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Abstract

Open relation extraction (OpenRE) aims to ex-
tract novel relation types from open-domain
corpora, which plays an important role in
completing the relation schemes of knowl-
edge bases (KBs). Most OpenRE methods
cast different relation types in isolation with-
out considering their hierarchical dependency.
We argue that OpenRE is inherently in close
connection with relation hierarchies. To ad-
dress the bidirectional connections between
OpenRE and relation hierarchy, we propose
the task of open hierarchical relation extrac-
tion and present a novel OHRE framework for
the task. To effectively integrate hierarchy in-
formation into relation representations for bet-
ter novel relation extraction, we propose a dy-
namic hierarchical triplet objective and hierar-
chical curriculum training paradigm. We also
present a top-down hierarchy expansion algo-
rithm to add the extracted relations into exist-
ing hierarchies with reasonable interpretability.
Comprehensive experiments show that OHRE
outperforms state-of-the-art models by a large
margin on both relation clustering and hierar-
chy expansion. The source code and experi-
ment details of this paper can be obtained from
https://github.com/thunlp/OHRE.

1 Introduction

Open relation extraction (OpenRE) aims to extract
novel relations types between entities from open-
domain corpora, which plays an important role
in completing the relation schemes of knowledge
bases (KBs). OpenRE models are mainly cate-
gorized into two groups, namely tagging-based
and clustering-based methods. Tagging-based
methods consider OpenRE as a sequence labeling
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Figure 1: The workflow of OHRE framework. Trained
with relation hierarchy and labeled instances, OHRE
extracts novel relations from open-domain corpora and
adds them into the existing hierarchy.

task, which extracts relational phrases from sen-
tences (Banko et al., 2007; Cui et al., 2018). In
contrast, clustering-based methods aim to cluster
relation instances into groups based on their se-
mantic similarities, and regard each cluster as a
relation (Yao et al., 2011; Wu et al., 2019).

However, most OpenRE models cast different re-
lation types in isolation, without considering their
rich hierarchical dependencies. Hierarchical orga-
nization of relations has been shown to play a cen-
tral role in the abstraction and generalization ability
of human (Tenenbaum et al., 2011). This hierar-
chical organization of relations also constitutes the
foundation of most modern KBs (Auer et al., 2007;
Bollacker et al., 2008). Figure 1 illustrates an ex-
ample of relation hierarchy in Wikidata (Vrandečić
and Krötzsch, 2014). Such relation hierarchies are
crucial in establishing the relation schemes of KBs,
and could also help users better understand and
utilize relations in various downstream tasks.

However, manually establishing and maintain-
ing the ever-growing relation hierarchies require

https://github.com/thunlp/OHRE
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expert knowledge and are time-consuming, given
the usually large quantity of relations in existing
hierarchy and the rapid emergence of novel rela-
tions in open domain corpora.1 Since the ultimate
goal of OpenRE is to automatically establish and
maintain relation schemes for KBs, it is desirable to
develop OpenRE methods that can directly add the
extracted novel relations into the existing incom-
plete relation hierarchy. Moreover, incorporating
the hierarchical information of existing relations
can also help OpenRE methods to model their inter-
dependencies. Such refined semantic connections
among existing relations can provide transferable
guidance to better extract new relations.

Given the inherent bidirectional connections be-
tween OpenRE and relation hierarchy, in this work,
we aim to introduce relation hierarchy information
to improve OpenRE performance, and directly add
the extracted new relations into the existing hierar-
chy, which presents unique challenges. We propose
a novel framework OHRE to consider relation hi-
erarchy in OpenRE. The key intuition behind our
framework is that distance between relations in hier-
archy reflects their semantic similarity. Therefore,
nearby relations should share similar representa-
tions, and vice versa. Figure 1 shows the frame-
work of OHRE, which consists of two components:

(1) In relation representation learning, we de-
sign a dynamic hierarchical triplet objective to inte-
grate hierarchy information into relation represen-
tations. We also present a hierarchical curriculum
learning strategy for progressive and robust train-
ing. (2) In relation hierarchy expansion, we first
cluster instances into new relation prototypes and
then conduct a top-down hierarchy expansion algo-
rithm to locate new relations into hierarchy. In this
way, OHRE encodes hierarchical information into
relation representations, which improves classical
OpenRE and further enables hierarchy expansion.

To verify the effectiveness of hierarchical infor-
mation and the proposed framework, we conduct
experiments over two evaluations, including the
classical relation clustering task and a novel hier-
archy expansion task. Experimental results on two
real-world datasets show that our framework can
bring significant improvements on the two tasks,
even with partially available hierarchy from KBs.

