi-
ciency of AFE is nearly equal to other list-wise RL models. It takes
common features as inputs and outputs an item list containing 10
items. No future information is used in online. Following [29, 32],
we also conduct the online exploration instead of simulators to
collect real user feedbacks for RL exploration. Precisely, for a small
subset of online traffic, AFE will randomly recommend one of the
top-N best items rather than the best one as a recommendation trial.
We implement AFE with Linux and GCC and conduct a distributed
training, using 50 ps machines (2 core, 4G memory) and 150 worker
machines (4 core, 8G memory). We spend nearly 5 hours for daily
training, and the online computation cost is acceptable in list-wise
recommendation. The training stability is confirmed in practice
with the help of the direct learning loss and the KD loss.

5 EXPERIMENTS
In this section, we conduct sufficient experiments to answer the fol-
lowing research questions: (RQ1): How does AFE perform against
the state-of-the-art baselines in offline evaluation (see Sec. 5.4)?
(RQ2): How does AFE perform in real-world online recommenda-
tion with various practical metrics (see Sec. 5.5)? (RQ3): What are
the effects of different components in AFE (see Sec. 5.6)?

5.1 Datasets
We evaluate AFE on two large-scale industrial datasets, including a
list-wise WTS-1B dataset and a point-wise Article-333M dataset.
WTS-1B.We build a new datasetWTS-1B extracted from a widely-
utilized recommendation system named WeChat Top Stories. This
industrial dataset is used to evaluate AFE in the list-wise recommen-
dation scenario. Precisely, we randomly sample nearly 38 million
users and get their 1.3 billion behaviors of impression (including
click and unclick) on nearly 14 million multi-type items. All impres-
sion behaviors are naturally arranged in recommendation lists and

sessions, where each list contains 10 items. Note that the dataset
also contains the user behaviors on items generated by the online
exploration strategy, which are fairly used by all models.
Article-333M. To evaluate the point-wise recommendation, we
resample 7.8 million article items from WeChat Top Stories, and
collect all their 333 million behaviors of the same 38 million users
to form the Article-333M dataset. This point-wise dataset directly
flattens all user behaviors in lists, ignoring list-wise information.
The rest features are the same as the WTS-1B dataset.

For two datasets, we consider the instances in the former few
days as the train set, and the rest instances as the test set. The
instance proportion of the train set and the test set is nearly 7 :
3. All data are preprocessed via data masking to protect user’s
privacy. Note that only behaviors in the train set are used as our
future information to avoid the fatal data leakage issue. We conduct
AFE on the list-wise RL-based model in Sec. 3.4 for the list-wise
recommendation with WTS-1B, and implement AFE on AutoInt
[20] for the point-wise recommendation with Article-333M. Table
1 shows the detailed statistics of two datasets.

Table 1: Statistics of list-wise and point-wise datasets.

Dataset #user #item #instance

WTS-1B 37,725,789 13,752,412 1,329,663,154
Article-333M 37,725,789 7,752,187 332,716,677

