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Abstract
Both explicit and implicit feedbacks can reflect us-
er opinions on items, which are essential for learn-
ing user preferences in recommendation. Howev-
er, most current recommendation algorithms mere-
ly focus on implicit positive feedbacks (e.g., click),
ignoring other informative user behaviors. In this
paper, we aim to jointly consider explicit/implicit
and positive/negative feedbacks to learn user unbi-
ased preferences for recommendation. Specifically,
we propose a novel Deep feedback network (DFN)
modeling click, unclick and dislike behaviors. DFN
has an internal feedback interaction component that
captures fine-grained interactions between individ-
ual behaviors, and an external feedback interac-
tion component that uses precise but relatively rare
feedbacks (click/dislike) to extract useful informa-
tion from rich but noisy feedbacks (unclick). In
experiments, we conduct both offline and online
evaluations on a real-world recommendation sys-
tem WeChat Top Stories used by millions of users.
The significant improvements verify the effective-
ness and robustness of DFN. The source code is in
https://github.com/qqxiaochongqq/DFN.

1 Introduction
Personalized recommendation systems aim to provide cus-
tomized items for users according to their preferences. They
have been widely used in various fields including video [Cov-
ington et al., 2016] and E-commerce [Feng et al., 2019].

There are plenty of recommendation systems personalized
with user-item interactions. Such informative signals are cat-
egorized into two types, namely the explicit feedback and the
implicit feedback [Liu et al., 2010]. The explicit feedback
comes from user direct opinions on items (e.g., star ratings
or like/dislike). It could precisely indicate users’ real prefer-
ences, while it is rather challenging to collect such feedback.
In contrast, the implicit feedback mainly derives from user
behaviors that imply indirect opinions (e.g., click or unclick).
It is much easier to collect such implicit feedbacks from enor-
mous numbers of user behaviors in real-world recommenda-
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tion systems. However, implicit feedbacks struggle with their
inherent noises and the natural scarcity of negative feedbacks,
which gravely harm the accuracy in learning user’s unbiased
preferences [Hu et al., 2008].
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Figure 1: An example of multiple feedbacks in WeChat Top Stories.

Recently, recommendation systems usually regard the per-
sonalized recommendation as a Click-Through Rate (CTR)
prediction task. Therefore, it is natural that most recommen-
dation algorithms mainly concentrate on the implicit positive
feedbacks such as clicks, which could be easily collected in
practice. These models are directly optimized with click be-
haviors and CTR-oriented objectives, which will inevitably
result in the following problems. First, CTR-oriented objec-
tives usually concentrate on what users like, ignoring what
users dislike. Simply relying on these implicit positive feed-
backs will make models tend to provide homogeneous and
myopic results, which will eventually harm user experiences
[Zhao et al., 2018a]. Therefore, negative feedbacks should
be considered in recommendation. Second, besides passively
receiving information chosen by models, users also need ef-
fective and efficient feedback mechanisms to actively interact
with recommendation systems. Moreover, there are also gaps
between users’ implicit feedbacks and their real preferences
(click does not always mean like) [Wang et al., 2018]. It con-
firms the necessity of explicit feedbacks in recommendation.

Multiple explicit/implicit and positive/negative feedbacks
can complement each other and reflect user unbiased prefer-
ences in recommendation. There are some efforts jointly con-
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sider both explicit and implicit feedbacks with Collaborative
filtering [Liu et al., 2010] and multi-task learning [Hadash
et al., 2018]. However, the negative feedbacks in these works
are usually ignored or only locate in explicit feedbacks, which
are precise but rare. Some works consider unclick or missing
behaviors as implicit negative feedbacks to multiply negative
signals [Zhao et al., 2018b]. Unfortunately, the noises in such
implicit negative feedbacks crucially limit the performances,
since these implicit negative feedbacks may be caused by var-
ious reasons besides dislike [He et al., 2016].