The main contributions of this work are con-
cluded as follows: (1) To the best of our knowl-

1E.g., the number of relations in Wikidata has grown to
more than 8, 000 in the last 6 years.

edge, we are the first to address bidirectional con-
nections between OpenRE and relation hierarchy.
We propose a novel open hierarchical relation ex-
traction task, which aims to provide new relations
and their hierarchical structures simultaneously. (2)
We present a novel OHRE framework for the pro-
posed task, which integrates hierarchical informa-
tion into relation representations for better relation
clustering, and directly expands existing relation
hierarchies with a top-down algorithm. (3) Com-
prehensive experiments on two real-world datasets
demonstrate the effectiveness of OHRE on both
relation clustering and hierarchy expansion.

2 Related Works

Open Relation Extraction. Recent years have
witnessed an upsurge of interest in open relation
extraction (OpenRE) that aims to identify new re-
lations in unsupervised data. Existing OpenRE
methods can be divided into tagging-based meth-
ods and clustering-based methods. Tagging-based
methods seek to extract surface form of relational
phrases from text in unsupervised (Banko et al.,
2007; Banko and Etzioni, 2008), or supervised
paradigms (Angeli et al., 2015; Cui et al., 2018;
Stanovsky et al., 2018). However, many relations
cannot be explicitly represented as surface forms,
and it is hard to align different relational tokens
with the same meanings.

In contrast, traditional clustering-based OpenRE
methods extract rich features of sentences and clus-
ter features into novel relation types (Lin and Pan-
tel, 2001; Yao et al., 2011, 2012; Elsahar et al.,
2017). Marcheggiani and Titov (2016) propose
discrete-state variational autoencoder (VAE) that
optimizes a relation classifier by reconstruction sig-
nals. Simon et al. (2019) introduce skewness loss to
enable stable training of VAE. Hu et al. (2020) learn
relation representations and clusters iteratively via
self-training. Wu et al. (2019) improve conven-
tional unsupervised clustering-based methods by
combining supervised and unsupervised data via
siamese networks, and achieve state-of-the-art per-
formance. However, existing OpenRE methods
cast different relation types in isolation without
considering their rich hierarchical dependencies.

Hierarchy Information Exploitation. Well-
organized taxonomy and hierarchies can facilitate
many downstream tasks. Hierarchical informa-
tion derived from concept ontologies can reveal
semantic similarity (Leacock and Chodorow, 1998;
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Ponzetto and Strube, 2007), and is widely applied
in enhancing classification models (Rousu et al.,
2005; Weinberger and Chapelle, 2009) and knowl-
edge representation learning models (Hu et al.,
2015; Xie et al., 2016). Similar to concept hier-
archy, some recent works try to exploit semantic
connections from relation hierarchy. In the field
of relation extraction, Han et al. (2018a) propose a
hierarchical attention scheme to alleviate the noise
in distant supervision. Zhang et al. (2019) leverage
implicit hierarchical knowledge from KBs and pro-
pose coarse-to-fine grained attention for long-tail
relations. However, these methods are designed
to identify pre-defined relations, and cannot be ap-
plied to OpenRE that aims to discover novel rela-
tions in open-domain corpora.

3 OHRE Framework

We divide the open hierarchical relation extraction
problem into two phases: (1) learning relation rep-
resentations with hierarchical information and (2)
clustering and linking novel relations to existing
hierarchies.

3.1 Relation Representation Learning

Learning relation representation is fundamental to
open hierarchical relation extraction. We encode
sentences into relation representations using a re-
lation embedding encoder. We assume existing
relations are organized in hierarchies, which is com-
mon in most modern KBs. Note that while Figure 1
shows one hierarchy tree, the relation hierarchies
may contain multiple trees. To fully utilize hierar-
chy information, we design a dynamic hierarchical
triplet objective that integrates hierarchy informa-
tion into relation representations, and hierarchical
curriculum learning for robust model training. Pair-
wise virtual adversarial training is also introduced
to improve the representation generalization ability.

Relation Embedding Encoder. We adopt CNN to
encode sentences into relation representations. Fol-
lowing previous works (Zeng et al., 2014), given
a sentence s and target entity pair (eh, et), each
word in the sentence is first transformed into in-
put representations by the concatenation of word
embedding and position embedding indicating the
position of each entity. Then the input representa-
tion is fed into a convolutional layer followed by a
max-pooling layer and a fully-connected layer to
obtain the relation representation v ∈ Rd. The rela-
tion representation is normalized by L2 norm, i.e.,
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Figure 2: OHRE samples triplets from relations in hi-
erarchy following a shallow-to-deep paradigm and sets
dynamic margin via relation distance in hierarchy.

