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Abstract
Representation learning of knowledge graphs aims
to encode both entities and relations into a contin-
uous low-dimensional vector space. Most existing
methods only concentrate on learning representa-
tions with structured information located in triples,
regardless of the rich information located in hierar-
chical types of entities, which could be collected in
most knowledge graphs. In this paper, we propose
a novel method named Type-embodied Knowledge
Representation Learning (TKRL) to take advan-
tages of hierarchical entity types. We suggest that
entities should have multiple representations in dif-
ferent types. More specifically, we consider hierar-
chical types as projection matrices for entities, with
two type encoders designed to model hierarchical
structures. Meanwhile, type information is also uti-
lized as relation-specific type constraints. We eval-
uate our models on two tasks including knowledge
graph completion and triple classification, and fur-
ther explore the performances on long-tail dataset.
Experimental results show that our models signif-
icantly outperform all baselines on both tasks, e-
specially with long-tail distribution. It indicates
that our models are capable of capturing hierar-
chical type information which is significant when
constructing representations of knowledge graphs.
The source code of this paper can be obtained from
https://github.com/thunlp/TKRL.

1 Introduction
Knowledge graphs (KGs) such as Freebase, DBpedia and
YAGO provide effective structured information and have
been crucial in information retrieval and question answer-
ing. A typical KG is usually represented as multi-relational
data with enormous triple facts in the form of (head entity,
relation, tail entity), abridged as (h, r, t).

As KG size increases, KG applications become more chal-
lenging due to data sparsity and computational inefficien-
cy. To address these problems, representation learning (R-
L), which aims to project both entities and relations into a
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continuous low-dimensional semantic space, is blooming and
widely utilized in knowledge completion, fusion and infer-
ence. It significantly improves the ability of KGs in cogni-
tion and reasoning [Bordes et al., 2013; Yang et al., 2014;
Dong et al., 2014; Neelakantan et al., 2015].

Many methods have been proposed on RL for KGs, among
which the translation-based models are simple and effective
with the state-of-the-art performances. Unfortunately, most
conventional methods merely focus on the structured infor-
mation in triples, paying less attention to the rich information
located in hierarchical types of entities. Fig. 1 shows a triple
instance combined with part of its hierarchical types sampled
from Freebase, in which the solid lines indicate the most sig-
nificant roles that head and tail play in this triple.

( William Shakespeare,  book/author/works_written,  Romeo and Juliet )

music award book TV

artist award_nominee author written_work TV_subject

Figure 1: Example of entity hierarchical types in Freebase.

It is intuitive that entities possessing multiple types should
have various representations in different scenarios. To take
advantages of entity types, we propose a novel and effec-
tive RL method for KGs named Type-embodied Knowledge
Representation Learning (TKRL). In TKRL, we follow the
assumption in TransE [Bordes et al., 2013], considering rela-
tions as translating operations between head and tail. For each
triple (h, r, t), h and t are first projected to their correspond-
ing type spaces in this relation as hrh and trt, according to
the type-specific projection matrices constructed with two hi-
erarchical type encoders. TKRL is then optimized by mini-
mizing the energy function of E(h, r, t) = ||hrh + r− trt||.
Moreover, type information is also considered as type con-
straints in both training and evaluation.

We evaluate the TKRL model on benchmark datasets of
Freebase with knowledge graph completion and triple clas-
sification. Experimental results show that TKRL has signif-
icant and consistent improvements compared to all baselines
on both tasks, especially with long-tail distribution, which



confirms the capability of TKRL modeling KGs.

2 Related Work
2.1 Translation-based Models
Recent years there are great advances in representation learn-
ing for knowledge graphs. TransE [Bordes et al., 2013]
projects both entities and relations into the same continuous
low-dimensional vector space, interpreting relations as trans-
lating operations between head and tail entities. TransE as-
sumes that the embedding of tail t should be in the neigh-
bourhood of h+r. The energy function is defined as follows:

E(h, r, t) = ||h+ r− t||. (1)

TransE is effective and efficient, while the simple translating
operation may lead to problems when modeling more com-
plicated relations like 1-to-N, N-to-1 and N-to-N.

To address this issue, TransH [Wang et al., 2014b] inter-
prets relations as translating operations on relation-specific
hyperplanes, allowing entities to have different distances in
different relations. TransR [Lin et al., 2015b] directly model-
s entities and relations in separate entity and relation spaces,
projecting entities from entity space to relation-specific space
when judging the distance between entities. TransD [Ji et al.,
2015] proposes dynamic mapping matrix constructed via both
entity and relation, considering the diversity of entities as
well as relations simultaneously. Besides, [Lin et al., 2015a;
Gu et al., 2015] also encode multiple-step relation path in-
formation into KG representation learning. However, These
models only concentrate on information in triples, ignoring
rich information in entity types, which will be considered in
TKRL model.

2.2 Multi-source Information Learning
Multi-source information like textual information and type
information, considered as supplements for the structured
information embedded in triples, is significant for RL in
KGs. NTN [Socher et al., 2013] encodes 3-way tensors in-
to neural network and represents an entity as the average of
word embeddings in its entity name. [Wang et al., 2014a;
Zhong et al., 2015] encode both entities and words into a
joint continuous vector space by alignment models using
Wikipedia anchors, entity names or entity descriptions. D-
KRL [Xie et al., 2016] proposes description-based represen-
tations for entities constructed from entity descriptions with
CBOW or CNN, which is capable of modeling entities in
zero-shot scenario.