5.2 Competitors
We implement several competitive methods as baselines, which
are roughly grouped into three categories as follows. For fair com-
parisons, all models share the same common features and training
instances as AFE. Future-aware models also have the same future
features as AFE in both list-wise and point-wise scenarios.
Point-wise rankingmodels.We implement several classical rank-
ing models as baselines for two datasets, which are widely verified
in industry. These models include FM [18], Wide&Deep [3], NFM
[11], AFM [27] and DeepFM [9]. We also implement two recent
strong ranking models AutoInt [20] and AFN [4]. AutoInt uses self-
attention to model feature field interactions. AFN is a recent SOTA
ranking model using the logarithmic neural network.
List-wise RL-based models. For the list-wise recommendation,
we implement two RL-basedmodels for further comparisons. Specif-
ically, we implement a Double DQNmodel [23] with the samemodel
architecture used in Sec. 3.4 (i.e., the generator of AFE) without the
adversarial framework and future information, noted as DDQN+.
We also implement the current SOTA list-wise recommendation
model HRL-Rec [32] for more challenging comparisons. HRL-Rec is
specially designed for integrated recommendation, which contains
a channel selector (for domain-level preferences) and an item rec-
ommender (for item-level preferences). The generator of AFE can be
regarded as an enhanced version of the item recommender in HRL-
Rec with AFN used as the feature extractor. All list-wise RL models
use the same features and rewards as AFE for fair comparisons.
Future-aware models. Since no future information could be ob-
served in online, we can only conduct indirect future-aware learn-
ing in offline. However, there is no existing work that considers
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future information in general recommendation. Inspired by PFD
[33], we extend the idea of feature-based knowledge distillation to
future encoding, replacing the privileged features with our future
features. For fair comparisons, we use the same common and future
features as AFE. We also conduct PFD on the same model architec-
ture of AFE in two datasets. The enhanced PFD is noted as PFD
(DDQN+), which can be viewed as an ablation version of AFE with-
out GAN. Note that PFD (DDQN+) and AFE only differ in the usages
of future information (i.e., knowledge distillation V.S. KD+GAN).
We do not compare with MLM-enhanced sequence-based models
[38], since they are limited to the specific future information of
future behaviors and the task of sequence-based recommendation.

5.3 Experimental Settings
In AFE, the generator and discriminator share the same neural
network and common features.We have 15 feature fields in common
features and 8 feature fields in future features after field aggregation.
The future information is built according to Sec. 3.2, and is only
used in offline discriminator. The dimensions of feature fields are
16 and 8, and the dimensions of state embeddings are 160 and 120
for the discriminator and generator. We conduct 2-layer MLP layers
for q value and state embedding calculations. The discount factor 𝛾
is set as 0.6 for future rewards. In training, we adopt Adam [14] for
optimization with the batch size set as 256. The generator provides
top 1 items for adversarial training. Similarly, AFE uses the same
multi-factor losses and common/future features for AutoInt in the
point-wise scenario. The dimensions of all models in the point-
wise scenarios are also the same. We conduct a grid search for
parameter selection. All models share the same common features
(if beneficial) and experimental settings. We should highlight that
all future information is not used in online serving.

5.4 Offline Evaluation (RQ1)
We first adopt AFE on both list-wise and point-wise recommenda-
tion models with two large-scale datasets.

5.4.1 Evaluation Protocols. Following [20, 32], we use the classical
Area Under Curve (AUC) to measure the offline recommendation
accuracy. We do not use Logloss since baselines and our model have
different losses. We further calculate the RelaImpr [35] to reflect the
relative improvements over the base model (i.e., FM for WTS-1B).
We conduct 3 runs for models on both WTS-1B and Article-333M.

5.4.2 Experimental Results . Table 2 shows the results on WTS-1B,
and Table 3 shows the results on Article-333M. We can find that:

(1) AFE achieves significant improvements over all baselines on
both list-wise and point-wise recommendation tasks, with the signif-
icance level of AFE’s improvements 𝑝 < 0.01. Note that the current
AUC improvements, 2.8% on AFN and 0.4% on PFD (DDQN+) (an
ablation version of AFE without GAN), are significant in billion-
level industrial datasets. AFE has significant improvements over
AFN and HRL-Rec, which indicates that the future information is
beneficial in recommendation. It also implies that our adversar-
ial future encoding is effective in modeling future information to
polish the generator’s training compared to PFD (DDQN+).

(2) The improvements of AFE mainly derive from the following
aspects: (a) armed with the future information, the future-aware

Table 2: Results of offline evaluation onWTS-1B. * indicates
that models have the same list-wise neural model as AFE’s.
The improvements are significant (t-test with 𝑝 < 0.01).