In this paper, we concentrate on improving recommenda-
tion performances with different types of explicit/implicit and
positive/negative feedbacks. To address the problems in con-
ventional methods, we propose a novel Deep feedback net-
work (DFN), which jointly considers multiple feedbacks and
their interactions in deep model based recommendation. Fig 1
shows a brief example of different types of feedbacks used in
DFN, including implicit positive feedback (i.e., click), im-
plicit negative feedback (i.e., unclick) and explicit negative
feedback (i.e., dislike). Specifically, we first conduct trans-
former over the target item and behaviors separately in each
feedback sequence to capture internal behavior-level interac-
tions. Next, we utilize high-quality but relatively rare click
and dislike behaviors to denoise rich but noisy unclick behav-
iors with external feedback-level interactions. These distilled
feedback features are combined with other features and then
fed into the feature interaction module with Wide, FM and
Deep components. The main advantage of DFN is that it suc-
cessfully combines multiple feedbacks to learn user unbiased
positive and negative preferences for recommendation, which
solves the dilemma of quality and quantity in feedbacks.

In experiments, we conduct both offline and online evalu-
ations on a well-known recommendation system WeChat Top
Stories widely used by hundreds of millions of users. We al-
so conduct parameter analyses and ablation tests to show the
effectiveness and robustness of our model. The main contri-
butions of DFN are concluded as follows:

• To the best of our knowledge, we are the first to combine
implicit positive feedbacks, implicit negative feedbacks,
explicit negative feedbacks and their interactions in deep
neural recommendation.

• We propose a novel deep feedback network, which cre-
atively uses both internal and external feedback interac-
tions to learn user unbiased preferences. We also jointly
consider multiple feedback losses in optimization.

• The significant improvements in both offline and online
evaluations confirm the effectiveness and robustness of
DFN in real-world recommendation systems.

2 Related Works
Recommendation System. Conventional recommendation
algorithms such as Collaborative filtering (CF) [Sarwar et
al., 2001] capture the similarities between users and items.
Factorization machine (FM) [Rendle, 2010] utilizes factor-
ized parameters to model second-order feature interactions.
With the blooming of deep learning, Wide&Deep [Cheng et
al., 2016] jointly considers memorization in Wide component

and generalization in Deep component. DeepFM [Guo et al.,
2017] improves Wide&Deep by replacing the wide part with
FM layer, while NFM [He and Chua, 2017] and AFM [Xiao
et al., 2017] combine FM with DNN and attention serially.
DCN [Wang et al., 2017] and AutoInt [Song et al., 2019] fur-
ther consider high order feature interactions. In session-based
recommendation, DIN [Zhou et al., 2018], DSIN [Feng et al.,
2019] and ATRank [Zhou et al., 2018] conduct attention over
different behaviors. BERT4Rec [Sun et al., 2019] also uses
BERT for sequence modeling. In this paper, we model mul-
tiple feedbacks with transformer and attention, and combine
Wide, FM and DNN components for feature interactions.

Implicit and Explicit Feedbacks. Both implicit and ex-
plicit feedbacks are beneficial in recommendation [Jawaheer
et al., 2010]. There are plenty of efforts that jointly consid-
er multiple feedbacks with CF [Koren, 2008; Liu et al., 2010;
Zhang et al., 2018], bayesian ranking model [Liu et al., 2017]
and weak supervision [Jadidinejad et al., 2019]. Some works
aim to conduct feature mapping or transfer learning to build
relations between explicit and implicit feedbacks [Pan et al.,
2016]. Most algorithms combine explicit and implicit feed-
backs in multi-task learning framework [Hadash et al., 2018;
Jadidinejad et al., 2019] to jointly solve ranking and rating
tasks. In DFN, we use high-quality but relatively rare explicit
feedbacks to guild feature extraction in rich but noisy implicit
negative feedbacks for CTR and dislike prediction.

