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ABSTRACT
Cold-start problems are enormous challenges in practical recom-
mender systems. One promising solution for this problem is cross-
domain recommendation (CDR) which leverages rich information
from an auxiliary (source) domain to improve the performance
of recommender system in the target domain. In these CDR ap-
proaches, the family of Embedding and Mapping methods for CDR
(EMCDR) is very effective, which explicitly learn a mapping func-
tion from source embeddings to target embeddings with overlap-
ping users. However, these approaches suffer from one serious prob-
lem: the mapping function is only learned on limited overlapping
users, and the function would be biased to the limited overlapping
users, which leads to unsatisfying generalization ability and de-
grades the performance on cold-start users in the target domain.
With the advantage of meta learning which has good generalization
ability to novel tasks, we propose a transfer-meta framework for
CDR (TMCDR) which has a transfer stage and a meta stage. In the
transfer (pre-training) stage, a source model and a target model
are trained on source and target domains, respectively. In the meta
stage, a task-oriented meta network is learned to implicitly trans-
form the user embedding in the source domain to the target feature
space. In addition, the TMCDR is a general framework that can be
applied upon various base models, e.g., MF, BPR, CML. By utilizing
data from Amazon and Douban, we conduct extensive experiments
on 6 cross-domain tasks to demonstrate the superior performance
and compatibility of TMCDR.
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1 INTRODUCTION
In the era of information explosion, how to efficiently obtain useful
information frommassive data is very important. Recommender sys-
tems play a major role in alleviating information overload. However,
it is difficult to make cold-start recommendations, e.g., new users
(user cold-start) and new items (item cold-start). Cross-domain rec-
ommendation (CDR) [8, 11, 14] is a promising solution to address
the cold-start problem.

CDR which leverages rich information from an auxiliary (source)
domain to improve the performance of recommender system in
the target domain has gained increasing attention in recent years.
Actually, most CDR methods [4, 5, 14, 17, 18] aim to improve the
overall performance for a target domain with the help of a source
domain. Other methods address the cold-start problem which is
more technically challenging as well as has great values from a
practical perspective [12]. To address the problem, the Embedding
and Mapping approach for CDR (EMCDR) [11] is very effective,
which encodes user’s preferences of source and target domains on
items into two embeddings, respectively, and then explicitly learns
a mapping function from source embeddings to target embeddings
with overlapping users. In other words, it minimizes the distance
between the target embedding and the approximated embedding
mapped from the source embedding for each overlapping user with
Mean Squared Error (MSE) loss. With the advantage of EMCDR,
many EMCDR-based approaches [3, 8, 19] have been proposed.

However, most of the EMCDR-based methods suffer from one
serious problem. These methods explicitly learn the mapping func-
tion by minimizing the distance between the target embedding and
the mapped embedding of the overlapping users. In other words,
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the number of training samples to learn the mapping function is
equal to the number of overlapping users. In practice, the average
ratio of the overlapping users to total users of any two domains
is very low [8], e.g., in our experiments, the cross-domain tasks
have 37388 overlapping users at most and 894 at least. Hence, the
mapping function would be biased to the limited overlapping users,
which leads to unsatisfying generalization ability and degrades the
performance of the model on cold-start users in the target domain.

Meta learning [1, 2] has good generalization ability to novel tasks
by training the model on lots of similar training tasks. With the
advantage of meta learning, we propose a transfer-meta framework
for CDR (TMCDR) which can replace the training procedure of
most EMCDR-based methods [3, 8, 11, 19] and be applied upon
various base models, e.g., MF [10], BPR [15], CML [7]. In detail, the
proposed TMCDR has a transfer stage and a meta stage.

Transfer stage: The transfer stage is similar to the embedding
step in EMCDR [11]. However, the embedding step in EMCDR
learns a source model and a target model with the user-item in-
teraction of only overlapping users from scratch. However, with
limited overlapping users, it is hard to learn the embedding of items
which has not been interacted by the overlapping users. In practice,
each domain has a unique model for the overall recommendation.
To address the problem, the unique model is directly utilized as
pre-trained model. Thus, this stage is called as transfer stage. Note
that the models should be embedding-based methods [6, 10, 15].