Model AUC RelaImpr

FM (Rendle 2010) 0.7004 0.00%
Wide&Deep (Cheng et al. 2016) 0.7101 4.84%
NFM (He and Chua 2017) 0.7065 3.04%
AFM (Xiao et al. 2017) 0.7077 3.64%
DeepFM (Guo et al. 2017) 0.7110 5.29%
AutoInt (Song et al. 2019) 0.7160 7.78%
AFN (Cheng et al. 2020) 0.7177 8.63%

DDQN+ (i.e., generator in AFE)* 0.7365 18.01%
HRL-Rec (Xie et al. 2021c)* 0.7393 19.41%

PFD (DDQN+)* 0.7425 21.01%

AFE (ours)* 0.7461 22.80%

discriminator becomes more powerful. Trained under the minimax
game, the generator is encouraged to capture more informative
relations between behaviors throughout the past and the future.
Hence, both short-term item correlations and long-term interest
evolutions are successfully extracted, which helps to generate bet-
ter recommendations. (b) The future-aware knowledge distillation
further provides an additional lesson directly from the future-aware
teacher (i.e., the discriminator) as a supplement to the adversar-
ial future encoding. The direct learning also enables a stable and
fast convergence of AFE. Sec. 5.6 gives detailed analyses on the
effectiveness of different model components.

(3) PFD (DDQN+) achieves the second-best performance but is
still worse than AFE. It represents that the GAN-based training can
further enhance the efficiency of future knowledge transfer in future
encoding on the basis of the future-aware KD. We should highlight
that: (a) the original PFD does not use the future information. We
add the future-aware knowledge distillation loss in Eq. (12) and the
direct learning loss in Eq. (11) to build the PFD (DDQN+). (b) For
fair comparisons, we also enhance PFD with AFE’s list-wise model
in Sec. 3.5. PFD (DDQN+) can be viewed as an ablation version of
AFE without the future-aware adversarial loss 𝐿𝐺,𝐷 in Eq. (9).

(4) AFE achieves consistent improvements on both the point-wise
AutoInt model and list-wise RL-based model, which demonstrates
the flexibility and universality of our AFE framework. It is conve-
nient to adopt AFE as a plug-and-play module on various types of
ranking models. The flexible and universal designs of the feature-
based GAN and the future information also make AFE be able to
smoothly adapt to different practical scenarios.

Table 3: Results on Article-333M. We only display the repre-
sentative results of competitive point-wise models in Table
2. The improvements are significant (t-test with 𝑝 < 0.01).

Model AUC RelaImpr

AutoInt (Song et al. 2019)* 0.7842 0.00%
PFD (DDQN+)* 0.7894 1.83%

AFE (ours)* 0.7933 3.20%
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5.5 Online A/B Tests (RQ2)
Besides the offline evaluation, we also evaluate AFE with an online
A/B test on a well-known recommendation system to demonstrate
its effectiveness in real-world scenarios.

5.5.1 Evaluation Protocols. Following Sec. 4, we deploy the gen-
erator of AFE on the ranking module of WeChat Top Stories with
other modules unchanged. The compared online list-wise recom-
mendation baseline is an enhanced version of HRL-Rec [32], which
mainly replaces the AutoInt feature interaction layer [20] with the
AFN layer [4], and is also armed with the knowledge distillation
objective. This enhanced HRL-Rec model has been verified online
for a long time, which is a competitive baseline. In online evalua-
tion, we focus on two evaluation metrics, including (1) the average
click number per capita (ACN) [32], and (2) the average dwell time
per capita (DT) [36], to model recommendation accuracy and user
satisfaction. We conduct the online A/B test for 24 days, affecting
nearly 6 million users. We show the improvement percentages of
AFE over the strong base model in online evaluation.

Table 4: Online A/B tests on WeChat Top Stories.

Metrics Average click number Average dwell time

AFE +1.63% +0.47%

5.5.2 Experimental Results. From Table 4 we can find that:
(1) AFE achieves significant improvements on both ACN and DT

with the significance level 𝛼 = 0.01. We should highlight that the
1.63% ACN improvement is encouraging in real-world recommen-
dation with complicated models and feature engineering. Note that
the main differences between AFE and the online base model only
exist in the usage of future information and the GAN framework for
future encoding. It reconfirms the importance of considering future
information in model training, which is beneficial to learn a better
generator that can even confuse the recommendation prophet. It
also implies that our AFE framework is capable of modeling future
information to improve models in real-world scenarios.