‖v‖2 = 1. The relation encoder can be denoted as:

v = CNN(s, eh, et). (1)

After obtaining relation representations, we mea-
sure the similarity of two relation instances by the
Euclidean distance between their representations:

d(v1,v2) = ‖v1 − v2‖22. (2)

Dynamic Hierarchical Triplet Loss. To effec-
tively integrate relation hierarchy information into
relation representations, we propose a dynamic hi-
erarchical triplet loss for instance representation
learning. Triplet loss is widely used in metric learn-
ing that encourages a static margin between differ-
ent categories for distinguishment (Schroff et al.,
2015). We argue that good relation representa-
tions should also reflect hierarchical information,
where relations with close semantics in hierarchy
should share similar representations. As the exam-
ple shown in Figure 2, r1i and r1j should be closer
than r2i and r2j in representation space, since r1i and
r1j are close to each other in the relation hierarchy.

We design a hierarchical triplet objective with
a dynamic margin which is determined by the dis-
tance between relations in hierarchy. Specifically,
the dynamic margin is conducted over the instances
of the relations. As shown in Figure 2, given two
relations ri and rj sampled by hierarchical curricu-
lum training strategy (which will be introduced
later), we randomly sample two instances (namely
anchor instance a and positive instance p) from ri,
and an instance (namely negative instance n) from
rj . The hierarchical triplet objective requires model
to distinguish the positive pair (a, p) from the neg-
ative pair (a, n) by a distance margin, which is dy-
namically determined by the length of the shortest



5685

path between ri and rj in the hierarchy as follows:

Lt =
∑

ri,rj∼T

max[0, d(va,vp)

+ λd
l(ri, rj)

1 + l(ri, rj)
− d(va,vn)],

(3)

where λd is a hyperparameter, l(ri, rj) is the length
of the shortest path between ri and rj in the hier-
archy,2 and T is the curriculum training strategy
that will be introduced later. Intuitively, the margin
increases with the length of the shortest path in the
hierarchy, with a relative emphasis on distinguish-
ing nearby relations. Compared to the static margin
in vanilla triplet loss, dynamic hierarchical margin
can capture the semantic similarities of relations in
the hierarchy, leading to representations that can
serve not only novel relation clustering but also
effective relation hierarchy expansion.
Hierarchical Curriculum Learning. In addition
to providing direct supervision for representation
learning, relation hierarchy can also be useful in
providing signals for robust model training. We
propose a hierarchical training paradigm, which is
a curriculum learning strategy (Bengio et al., 2009)
that enables progressive training. The motivation is
intuitive: In the early period of training, we choose
relations that are easy to distinguish by the model,
and gradually transfer to harder ones. Specifically,
we sample two relations from the same layer in
hierarchy that share ancestor relations (i.e., the re-
lations come from the same tree and are of the same
depth), with a gradual transition from shallow to
deep layers with respect to their common ancestor,
as shown in Figure 2. The training procedure will
lead the model to learn relations from coarse to fine
grains, since the length of the shortest path between
two relations in hierarchy gradually increases as
the relation pair goes deeper.3 In experiments, we
find it beneficial to warm-up the training of OHRE
under the hierarchical training paradigm, and then
switch to two random relations in the later phase.
Pair-wise Virtual Adversarial Training. Neural
metric learning models may suffer from the over-
fitting problem by learning very complex decision
hyperplanes. In our case, the problem is severe
since relation hierarchies provide strong supervi-
sion to metric learning. To address this issue, we

2The margin is 1 if two relations come from different trees.
3Relations with longer shortest paths are more difficult

to the model, since they need to be distinguished by larger
margins, as indicated in Equation 3.

design pair-wise virtual adversarial training that
smooths the representation space by penalizing
sharp changes in the space. Specifically, for each
randomly sampled instance pair, we add worst-case
perturbations, such that the distance between the
relation pairs reaches the maximum changes. We
penalize the loss changes as follows:

Lv =
∑
v1,v2

‖d(v1,v2)− d(ṽ1, ṽ2)‖22, (4)

where ṽ is obtained by adding the worst-case noise
to v. Pair-wise virtual adversarial training encour-
ages smooth and robust metric space, thus improv-
ing the generalization ability of OpenRE models.
Unlike previous works that adopt virtual adversar-
ial training in classification problems (Miyato et al.,
2017; Wu et al., 2019), our pair-wise virtual adver-
sarial training is based on distance in Euclidean
space instead of classification probability distribu-
tions. We refer readers to the appendix for more
details about the pair-wise virtual adversarial train-
ing. The final loss is defined as the addition of
dynamic hierarchical triplet loss Lt and pair-wise
virtual adversarial loss Lv:

L = Lt + λvLv, (5)

where λv is a hyperparameter.

3.2 Relation Hierarchy Expansion
To expand the existing relation hierarchies, we
first cluster novel relations in open-domain cor-
pora based on instance representations, and then
learn relation prototypes for both relations in the
existing hierarchy and novel relations. Finally, new
relations are inserted into the existing relation hi-
erarchy by a novel top-down hierarchy expansion
algorithm based on relation prototypes.