Negative Feedbacks. Negative feedbacks are essential for
modeling user preferences but hard to collect [Jawaheer et al.,
2010]. Conventional methods usually regard all missing or
unclicked data as negative feedbacks in CF-based models [Hu
et al., 2008]. However, it also brings in large numbers of nois-
es, since unclick does not always indicate dislike [Wang et al.,
2018]. To distill the real negative signals in implicit feedback-
s, some models use exposure variables [Liang et al., 2016] or
popularity [He et al., 2016]. Zhao et al. [2018b] conducts
reinforcement learning with both click and unclick sequences
as features. In contrast, explicit negative feedbacks could di-
rectly reflect user’s negative opinions [Jawaheer et al., 2010;
Zhao et al., 2018a], while their scarcity limits their usage in
deep-based models. To the best of our knowledge, we are the
first to encode click, unclick, dislike behaviors and their inter-
actions into deep neural recommendation, considering nega-
tive signals in both implicit and explicit feedbacks.

3 Methodology
We aim to jointly consider multiple explicit/implicit and posi-
tive/negative feedbacks to learn user unbiased preferences for
recommendation. Specifically, we conduct the DFN model on
a real-world recommendation system, and collect three types
of feedbacks in user historical behaviors as follows:
• Implicit positive feedbacks. The implicit positive feed-

backs are the most widely-used feedbacks in large-scale
recommendation, which are satisfactory in both quanti-
ty and quality. Following most conventional models, we
consider the click behavior sequence {c1, · · · , cn1} as
the implicit positive feedback used in DFN.
• Explicit negative feedbacks. Explicit feedbacks are

high-quality but rare in read-world recommendation. We
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Figure 2: The overall architecture of Deep feedback network and deep feedback interaction module.

use the dislike button attached to each item to collect ex-
plicit negative feedback sequence as {d1, · · · , dn2}.
• Implicit negative feedbacks. We regard the impressed

but unclick behavior sequence {u1, · · · , un3} as the im-
plicit negative feedbacks. This unclick behavior is the
vast majority of all types of feedbacks, while it seriously
struggles with noises and false-negative signals.

DFN attempts to use high-quality click and dislike behaviors
as instructors to extract useful information from unclick be-
haviors. It is also easy to add other feedbacks in DFN.

3.1 Overall Architecture
The Deep feedback network mainly consists of two modules,
namely the deep feedback interaction module and the feature
interaction module. First, the deep feedback interaction mod-
ule takes multiple feedbacks as inputs to extract user unbiased
positive and negative preferences, with the help of internal
and external feedback interactions. Second, the refined feed-
back features are combined with other informative features
such as user profiles, item features and recommendation con-
texts. We implement Wide, FM and Deep components for
feature aggregation. Finally, the outputs of feature interac-
tion module are fed into fully connected and Softmax layers
for model optimization with both positive and negative losses.
Fig 2 (a) illustrates the overall architecture of DFN.

3.2 Deep Feedback Interaction Module
The deep feedback interaction module in Fig 2 (b) takes im-
plicit positive (click), explicit negative (dislike) and implicit
negative (unclick) feedbacks with target item as inputs. We
conduct two components to learn from the interactions inside
and between different types of feedbacks.

Internal Feedback Interaction Component
This component focuses on the interactions between target
item and individual behaviors within a certain type of feed-
back. We conduct a multi-head self-attention over behaviors
following Vaswani et al. [2017]. All behavior features con-
sist of their item embeddings and position embeddings, and
are projected into a joint semantic space to form the behavior

embeddings. Taking the click behavior for instance, we com-
bine the target item t with the behavior embeddings of click
sequence to form the input matrix Bc = {t, c1, · · · , cn1

}.
The query, key, value matrices are calculated as:

Q = WQBc, K = WKBc, V = WV Bc, (1)

where WQ,WK ,WV are projection matrices. We then cal-
culate the self-attention as follows:

Attention(Q,K,V) = softmax(
Q>K
√
nh

)V, (2)

where nh is the dimension of query, key and value. The i-th
head of the total h multi-heads is calculated as:

headi = Attention(WQ
i Q,W

K
i K,WV

i V). (3)

WQ
i ,W

K
i ,W

V
i ∈ Rnh×nh/h are weighting matrices for the

i-th head. The final output matrix of self-attention is:

Fc = concat(head1, · · · , headh) ·WO, (4)

WO ∈ Rnh×nh is a projection matrix. Finally, we conduct
an average pooling over all n+1 output embeddings in Fc to
generate the implicit positive feedback embedding fc as:

fc = Average pooling(Fc), fc ∈ Rnh . (5)

We also use the same transformer with type-specific hyper-
parameters to generate the explicit negative feedback embed-
ding fd and the implicit negative feedback embedding fu from
dislike and unclick behaviors respectively. The internal feed-
back interaction component well captures behavior-level in-
teractions between target item and behaviors in each type of
feedback sequence. It can provide user positive and negative
preferences related to the target item.