Meta stage: The main idea of the meta stage is that a task-
oriented meta network is learned to implicitly transform the over-
lapping user embedding in the source domain to the target fea-
ture space. The optimization goal of the cold-start task in CDR is
learning knowledge from overlapping users and generalizing to
cold-start users in the target domain. Inspired by meta learning
(learning to learn), we construct special training tasks to simulate
the target task. Each training task consists of a learning phase and
a cold-start phase. The learning phase learns knowledge from one
overlapping user. The cold-start phase uses another overlapping
user to simulate a cold-start user. With the advantage of the pop-
ular Model-Agnostic Meta-Learning (MAML) [2], we proposed a
gradient-based training method to optimize a meta network. Dif-
ferent from the mapping function of EMCDR, the meta network is
task-oriented, which denotes that the optimization goal is rating or
ranking, not mapping.

The main contributions of this work are summarized into three
folds: (1) To solve the cold-start problem in CDR, we propose a
novel transfer-meta framework (TMCDR), which can be applied on
most EMCDR-based methods with various base models, e.g., MF,
BPR, CML. (2) The proposed method is easy to implement in the
online cold-start setting. With existing pre-trained models, once
the task-oriented meta network is trained, it can be exploited for
cold-start users.

2 MODEL
2.1 Transfer Stage
In practice, each domain has a unique model for the overall recom-
mendation, and we use the source and target models as pre-trained
models. The pre-trained model is trained on all data. Compared

Algorithm 1 Transfer-Meta framework for CDR (TMCDR)
Input: Given user and item sets of source and target domains,
𝑈 𝑠 ,𝑈 𝑡 ,𝑉 𝑠 ,𝑉 𝑡 . The overlapping user set 𝑈 𝑜 . The rating matrix
𝑅𝑠 , 𝑅𝑡 .
Input: Task-oriented meta network 𝑓𝜃 .
Input: The step size (learning rate) 𝜆, 𝛼 .
Transfer Stage:

• A pre-trained source model contains u𝑠 , v𝑠 .
• A pre-trained target model contains u𝑡 , v𝑡 .

Meta Stage: utilize the source embedding of overlapping users u𝑠
and the target item embedding v𝑡 to optimize the task-oriented
meta network 𝑓𝜃 .

(1) randomly initialize 𝜃 .
(2) while not converge do:
(3) sample batch of user groups {𝑈1, ...,𝑈𝑛 } from𝑈 𝑜 .
(4) for𝑈𝑖 ∈ {𝑈1, ...,𝑈𝑛} do:
(5) divide 𝑈𝑖 into two disjoint sets 𝑈𝑎,𝑈𝑏
(6) define two training sets 𝐷𝑎, 𝐷𝑏 with𝑈𝑎,𝑈𝑏
(7) evaluate loss L𝜃 with 𝐷𝑎

(8) compute updated parameter 𝜃 ′ = 𝜃 − 𝜆
𝜕L𝜃

𝜕𝜃
(9) evaluate loss L𝜃 ′

𝑖
with 𝐷𝑏

(10) update 𝜃 = 𝜃 − 𝛼
∑
𝑈𝑖 ∈{𝑈1,...,𝑈𝑛 }

𝜕L𝜃′
𝑖

𝜕𝜃
(11) end while

Test Stage: for a cold-start user 𝑢, we use 𝑓𝜃 (u𝑠 ) as the user
embedding for prediction.

with the embedding model of EMCDR trained on samples of over-
lapping users, the pre-trained model has two advantages: 1) with
more data, the model is more robust, which is hard to be bothered
by data noise. 2) In EMCDR, the model can only learn embeddings
of items interacted by the overlapping users. In contrast, with all
data, the pre-trained model can capture information from all items.
Hence, our TMCDR directly utilizes the pre-trained model. In our
experiments, we simulate the pre-training procedure, i.e., a model
is trained with all data as the pre-trained model. In practice, vari-
ous models are exploited for different applications. To testify our
TMCDR is compatible with various models, we implement four
popular embedding models into TMCDR framework, including
MF [10], BPR [15], ListRank-MF [16], and CML [7]. Note that we
have defined a rating matrix 𝑅 ∈ {0, 1} above, and the problem is a
binary classification task.