The hierarchy expansion framework is designed
based on two key assumptions: (1) A relation pro-
totype is the aggregation of all instances belonging
to itself and descendant relations. (2) A relation
prototype has the highest similarity with its parent
relation prototype, and a lower similarity with its
sibling relation prototypes. The rationale of the
assumptions is that the semantics of a relation is
typically covered by its ancestors. The assump-
tion is also aligned with the intuition in relation
representation learning, where a relation exhibits
the highest similarity with its parent, due to the
minimum shortest path length (i.e., the length is 1).
Relation Prototype Learning. We first cluster
new relations in unsupervised data by Louvain algo-
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rithm (Blondel et al., 2008). Louvain detects com-
munities in a graph by greedily merging data points
to clusters based on modularity optimization, and
has proven effective in OpenRE (Wu et al., 2019).
We construct a weighted undirected graph of the
relation instances in the test set, where the connec-
tion weight between two instances is determined
by the distance between their representations:

w(v1,v2) = max[0, 1− d(v1,v2))]. (6)

In experiments, we observe that clusters contain-
ing very few instances are typically noisy outliers
and are not proper to be regarded as novel relations,
which is consistent with Wu et al. (2019). There-
fore, we merge instances in these clusters into their
closest clusters, measured by the highest connec-
tion weight. Then we learn relation prototypes for
both relations in the existing hierarchy and novel
relations based on the clusters. We represent each
relation prototype with instances, where the proto-
type of a novel relation consists of all its instances,
and the prototype of an existing relation contains all
instances from itself and all descendant relations.

Top-Down Hierarchy Expansion. After obtain-
ing relation prototypes, we link these extracted re-
lations to existing hierarchy by a novel top-down hi-
erarchy expansion algorithm. Following the afore-
mentioned assumptions, for each novel relation, the
algorithm finds its parent with the highest similarity
in a top-down paradigm.

Specifically, for each novel relation, starting
from the existing root relations, we iteratively
search the relation with the highest similarity in
candidates layer by layer. In each layer, the search
candidates are obtained by the child relations of
the search result in the previous layer. The search
process terminates if the similarity decreases com-
pared to the previous layer. The extracted relation
will be inserted as the child of the most similar rela-
tion, or cast as a singleton if the highest similarity
is lower than a threshold, where a higher expansion
threshold will lead to more singleton relations. The
procedure is shown in Algorithm 1, and we refer
readers to experiments for a detailed example. In
practice, the similarity between a novel relation
and an existing relation is given by the average
connection between their prototypes as follows:

S(ri, rj) =

∑
v1∈Pi

∑
v2∈Pj

w(v1,v2)

|Pi| · |Pj |
·
√

1 + |P s
j |, (7)

Algorithm 1 Top-Down Hierarchy Expansion
Require: r: A novel relation
Require: λW : Expansion threshold
1: Init search candidates C = root relations of trees
2: Init highest similarity in previous layer W = 0
3: while C not empty do
4: Search relation ĉ = argmax

c∈C
S(r, c)

5: if S(r, ĉ) > W then
6: // Move to the next layer
7: Update highest similarity W = S(r, ĉ)
8: Update search candidates C = children of ĉ
9: else

10: Stop searching
11: if W ≥ λW then
12: Expand r as child of ĉ
13: else
14: Cast r as singleton relation

where ri is a novel relation and rj is an existing
relation, Pi and Pj are the corresponding relation
prototypes, and |P s

j | refers to the number of all
descendant relations of rj . In experiments, we
find that relations containing more descendant re-
lations in hierarchy tend to exhibit lower average
connections with novel relations, due to the mar-
gins between the contained descendant relations.
By introducing

√
1 + |P s

j |, we balance the connec-
tion strength and encourage the model to explore
wider and deeper hierarchies.

The reason for expanding hierarchy with a top-
down paradigm is threefold: (1) The coarse-to-
fine-grained hierarchy expansion procedure is bio-
plausible, as suggested by cognitive neuroscience
studies (Tenenbaum et al., 2011). (2) The decision
making procedure following the existing hierarchy
structure is interpretable. (3) It can achieve better
efficiency since the unlikely branches are pruned
in the early search stage.

4 Experiments

To verify the effectiveness of hierarchical informa-
tion and OHRE, we conduct comprehensive exper-
iments on relation clustering and hierarchy expan-
sion on two real-world datasets. We also conduct
a detailed analysis of OHRE to provide a better
understanding of our framework. We refer readers
to the appendix for more implementation details.