External Feedback Interaction Component
Implicit negative feedbacks are sufficient but extremely noisy.
In general, unclick behaviors seem to imply negative signals,
while items exposed to users are carefully chosen by certain
strategies, which may also contain user interests from coarse-
grained aspects. The external feedback interaction compo-
nent aims to distinguish what users really like and dislike in
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unclick behaviors, according to strong feedbacks in click and
dislike behaviors. Specifically, we conduct two vanilla atten-
tions, which considers implicit positive and explicit negative
feedback embeddings fc and fd as instructors to guild positive
and negative preference extractions from unclick sequences
{u1, · · · ,un3

}. We formalize the unclick-dislike interaction
embedding fud with dislike and unclick behaviors as:

fud =

n3∑
i=1

αiui, αi =
f(fd,ui)∑n3

j=1 f(fd,uj)
, (6)

where the weighting score function f(a,b) is defined as:
f(a,b) = MLP(concat(a,b,a− b,a� b)). (7)

We regard � as the element-wise product and use a 2-layer
Multi-layer perceptron (MLP). fd contains user’s strong neg-
ative preferences refined from explicit negative feedbacks re-
lated to target item. It helps vanilla attention to extract items
that users truly dislike in unclick behaviors. We also amplify
the positive voices in unclick behaviors with implicit positive
feedback embedding fc similarly as follows:

fuc =

n3∑
i=1

βiui, βi =
f(fc,ui)∑n3

j=1 f(fc,uj)
. (8)

At last, we combine all five feedback features to generate
the final refined feedback feature fFeed as follows:

fFeed = {fc, fd, fu, fuc, fud}. (9)
The implicit positive and explicit negative feedbacks fc and fd
are regarded as strong positive and negative signals, while the
rest unclick-related feedbacks are regarded as weak signals.

3.3 Feature Interaction Module
In feature interaction, we combine the refined feedback fea-
ture with other features including user profiles, item features
and recommendation contexts. Following Guo et al. [2017],
we group these sparse features into m fields {x1, · · · , xm}
including continuous fields (e.g., age) and categorical fields
(e.g., location). All fields are represented as one-hot embed-
dings. A lookup table is used to generate the dense feature
of all fields as {f1, · · · , fm}. We implement Wide, FM and
Deep components for feature interaction.
Wide Component The Wide component is a generalized
linear model widely used in recommendation [Cheng et al.,
2016]. The output of the Wide component yWide is a m-
dimensional vector, where the i-th element is calculated as:

yWide
i = w>i xi + bi, wi,xi ∈ Rnfi . (10)

wi is the weighting vector of the i-th one-hot field embedding
xi, and bi is the bias. nfi is the dimension of xi.
FM Component The FM component captures the second-
order feature interactions between all features. The input em-
beddings of FM is the combination of all dense features and
final refined feedback features as F′ = {f1, · · · , fm, fFeed}.
We follow the Bi-interaction layer in He and Chua [2017] and
generate the output embedding yFM as follows:

yFM =
m+5∑
i=1

m+5∑
j=i+1

f ′i � f ′j , f ′i , f
′
j ∈ F′. (11)

Deep Component In Deep component, we implement a 2-
layer MLP to learn high-order feature interactions. The input
is the concatenation of dense features and feedback features
represented as f (0) = concat(f1, · · · , fm, fFeed). We have:

yDeep = f (2), f (i+1) = ReLU(W(i)f (i) + b(i)), (12)

where f (i) is the output embedding of the i-th layer. W(i) is
the weighting matrix and b(i) is the bias of the i-th layer.