2.2 Meta Stage
After the transfer stage, we can obtain the pre-trained source and
target models (the users’ and items’ embeddings u𝑠 , v𝑠 , u𝑡 , v𝑡 ). With
the pre-trained embeddings fixed, we put forward a task-oriented
meta network that can implicitly transform the source embeddings
into the target feature space.

Recall that the main idea of cold-start in CDR is to learn knowl-
edge from overlapping users and generalizing to cold-start users
in the target domain. Meta learning [1, 2] has good generalization
ability to novel tasks by training the model on a variety of similar
training tasks. Inspired by meta learning, to simulate the target
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task, we construct similar training tasks, and each training task
consists of a learning phase and a cold-start phase.

The goal of the learning phase is to simulate that learning knowl-
edge from overlapping users. Hence, each learning phase contains
all user-item interaction samples of an overlapping user. In addition,
the cold-start phase is to simulate the cold-start users in the target
domain. However, the real cold-start users have no interaction be-
havior in the target domain, and the model cannot directly learn
knowledge from these users. Thus, we utilize another overlapping
user to simulate a cold-start user.

Each training task only has training samples of two users. This
suffers from a challenge that a user could have very limited interac-
tion samples. We find that it may lead to unstable training. In [13],
they use users whose number of interaction samples exceeds a
certain threshold for training. In this paper, we propose a group
strategy that both the learning phase and cold-start phase contain
several users, but the users of the two phases are disjoint. We de-
note the users of the learning phase and cold-start phase as𝑈𝑎 and
𝑈𝑏 , respectively. Two training sets in the target domain with all
samples of𝑈𝑎 and𝑈𝑏 are denoted as 𝐷𝑎 and 𝐷𝑏 , respectively.

We define meta network as 𝑓𝜃 (·), and 𝜃 denotes the parameters.
Besides, 𝑓𝜃 (u𝑠𝑖 ) represents the transformed embedding of u𝑠

𝑖
. The

meta network should be optimized on lots of training tasks. We
define the loss function to be the same as the optimization goal
of the pre-training task, so we call it task-oriented loss. The pre-
training task could be one of MF [10], BPR [15], ListRank-MF [16],
and CML [7] as mentioned above. Task-oriented loss utilizes
the transformed user embedding 𝑓𝜃 (u𝑠𝑖 ) not u

𝑡
𝑖
. The overall

training procedure of the task-oriented meta network is following
the meta learning paradigm [2]. Firstly, the loss of the learning
phase can be formulated as:

L𝜃 =
∑
𝑥 ∈𝐷𝑎

𝐿task (𝑥), (1)

where task ∈ MF, BPR, ListRank-MF,CML, and 𝑥 ∈ 𝐷𝑎 denotes one
sample. By computing the gradient of L𝜃 and taking a step of
gradient descent, we get a new adapted parameter:

𝜃 ′ = 𝜃 − 𝜆
𝜕L𝜃

𝜕𝜃
, (2)

where 𝜆 > 0 is the step size of gradient descent (learning rate).
Now that we have a new parameter 𝜃 ′ which is trained with the
overlapping users𝑈𝑎 , and we can test the adapted model 𝑓𝜃 ′ on the
cold-start users 𝑈𝑏 . Similarly, the loss of the cold-start phase is:

L𝜃 ′ =
∑
𝑥 ∈𝐷𝑏

𝐿task (𝑥). (3)

Then we minimize the L𝜃 ′ to update 𝜃 :

𝜃 = 𝜃 − 𝛼
𝜕L𝜃 ′

𝜕𝜃
(4)

where 𝜕𝜃 ′

𝜕𝜃
can be computed by the Equation (2). Note that the meta-

optimization is performed over the model parameters 𝜃 , whereas
the objective is computed using the updated model parameters
𝜃 ′. Actually, the meta stage aims to optimize the parameters of
task-oriented meta network such that one or a small number of
gradient steps on a group of simulated cold-start users will produce
maximally effective behavior on that the real-world cold-start users.