(2) The average click number (ACN) is one of the most essential
metrics to evaluate online models. It reflects both recommendation
accuracy and user activeness in online systems [32]. A higher ACN
indicates that users will browse and click more items, which usually
implies that users are more satisfied with the online system.

(3) The improvements on the average dwell time (DT) further
demonstrate that the recommended lists are accurate and high-
quality. Differing from CTR that is directly calculated by user clicks,
dwell time is measured by the time users spend on items, which
can alleviate the noises from clickbaits and thus reflects users’ real
satisfaction. Other online metrics of AFE such as CTR and diversity
are comparable or not significantly improved.

5.6 Ablation Tests (RQ3)
We further conduct several ablation tests to verify that different
components are indispensable in AFE. Table 5 displays the results
of 7 ablation versions of AFE on WTS-1B. We can observe that:

(1) We first remove all future features in the discriminator to
disable the future information in both GAN and KD modules (note

Table 5: Ablation tests on WTS-1B.

Ablation settings AUC RelaImpr

AFE 0.7461 22.80%

– future information 0.7377 18.61%

– GAN loss 𝐿𝐺,𝐷 0.7425 21.01%
– KD losses 𝐿𝐾𝐷 0.7385 19.01%
– Direct learning loss 𝐿𝑀𝑆𝐸 0.6995 -0.45%

– GRU 0.7351 17.32%
– AFN 0.7404 19.96%
– future rewards (𝛾 = 0) 0.7384 18.96%

that the GAN and KD modules still remain in this ablation setting).
The substantial reduction in AUC verifies the effectiveness of fu-
ture features. It also indicates that the future information can be
indirectly transferred into the generator via GAN and KD.

(2) In the second block, we evaluate the importances of three
losses in the multi-factor optimization. We remove the GAN frame-
work to test 𝐿𝐺,𝐷 (which is equal to the PFD (DDQN+) model in
Table 2), and remove the future-aware KD to test 𝐿𝐾𝐷 . The results
show that both GAN and KD are beneficial in future encoding and
model training. These two methods also enable a fast and stable
model convergence in AFE training with complicated list-wise RL
models. We have observed the convergence curves of the gener-
ator and discriminator, and find that both of them are optimized
smoothly. We also find that the direct learning 𝐿𝑀𝑆𝐸 is indispens-
able in AFE (which is a basic loss in ranking). It is natural since the
generator should be directly optimized by real feedbacks. All three
losses are combined to get the best performances.

(3) For the list-wise implementation of AFE, We also evaluate
the effectiveness of different components in the model architecture.
We replace the GRU and AFN layers with average pooling layers
respectively. The results confirm that GRU and AFN are beneficial.
Moreover, we also set the discount factor 𝛾 = 0, which indicates
that AFE does not consider any future reward in list-wise scenarios.
The result reflects the effectiveness of modeling future rewards
with RL-based models in list-wise recommendation.

6 CONCLUSION AND FUTUREWORK
In this work, we propose a novel adversarial future encoding to
make full use of future information in general recommendation
under a GAN framework. The future-aware discriminator works
as a recommendation prophet that “peeps into the future”, which
encourages the generator to learn better. We have successfully
adopted AFE on both a list-wise RL-based model and a point-wise
ranking model. Both AFE models achieve significant improvements
in two large-scale industrial datasets. Currently, we have deployed
AFE on a real-world system, affecting millions of users.

We are convinced that future information is an essential source of
user preferences. In the future, we will explore more sophisticated
RL models and neural architectures for a better combination of
common features and future features. We will also try to jointly
model future information via adversarial training and pre-training
tasks, and verify our AFE on other models, domains, and tasks.
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