4.1 Dataset
Following previous works (Wu et al., 2019; Hu
et al., 2020), we evaluate our framework on
FewRel (Han et al., 2018b) and New York Times
Freebase (NYT-FB) dataset (Marcheggiani and
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Titov, 2016). However, the original random data
splits are not suitable to benchmark open hierar-
chical relation extraction task, since the test sets
do not well cover different topologies in relation
hierarchy. In the test sets, for a majority of rela-
tions, their parent relations are not labeled with
sentences in the dataset, making them singleton
relations. It is desirable to include more diverse
and challenging relations with complex topologies
in the test sets. Thus we re-split these two datasets
to better approximate and provide benchmarks for
real-world needs. Considering applications where
only incomplete relation hierarchies are available,
we only use partial hierarchy from KBs, removing
the hierarchy of relations beyond the train sets.
FewRel Hierarchy. FewRel (Han et al., 2018b) is
a supervised dataset created from Wikipedia and
Wikidata. Following Wu et al. (2019), the train set
includes 64 relations where each relation has 700
instances. The development set and test set share
16 relations, and each set has 1, 600 instances. We
exchange relations from the original train and test
set to include three relation typologies in test set:
(1) single relation without a parent (6 relations), (2)
relation with a parent in train set (8 relations), and
(3) relation with a parent in test set (2 relations).
We call this dataset FewRel Hierarchy.
NYT-FB Hierarchy. NYT-FB (Marcheggiani and
Titov, 2016) is a distantly supervised dataset cre-
ated from New York Times and Freebase. Follow-
ing Simon et al. (2019), we filter out sentences
with non-binary relations. The train set includes
212 relations with 33, 992 instances. The develop-
ment set and test set share 50 relations, and have
3, 835 and 3, 858 instances respectively. Each rela-
tion in development set and test set has at least 10
instances. We call this dataset NYT-FB Hierarchy.

4.2 Experimental Settings
We introduce two task settings and correspond-
ing evaluation metrics. (1) Relation clustering set-
ting is widely adopted in previous OpenRE works
to evaluate the ability of clustering novel rela-
tions (Marcheggiani and Titov, 2016; Wu et al.,
2019). (2) We also design the hierarchy expansion
setting to thoroughly test the ability of OpenRE
models in expanding existing relation hierarchies.

4.2.1 Relation Clustering Setting
Relation clustering is a traditional OpenRE setting,
where models are required to cluster instances into
different groups representing new relations.

Baselines. We compare OHRE with state-of-the-
art OpenRE baselines. (1) Relational Siamese
Network augmented with conditional entropy and
virtual adversarial training (RSN-CV) (Wu et al.,
2019) is the state-of-the-art OpenRE method that
transfers relational knowledge from labeled data
to discover relations in unlabeled data. (2) Self-
ORE (Hu et al., 2020) utilizes self-training to iter-
atively learn relation representations and clusters.
(3) HAC with re-weighted word embeddings (RW-
HAC) (Elsahar et al., 2017) is the state-of-the-art
rich feature-based method. RW-HAC first extracts
rich features, such as entity types, then reduces
feature dimension via principal component analy-
sis, and finally clusters the features with HAC. (4)
Discrete-state variational autoencoder (VAE) (Elsa-
har et al., 2017) optimizes a relations classifier via
reconstruction signals, with rich features including
dependency paths and POS tags.

Evaluation Metrics. Following Wu et al. (2019);
Hu et al. (2020), we adopt instance-level evaluation
metrics to evaluate relation clustering, including
B3 (Bagga and Baldwin, 1998), V-measure (Rosen-
berg and Hirschberg, 2007) and Adjusted Rand
Index (ARI) (Hubert and Arabie, 1985). We refer
readers to the appendix for more detailed descrip-
tions about the evaluation metrics.

4.2.2 Hierarchy Expansion Setting
In this setting, models are required to first cluster
novel relations, and then further add the extracted
relations into the existing hierarchy in train set.

Baselines. To the best of our knowledge, there
are no existing OpenRE methods designed to di-
rectly expand an existing relation hierarchy. We
design two strong baselines based on state-of-the-
art OpenRE architectures. (1) RW-HAC for hier-
archy expansion (RW-HAC-HE) links each novel
relation cluster given by RW-HAC to the existing
relation cluster with the global highest the Ward’s
linkage score. The novel relation will be a single-
ton if the highest score is less than a threshold. (2)
RSN-CV for hierarchy expansion (RSN-CV-HE)
obtains clusters using RSN-CV, and links them to
the hierarchy using our top-down expansion algo-
rithm. Here without confusion, we omit the -HE
suffixes in model names in the experiment results.

Evaluation Metrics. We adopt two metrics to eval-
uate on cluster-level (1) how well a predicted clus-
ter matches the golden cluster by matching met-
ric (Larsen and Aone, 1999), and (2) how well
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Dataset Model B3 V-measure ARIF1 Prec. Rec. F1 Hom. Comp.