Finally, we concatenate all outputs from three components
to generate the aggregated feature embedding y as:

y = concat(yWide,yFM ,yDeep). (13)

3.4 Optimization Objective
We utilize click, unclick and dislike behaviors for supervised
training. The predicted click probability is calculated with the
aggregated feature embedding y as follows:

p(x) = σ(w>p y). (14)

wp is the weighting vector, and σ(·) is the sigmoid function.
The loss function of DFN consists of three parts correspond-
ing to click, unclick and dislike behaviors as:

L = − 1

N
(λc

∑
Sc

log p(x) + λu
∑
Su

log(1− p(x))

+ λd
∑
Sd

log(1− p(x))).
(15)

The train set hasN instances grouped into click set Sc, dislike
set Sd and unclick set Su. λc, λd, λu are weights of different
losses to measure the importances of different feedbacks.

4 Experiments
4.1 Datasets
Since there are few large-scale datasets having click, unclick
and dislike behaviors, we build a new dataset MultiFeed from
a real-world recommendation system WeChat Top Stories af-
ter data masking. Precisely, we randomly collect 448 million
user behaviors from 20.3 million users on 3.1 million items,
considering the behaviors in the first few days as train set and
the rest as test set. These user behaviors include implicit pos-
itive (click), implicit negative (unclick) and explicit negative
(dislike) feedbacks. In test set, MultiFeed has nearly 222 mil-
lion instances for CTR and dislike prediction, containing 33
million click behaviors and 328 thousand dislike behaviors.

#user #item #click #dislike #unclick

20.3M 3.10M 66.0M 0.65M 381M

Table 1: Statistics of the MultiFeed dataset.

4.2 Competitors and Experimental Settings
Competitors We implement eight classical models as base-
lines for evaluation. All models (DFN and baselines) use the
same features including all feedbacks for fair comparisons.
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• FM [Rendle, 2010]. Factorization machine (FM) mod-
els second-order feature interactions for CTR prediction.
FM is considered as the base model in evaluation.
• Wide&Deep [Cheng et al., 2016]. Wide&Deep consists

of a Wide part that handles raw features, and a Deep part
that extracts high-order feature interactions.
• NFM [He and Chua, 2017]. NFM uses a bi-interaction

layer before DNN layers for feature interaction.
• AFM [Xiao et al., 2017]. AFM brings in attention over

feature interactions from the bi-interaction layer.
• DeepFM [Guo et al., 2017]. DeepFM replaces the Wide

component in Wide&Deep with a FM layer.
• DCN [Wang et al., 2017]. DCN captures the bounded-

degree feature interactions with its cross network.
• DIN [Zhou et al., 2018]. DIN is a classical model for

session-based recommendation. It considers the weights
of items in user historical behaviors with attention.
• AutoInt [Song et al., 2019]. AutoInt introduces self-

attentive neural network for feature interactions.

We do not compare with other models like Hadash et al.
[2018] and Jadidinejad et al. [2019], for these models usually
rely on customized feedbacks or multi-task learning, which
are hard to be adapted to our CTR and dislike prediction tasks.
Experimental Settings In DFN, the max length of all three
behavior sequences is 30 and the feature field number is 47.
The dimension of each feature embeddings nh = 64, and the
dimension of 2-layer MLP in Deep is 32 and 16. In training,
we utilize Adam with the batch size to be 64. The weights of
click, unclick and dislike losses λc : λu : λd = 1 : 1 : 10. We
conduct the grid search for parameters. All models follow the
same experimental settings for fair comparisons.