Table 1: Recommendation performance on 6 CDR tasks. ∗
indicates 0.05 level, paired t-test of TMCDR_MF vs. the best
baselines.

Method
AUC NDCG@10 AUC NDCG@10

Scenario1 Scenario2
CMF 0.6490 0.1696 0.6996 0.2076
BPR 0.7226 0.2182 0.7160 0.2379

ListRank-MF 0.6648 0.1709 0.7232 0.2204
CML 0.6470 0.1408 0.6986 0.2147
CST 0.7240 0.2137 0.7124 0.2324

SSCDR 0.7245 0.0089 0.6745 0.0013
EMCDR_MFori 0.6942 0.1978 0.6511 0.1747
EMCDR_MF 0.7271 0.2103 0.6923 0.1985
TMCDR_MF 0.7501* 0.2246* 0.7253* 0.2427*

Scenario3 Scenario4
CMF 0.7769 0.3066 0.7295 0.2349
BPR 0.7737 0.3065 0.7199 0.2150

ListRank-MF 0.7640 0.2902 0.7409 0.2277
CML 0.8191 0.3548 0.7857 0.2647
CST 0.7995 0.2960 0.7842 0.2563

SSCDR 0.7956 0.3080 0.6545 0.1628
EMCDR_MFori 0.7273 0.2284 0.7307 0.1990
EMCDR_MF 0.8011 0.3055 0.7936 0.2670
TMCDR_MF 0.8282* 0.3334 0.8056* 0.2775*

Scenario5 Scenario6
CMF 0.8465 0.3420 0.8339 0.3764
BPR 0.8108 0.3283 0.8138 0.3659

ListRank-MF 0.8136 0.3106 0.8191 0.3281
CML 0.8466 0.3409 0.8405 0.3707
CST 0.8524 0.3405 0.8406 0.3742

SSCDR 0.8144 0.2925 0.8317 0.3644
EMCDR_MFori 0.7307 0.1990 0.7627 0.2703
EMCDR_MF 0.8438 0.3322 0.8297 0.3702
TMCDR_MF 0.8589* 0.3483* 0.8442* 0.3778*

Finally, we come to the overall training algorithm of TMCDR,
which can update the meta-parameters by stochastic gradient de-
scent in a mini-batch manner, see Algorithm 1.

3 EXPERIMENTS
3.1 Experimental Settings
Dataset. Two real-world datasets are adopted for evaluation, Ama-
zon1 and Douban2. Both datasets have been used for the CDR
problem.

The first dataset is a public Amazon dataset, which has vari-
ous versions. And we use the Amazon-5cores dataset that each
user or item has at least five ratings. The dataset contains 24 dif-
ferent item domains. Among them, we choose the seven popular
categories: apps_for_android, video_games, home_and_kitchen,

1http://jmcauley.ucsd.edu/data/amazon/
2https://www.douban.com
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movies_and_tv, cds_and_vinyl, books and tools_and_home_improve-
ment. Then, we define four CDR scenarios as Scenario 1: apps_for_
android→ video_games, Scenario 2: home_and_kitchen→ tools_and
_home_improvement, Scenario 3: movies_and_tv→ cds_and_vinyl,
and Scenario 4: books → movies_and_tv.

The second dataset is Douban dataset, which includes three
recommendation tasks like movies, music, and book recommen-
dations. We utilize the Douban dataset to construct another two
cross-domain tasks: Scenario 5: movie → music, and Scenario 6:
music → book.

Evaluation Protocol: To evaluate the performance of the pro-
posed framework on the CDR tasks for cold-start users, for each
task, we randomly select about 20% overlapping users as cold-start
users, and use all samples of these users in target domain for the
test stage. we adopt three standard metrics, AUC and NDCG@K,
which are widely used in recommendation [4, 11] to evaluate the
ranking performance of each method.