FewRel
Hierarchy

VAE (Marcheggiani and Titov, 2016) 23.0 14.2 61.4 24.1 17.7 37.9 4.9
RW-HAC (Elsahar et al., 2017) 32.7 28.0 39.4 39.7 36.0 44.4 12.4
SelfORE (Hu et al., 2020) 60.6 60.1 61.1 70.1 69.5 70.7 54.6
RSN-CV (Wu et al., 2019) 63.8 57.4 71.7 72.4 68.9 76.2 54.2
OHRE 70.5 64.5 77.7 76.7 73.8 79.9 64.2

NYT-FB
Hierarchy

VAE (Marcheggiani and Titov, 2016) 25.2 17.6 44.4 35.1 28.2 46.3 10.5
RW-HAC (Elsahar et al., 2017) 35.0 43.3 29.4 58.9 61.7 56.3 28.3
SelfORE (Hu et al., 2020) 38.1 42.6 34.5 59.0 60.7 57.5 30.4
RSN-CV (Wu et al., 2019) 38.9 26.3 74.2 44.1 74.3 55.4 26.2
OHRE 43.8 31.4 72.3 60.0 49.9 75.3 31.9

Table 1: Relation clustering results on two datasets (%).

Model B3 F1 V-F1 ARI

RSN-CV 63.8 72.4 54.2
w/o VAT 53.3 65.0 43.2

OHRE 70.5 76.7 64.2
w/o Dynamic Margin 68.9 76.1 63.5
w/o Curriculum Train 68.5 75.7 62.1
w/o Pair-wise VAT 58.3 68.8 49.5

Table 2: Ablation results on FewRel Hierarchy (%).

the predicted cluster links to the golden position
in hierarchy by taxonomy metric (Dellschaft and
Staab, 2006). We also report two overall evalua-
tion metrics that consider both relation clustering
and hierarchy expansion results. Specifically, we
report the arithmetic mean and harmonic mean of
matching F1 and taxonomy F1.

4.3 Relation Clustering Results

Main Results. Table 1 shows relation clustering re-
sults on two datasets, from which we observe that:
(1) OHRE outperforms state-of-the-art models by a
large margin, e.g., with 6.7%, 4.3%, 9.6% improve-
ments in B3, V-measure, and ARI respectively on
FewRel Hierarchy. Compared with unsupervised
methods, the performance gap is even greater, e.g.,
more than 30% in B3 on FewRel Hierarchy. This
shows that OHRE can effectively leverage existing
relation hierarchy for better novel relation cluster-
ing. (2) The improvements of OHRE are consistent
in both supervised FewRel Hierarchy dataset and
distantly supervised NYT-FB Hierarchy dataset.
This indicates that the representation learning and
relation clustering procedure of OHRE is robust to
noisy relation labels and long-tail relations in dif-
ferent domains. We note that although our model
adopts CNN as the relation encoder, it outperforms
SelfORE equipped with BERT (Devlin et al., 2019).

We expect it would be beneficial to enhance the re-
lation representations in OHRE with pre-trained
language models, and we leave it for future work.

Ablation Study. We conduct ablations to investi-
gate the contribution of different components, as
shown in Table 2. For fair comparisons, we also ab-
late virtual adversarial training from RSN-CV (Wu
et al., 2019). Experimental results show that all
components contribute to the final performance.
This shows that hierarchical information from exist-
ing relations can provide transferable guidance for
novel relation clustering. The performance drops
most significantly when removing pair-wise virtual
adversarial training, indicating the importance of
space smoothing to the generalization of OHRE.

4.4 Hierarchy Expansion Results

Main Results. Table 3 shows the results of hier-
archy expansion, from which we observe that: (1)
OHRE outperforms strong baselines on hierarchy
expansion. Compared to baselines, OHRE achieves
higher match F1, which indicates that relations ex-
tracted by OHRE can be better aligned with golden
relations on cluster-level. Moreover, the advan-
tage in taxonomy F1 shows that OHRE can better
add the extracted relations in the existing hierarchy.
The reasonable overall result shows the potential
of OHRE in real-world open hierarchical relation
extraction applications. (2) We also conduct hi-
erarchy expansion experiments with golden novel
clusters. However, experiment results show no ob-
vious improvements for all models. Particularly,
we note that while RW-HAC and RSN-CV achieve
seemingly reasonable performance, they always
cast novel relation as a singleton and are unable
to add the relation to the right place in hierarchy.4

4The proportion of singleton relations is 37.5%.
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(c) OHRE then expands relation
hierarchy based on relation proto-
types in a top-down paradigm.