4.3 CTR Prediction
We first evaluate DFN on the classical CTR prediction to ver-
ify its capability in modeling user positive preferences.
Evaluation Protocol In CTR prediction task, we utilize a
widely-used metric Area Under Curve (AUC) for evaluation.
Following Yan et al. [2014], we further bring in RelaImpr to
measure the relative improvements over base model (i.e., FM
in our setting). Since AUC is 0.5 from a random strategy, the
RelaImpr in this task is formalized as:

RelaImpr =
AUC(measured model)− 0.5

AUC(base model)− 0.5
− 1. (16)

We do not use Logloss as evaluation metric, for the loss func-
tions of DFN and other baselines are different.
Experimental Results Table 2 shows the results of CTR
prediction on MultiFeed, from which we can find that:

(1) DFN significantly outperforms all baselines on AUC
and achieves 11.85% relative improvement over base model.
We also conduct a significance test to verify that DFN outper-
forms baselines with the significance level α = 0.01. Note
that all baselines also use multiple feedbacks as features. The
impressive improvements over strong baselines indicate that
DFN could well capture informative messages in implicit and

model AUC RelaImpr

FM [Rendle, 2010] 0.7591 0.00%
Wide&Deep [Cheng et al., 2016] 0.7728 5.29%
AFM [Xiao et al., 2017] 0.7601 0.35%
NFM [He and Chua, 2017] 0.7627 1.39%
DeepFM [Guo et al., 2017] 0.7718 4.90%
DCN [Wang et al., 2017] 0.7735 5.56%
DIN [Zhou et al., 2018] 0.7797 7.95%
AutoInt [Song et al., 2019] 0.7726 5.21%

DFN (ours) 0.7898 11.85%

Table 2: Results of CTR prediction on MultiFeed dataset.

explicit feedbacks, which are essential for modeling user un-
biased positive preferences in recommendation.

(2) The advantages of DFN mainly derive from the deep
feedback interaction module. First, the internal feedback in-
teraction component successfully captures fine-grained inter-
actions between the target item and individual behaviors with
transformer. It could extract user preferences from behavior-
level interactions inside different types of feedbacks. Second,
the external feedback interaction component uses precise but
relatively rare feedbacks to denoise rich but noisy unclick be-
haviors with vanilla attention. Therefore, DFN can solve the
dilemma of quantity and quality. In ablation test, we will give
detailed analyses on different components of DFN.

4.4 Dislike Prediction
The significant improvements in CTR prediction have shown
that DFN could well learn user positive preferences. In this
subsection, we further propose a new dislike prediction task
to evaluate DFN in modeling user negative preferences.

Evaluation Protocol The dislike behavior usually indicates
a strong negative signal. A timely feedback mechanism could
rapidly capture user’s instant preferences from dislike behav-
iors and improve user experience. We propose the dislike pre-
diction task, which aims to predict what users dislike in rec-
ommended items and avoid disappointing users. Following
CTR prediction, we also use AUC and RelaImpr as metrics,
regarding 1− p(x) as the predicted dislike probability.

model AUC RelaImpr

FM [Rendle, 2010] 0.6979 0.00%
Wide&Deep [Cheng et al., 2016] 0.6803 -8.89%
DeepFM [Guo et al., 2017] 0.6784 -9.85%
DCN [Wang et al., 2017] 0.6884 -4.80%
NFM [He and Chua, 2017] 0.7042 3.18%
AFM [Xiao et al., 2017] 0.6988 4.55%
AutoInt [Song et al., 2019] 0.6761 -11.02%
DIN [Zhou et al., 2018] 0.7147 8.49%
DIN+ (DIN + dislike loss) 0.7749 38.91%

DFN (ours) 0.8804 92.22%

Table 3: Results of dislike prediction on MultiFeed dataset.

Experimental Results Table 3 demonstrates the results of
dislike prediction. We can observe that:
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(1) DFN achieves the best performance on AUC with the
significance level α = 0.01. It indicates that DFN could learn
both user positive and negative preferences and respond time-
ly to explicit negative feedbacks. Note that dislike prediction
needs algorithms to make fine-grained discriminations, for all
impressed items (including disliked items) are relatively good
candidates selected by algorithms. Currently, dislike behavior
only accounts for 0.15% of all feedbacks in our system, while
it has already shown its power in CTR and dislike prediction-
s. The improvements will be more significant with the mutual
promotion of more negative feedbacks and better models.