Baselines: The baselines can be divided into two groups: single-
domain and cross-domain. In the first group, we consider both
source and target domains as a single domain and utilize popular
CF method, including CMF [17], BPR [15], ListRank-MF [16], and
CML [7]. The second group includes state-of-the-art CDR meth-
ods for cold-start users, including CST [14], EMCDR [11], and SS-
CDR [8]. Both EMCDR and our TMCDR are general frameworks
for many embedding models. Thus, we apply EMCDR and TMCDR
on MF, BPR, ListRank-MF, and CML, e.g., TMCDR_MF.

ImplementationDetails: For simplicity, we intentionally trans-
form the rating data into binary (1/0 indicate whether a user has
interacted with an item or not) to fit the problem setting of implicit
feedback following [4]. In the training stage, for each positive sam-
ple, we randomly sample 4 negative samples. For all methods, we
set the dimension of embedding as 256, and mini-batch size of 1280.
We employ the Adam [9] optimizer and search its learning rate
within {0.001, 0.002, 0.005, 0.01}. We fix 𝜆 = 0.005 in meta stage.
For all EMCDR-based methods and TMCDR, we use a single fully
connected layer as mapping function and meta network. We report
the average AUC and NDCG@10 on three random trials.

3.2 Results
Recommendation Performance.We demonstrate the effective-
ness of TMCDR on six CDR tasks. The experimental results eval-
uated by AUC and NDCG@10 are shown in Table 1. The experi-
mental results reveal several insightful observations. (1) With vari-
ous CDR scenarios, TMCDR outperforms most compared methods
which demonstrates the effectiveness of TMCDR. The improvement
mainly comes from the task-oriented meta network. (2) On all CDR
scenarios, EMCDR_MF largely outperforms EMCDR𝑜𝑟𝑖_MF. The
main reason is that the overlapping users only cover a part of items,
and the models cannot learn other items which have not been in-
teracted by overlapping users. It also demonstrates that using all
samples is more effective than only using samples of overlapping
users. (3) We can find that CMF, BPR, ListRank-MF, and CML have
different performances on various scenarios, which testifies differ-
ent tasks should adopt different models. Especially in Scenario 3,
CML outperforms all methods on NDCG@10. (4) The confidence
intervals of results on the Douban dataset are smaller than the Ama-
zon dataset. We think the reason is that Douban dataset has more

Figure 1: Generalization experiments.

overlapping users, which makes the training process more stable.
(5) CST only utilizes the source model as a pre-trained model and
regularizes the parameters can obtain remarkable results, which
demonstrates fine-tuning recommendation models on a pre-trained
model is effective.

Generalization. Our TMCDR is a general framework that can
be applied on most EMCDR-based methods with various base mod-
els, e.g., MF, BPR, ListRank-MF, and CML.We compare four EMCDR-
based methods, EMCDR_MF, EMCDR_BPR, EMCDR_ ListRank-MF,
and SSCDR. Note that SSCDR is a combination of CML and EMCDR,
so we do not compare TMCDR with EMCDR_CML. To implement
our TMCDR, the mapping function of these methods is replaced by
the task-oriented meta network. The results are drawn in Figure 1,
and the red lines denote the baselines (EMCDR-based methods),
while the blue lines represent the modified methods (TMCDR). And,
the bands are confidence intervals over three runs. From the Fig-
ure 1, we can find that on most tasks our TMCDR can improve
the performance of various EMCDR-based methods, which demon-
strates the generalization ability of the TMCDR.

4 CONCLUSION
In this paper, we studied CDR to cold-start users from the perspec-
tive of meta learning. EMCDR is a popular approach in this area,
and there are many EMCDR-based methods. However, with limited
overlapping users, the mapping function would be overfitting. To
address the problem, with the advantage of MAML, we proposed a
novel Transfer-Meta Framework for CDR (TMCDR), which learns
a task-oriented meta network. Besides, TMCDR is a general frame-
work that can be applied on most EMCDR-based methods with
various base models, e.g., MF, BPR, CML. Finally, we conducted ex-
tensive experiments on real-world datasets collected from Amazon
and Douban to validate the effectiveness and compatibility of our
proposed TMCDR.
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