Figure 3: OHRE workflow in expanding an existing hierarchy with novel relations, and t-SNE visualization on
FewRel Hierarchy. Relations with labeled instances in the dataset are marked in color. Relations in existing
hierarchy are marked with solid lines, and novel relations are marked with dashed lines. Best viewed in color.

Dataset Method Golden
Cluster

Match Taxonomy Arith. Harm.
F1 Prec. Rec. F1 Prec. Rec. F1 F1

FewRel
Hierarchy

RW-HAC 33.2 33.9 37.6 37.5 37.5 37.5 35.3 35.2
RSN-CV 69.6 63.7 85.8 34.5 38.5 31.3 52.0 46.1
OHRE 78.5 73.6 88.4 53.3 57.1 50.0 65.9 63.5

RW-HAC
X N/A

43.8 43.8 43.8 71.9 60.9
RSN-CV 37.5 37.5 37.5 68.8 54.5
OHRE 57.4 62.5 53.1 78.7 73.0

NYT-FB
Hierarchy

RW-HAC 29.6 34.3 34.0 10.1 8.7 12.0 19.8 15.0
RSN-CV 45.1 33.2 83.1 10.5 15.2 8.0 27.8 17.0
OHRE 51.7 42.7 76.2 22.3 23.9 21.0 37.0 31.2

RW-HAC
X N/A

20.0 16.7 25.0 60.0 33.3
RSN-CV 13.0 16.0 11.0 56.5 23.1
OHRE 23.0 23.0 23.0 61.5 37.4

Table 3: Hierarchy expansion results. Golden cluster indicates the golden relation clusters are given, in which case
matching metric for relation clustering is not applicable. Arith: arithmetic mean, Harm: harmonic mean.

Relation Clustering Hierarchy Expansion
sgl. p-trn. p-tst. sgl. p-trn. p-tst.

RW-HAC 31.6 35.0 42.8 60.0 0.0 0.0
RSN-CV 67.1 77.8 64.4 58.8 0.0 0.0
OHRE 75.2 84.6 53.9 58.8 36.4 0.0

Table 4: Relation clustering (B3 F1) and hierarchy ex-
pansion (Taxonomy F1) results on relations in different
hierarchy topologies. sgl.: relations without a parent,
p-trn.: parent in train set, p-tst.: parent in test set.

This is because the inconsistent instance represen-
tations within each golden cluster will mislead the
expansion procedure on cluster-level, which shows
integrating hierarchy information into relation rep-
resentations is of fundamental importance to hier-
archy expansion. Besides, the results also show the
necessity of re-splitting FewRel to include more hi-
erarchy topologies in test set for better benchmark.

Zoom-in Study. To better understand the perfor-
mance of models on hierarchy expansion, we divide

the relations according to their hierarchy topologies
and report the performance on FewRel Hierarchy.
Table 4 shows the results on three topologies, in-
cluding (1) single relations without parents (sgl.),
(2) relations with parents in train set (p-trn.), and
(3) relations with parents in test set (p-tst.). The re-
sults show that although models achieve reasonable
performance on clustering in all three topologies,
they struggle on hierarchy expansion, especially
on relations with parents. In comparison, OHRE
can handle some relations with parents in train set.
However, there is still ample room for improve-
ment. This shows hierarchy expansion is challeng-
ing, and we leave further research for future work.

4.5 Case Study
To intuitively show how OHRE expands an existing
hierarchy with novel relations from open-domain
corpora, we visualize the workflow of OHRE on re-
lation composer, as shown in Figure 3. The average
connection score increases as the expansion proce-
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dure progress from top to down in hierarchy. The
expansion procedure terminates when the connec-
tion score decreases. The process is not only better
aligned with real-world needs, but also provides
better interpretability in decision making.

5 Conclusion

In this work, we make the first attempt to address
bidirectional connections between OpenRE and
relation hierarchy. In the future, we believe the
following directions worth exploring: (1) We use a
heuristic method to add new relations into hierar-
chies based on local similarities between relations.
In future, more advanced methods can be designed
to model the global interaction between new rela-
tions and hierarchy, and learn to effectively add the
novel relations. (2) We conduct relation representa-
tion learning and hierarchy expansion in a pipeline.
In the future, end-to-end models can be developed
to jointly optimize these important phases for better
open hierarchical relation extraction results.
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A Implementation Details

In this section, we introduce hyperparameters and
important bounds in relation representation learn-
ing and in relation hierarchy expansion respectively.
All hyperparameters are selected by grid search on
the development set. Moreover, we report the aver-
age training time and the number of parameters.