(2) The impressive improvement comes from two points:
(i) DFN considers explicit negative feedbacks in loss func-
tion, which directly optimizes the dislike prediction. (ii) The
deep feedback interaction module brings in both internal and
external feedback interactions, which better extracts informa-
tive user unbiased preferences for recommendation.

(3) For fair models comparisons, we further add the dislike
loss in DFN to some strong baselines (e.g., DIN+). The re-
sults are also improved but still far worse than DFN, which
confirms the power of both dislike loss and the feedback in-
teraction module of DFN. Moreover, we find that the relative
performances of baselines on CTR and dislike predictions are
different. It is natural since they do not specifically optimize
dislike loss, and thus are unstable in dislike prediction.

4.5 Ablation Tests
In Table 4, we conduct an ablation test to show the effective-
ness and necessity of different components in deep feedback
interaction module. We observe that: (1) DFN (click) per-
forms better than DFN (w/o feedbacks), which confirms the
significance of click behaviors. (2) The significant improve-
ment from DFN (click) to DFN (internal) also verifies that
unclick and dislike behaviors could provide complementary
information that helps to learn user unbiased preferences. (3)
Comparing with DFN (internal) and DFN (All), we can find
that the external feedback interaction still makes a notable
improvement, which confirms that the external feedback in-
teraction component is beneficial in DFN.

model AUC RelaImpr

DFN (w/o feedbacks) 0.7742 5.75%
DFN (click) 0.7824 8.84%
DFN (internal) 0.7879 10.77%

DFN (All) 0.7898 11.85%

Table 4: Ablation tests for DFN on CTR prediction.

4.6 Online A/B Test
Online System and Evaluation Protocol We conduct an
online A/B test to evaluate DFN on WeChat Top Stories used
by millions of users. The compared baseline is DIN with oth-
er online modules unchanged. We use four evaluation metric-
s including CTR, list-wise CTR (LCTR), average using time
(AUT) and dislike-through rate (DTR). We conduct the A/B
test with nearly 870 thousand users, and report the improve-
ments instead of detailed values in Table 5.
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Figure 3: Analysis on different weights of dislike loss λd.

Experimental Results We find that: (1) DFN achieves con-
sistent improvements on CTR and LCTR metrics over DIN,
which confirms that DFN performs well in real-world CTR
prediction. The improvement of AUT also implies that users
are willing to spend more time using our system, since DFN
could provide better recommended items. (2) The significant
improvement in DTR shows that DFN is capable of model-
ing user negative preferences in recommendation, which is
essential for improving user experience in practice.

model CTR LCTR AUT DTR

DFN +1.17% +0.65% +0.52% -33.17%

Table 5: Online A/B tests on WeChat Top Stories.

4.7 Parameter Analysis
We further conduct a parameter analysis on different weights
of dislike loss λd in Eq. (15) to measure the impact of dislike
loss function on both CTR and dislike prediction. In Fig. 3,
we evaluate DFN with different λd on these two task. We find
that: (1) in CTR prediction, DFN achieves the best perfor-
mance when λd = 10. The performance will get worse if λd
is set too low or too high. It indicates that dislike feedbacks
are useful not only as features, but also as loss function, while
too many weights on dislike feedbacks will harm the learning
of user positive preferences. (2) As λd grows bigger, the per-
formance of dislike prediction also becomes better, while the
AUC growth will gradually slow down when λd gets too high.
It is natural that the dislike loss function could benefit dislike
prediction, which has also been verified in Sec. 4.4. How-
ever, the performance growth is not endless, which confirms
the importance of balancing positive and negative feedbacks.
In experiments, we choose λd = 10 to jointly consider both
CTR (we concern more about) and dislike prediction tasks.

5 Conclusion and Future Work
In this paper, we propose a Deep feedback network (DFN),
which considers both explicit/implicit and positive/negative
feedbacks to learn user unbiased preferences. DFN uses inter-
nal behavior-level and external feedback-level interactions in
multiple feedbacks. The significant improvements in offline
and online verify the effectiveness and robustness of DFN.
In future, we will use more sophisticated ranking models for
feature interactions. Moreover, we will explore other explicit
feedbacks to improve recommendation interpretability.
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