Representation Learning Hyperparameters. In
embedding layer, we use 50-d GloVe (Penning-
ton et al., 2014) word embeddings and 2 ran-
domly initialized 5-d position embeddings, and
all the embeddings are trainable. The con-
volution kernel size is 3, relation embedding
size is 64 selected from {64, 128, 256, 512}, and
λd in representation learning is 0.7 selected
from {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. We apply
dropout (Srivastava et al., 2014) after embedding
layer with dropout rate 0.2, and L2 regularization
on the convolutional and fully connected layer with
hyperparameters 2e-4 and 1e-3 respectively. Dur-
ing training, the batch size is 64 selected from
{16, 32, 64, 128}. For each batch, we randomly
sample 4 relation types, each with 16 instances.
Besides, hierarchical curriculum learning strategy
lasts 100 batches in the first epoch to warm up the
model parameters. In pair-wise virtual adversarial
training strategy, we first generate perturbation vec-
tor δ1 for each instance representation v, where the
value in each dimension follows a uniform distribu-
tion of range [0, 1). Then the perturbation vector δ1
is scaled such that its L2 norm is 0.02. We add δ1
to the instance feature, and compute the worst-case
perturbation δ2 based on the gradient. Finally δ2 is
scaled to 0.02 in L2 norm, and added to the feature
of the instance to obtain ṽ.

Hierarchy Expansion Hyperparameters. In re-
lation clustering process, Louvain (Blondel et al.,
2008) algorithm will not take the similarity be-
tween instances less than the threshold 0.5 into
account. The instance of novel relation prototypes
having less than 5 instances will be moved to their
closest neighbors based on the average connection
weight. During hierarchy expansion, the thresholds
for singleton relations in top-down expansion and
RW-HAC-HE are 0.2 and 0.1 respectively.

B Evaluation Metrics

In this section, we provide details of evaluation
metrics in two settings.

Relation Clustering Setting. Following previous

works (Wu et al., 2019; Hu et al., 2020), we adopt
instance-level evaluation metrics, including B3, V-
measure and Adjusted Rand Index.

(1) B3. For each instance in test set, B3 com-
putes its precision and recall by comparing the clus-
ter containing the instance in prediction results and
the cluster containing the instance in golden answer.
After that, B3 averages the precision and recall
of each instance and produces a harmonic mean.
(2) V-measure. Similarly, V-measure (Rosenberg
and Hirschberg, 2007) is another instance-based
measurement that further introduces conditional
entropy, which asks for the higher requirement of
the purity of clusters. Compare to B3, the exis-
tence of a few wrong instances in a relatively pure
cluster decreases more score to punish clustering
results. Meanwhile, the V-measure F1 calculates
the harmonic mean of homogeneity and complete-
ness. (3) Adjusted Rand Index. ARI (Hubert and
Arabie, 1985) counts all pair-wise assignments in
the same or different groups to measure the simi-
larity of predicted and golden clusterings. Random
node assignment makes ARI be 0, and the maxi-
mum of ARI is 1, which means the perfect result.
Compared to the previous two metrics, ARI is less
sensitive since it won’t be influenced by an extreme
sub-value like precision or homogeneity.

Hierarchy Expansion Setting. To bridge the pre-
dicted clusters with real relations, we first match
each predicted cluster to the golden cluster then
cast it as a prototype for hierarchy position evalua-
tion. We borrow two metrics to evaluate how well
a predicted cluster matches the golden cluster, and
how well the predicted cluster links to the golden
position in hierarchy on cluster-level.

(1) Matching Metric. Similar to Larsen and
Aone (1999), we try to match each predicted clus-
ter to one golden relation with whom the predicted
cluster has the highest F1 score on cluster-level.
Note that different from the original measurement,
the golden relation can be matched once only. For
each paired novel cluster and golden relation, we
calculate precision, recall, and F1 score, and finally
weighted sum up based on the number of instances.

(2) Taxonomy Metric. Taxonomy metric
was first proposed to evaluate taxonomy struc-
ture (Dellschaft and Staab, 2006). After match-
ing predicted clusters to golden relations, for each
predicted cluster, we use taxonomy metric to com-
pare the position of this predicted cluster and the
position of the corresponding golden relation in
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hierarchy. Assume position p in hierarchy is char-
acterized by the union of all its ancestors and de-
scendants u(p). Denote rg as the golden position
and rp as the predicted position of relation r in the
hierarchy, respectively. The precision is defined as
follows,

Prec. =
1

|P |
∑
r∈P

|u(rp) ∩ u(rg)|
|u(rp)|

, (8)

where P are the predicted relation clusters. After
symmetrically calculating taxonomy recall, we can
get taxonomy F1 by their harmonic average.

(3) Overall Evaluation Metric. To give a global
evaluation of open hierarchical relation extraction
problem, we propose the Overall Evaluation Met-
ric. It simply combines the matching metric and
taxonomy metric by arithmetic mean and harmonic
mean, to give an overall score that considers both
cluster-level performance and taxonomy-level per-
formance.