Rich information located in hierarchical entity types is al-
so significant for KGs, while it has just attracted attention.
[Krompaß et al., 2015] considers entity types as hard con-
straints in latent variable models for KGs. However, the type
information is not explicitly encoded into KG representation-
s, and their method doesn’t consider the hierarchical structure
of entity types. Moreover, hard constraints may have issues
with noises and incompleteness in type information, which
is pretty common in real-world KGs. Therefore, we propose
the TKRL model to overcome these shortages. To the best of
our knowledge, TKRL is the first method which explicitly en-
codes type information into multiple representations in KGs
with the help of hierarchical structures.

3 Methodology
To utilize rich information located in entity types, we take
type information into consideration when constructing pro-
jection matrices of entities, with two hierarchical type en-
coders modeling hierarchical structures. Moreover, type in-
formation is also utilized as relation-specific type constraints
in both training and evaluation.

3.1 Hierarchical Type Structure
Hierarchical type information, which implies different roles
an entity may play in different scenarios, is of great signifi-
cance for representation learning in knowledge graphs. Most
typical knowledge graphs (e.g. Freebase and DBpedia) pos-
sess their own entity type information or could collect it from
large encyclopedias like Wikipedia through entity alignment.
These types are usually constructed with hierarchical struc-
tures, in which different granularities of semantic concepts
are considered as sub-types in different layers. Most entities
have more than one hierarchical type. Fig. 1 shows a brief
example of the hierarchical type structure.

Taking a hierarchical type c with k layers for instance, c(i)
is the i-th sub-type of c. We consider the most precise sub-
type to be the first layer and the most general sub-type to
be the last layer, while each sub-type c(i) has only one par-
ent sub-type c(i+1). Walking through the bottom-up path in
hierarchical structure, we can get the representation of hier-
archical type as c = {c(1), c(2), ..., c(k)}.

3.2 Overall Architecture
Existing translation-based models perform well in knowledge
graphs, but few of them make full use of the rich informa-
tion located in entity types. TransE represents entities and
relations in a low-dimensional vector space and interprets re-
lations as translating operations between entities. However,
TransE has issues when modeling N-to-1, 1-to-N and N-to-N
relations, since each entity has only one representation in ev-
ery scenario. For instance, William Shakespeare has a variety
of types (e.g. book/author, award/award nominee and mu-
sic/artist) and shows different attributes under different type-
s. We believe that every entity in different scenarios, as the
reflections of itself from various angles, should have different
representations.

To implement the multiple representations of entities in dif-
ferent types, we propose the TKRL model. More specifically,
we set type-specific projection matrices Mc constructed from
the hierarchical structures for each type c, and then represent
both h and t under the projections of the specific types crh
and crt which head and tail should belong to in this relation.
The energy function is defined as follows:

E(h, r, t) = ||Mrhh+ r−Mrtt||, (2)

in which Mrh and Mrt are different projection matrices for h
and t. We propose two hierarchical type encoders to construct
those projection matrices.

3.3 Hierarchical Type Encoders
To encode the hierarchical type information into representa-
tion learning, we first propose a general form of type encoder



to construct projection matrices for each entity. Secondly, t-
wo advanced encoders are proposed to take advantages of the
internal connections in hierarchical structures and the prior
knowledge in relation-specific type information.

General Form of Type Encoder
Most entities in KGs have more than one type, which could
be utilized as supplementary information when representing
entities. We propose a general form of type encoder, in which
the projection matrix Me for entity e will be the weighted
summation of all type matrices:

Me = α1Mc1 + α2Mc2 + · · ·+ αnMcn , (3)

where n is the number of types entity e has, ci is the i-th
type e belongs to, Mci is the projection matrix of ci, and αi

represents the corresponding weight for ci. Those weights
could be set according to the influence ci has on e measured
by some statistical features like type frequency. Through the
general type encoder, all projection matrices for entity e will
be the same in different scenarios.

However, entities should have different representations to
emphasize attributes of more importance in different scenar-
ios. Fortunately, the relation-specific type information in
KGs, which provides the possible type(s) an entity may be-
long to in a specific relation, could help for multiple entity
representations. To take advantage of this information, the
projection matrix Mrh in a specific triple (h, r, t) will be:

Mrh =

∑n
i=1 αiMci∑n

i=1 αi
, αi =

{
1, ci ∈ Crh

0, ci /∈ Crh

(4)

where Crh represents the type set of head in relation r given
by the relation-specific type information. Projection matrices
Mrt for entities in position of tail will be of the same form as
those for entities in head. Mc is the projection matrix for type
c, which could be constructed by the following two encoders.

h
t

r

Mch(m) Mct(m)

Mch(m-1) Mct(m-1)

Mch(1) Mct(1)
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(a) RHE

h
t
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(b) WHE

Figure 2: Hierarchical Type Encoders

Recursive Hierarchy Encoder
To further improve the representation of projection matrix
Mc by mining the latent information located in hierarchi-
cal type structures, we propose the Recursive Hierarchy En-
coder (RHE). Inspired by [Hu et al., 2015], each sub-type

(i.e. layer) in hierarchy is represented as a projection matrix
with different granularities. During the projection process,
entities (e.g. William Shakespeare) will be first mapped to
the more general sub-type space (e.g. book) and then be se-
quentially mapped to the more precise sub-type space (e.g.
book/author). The matrix Mc is designed as follows:

Mc =

m∏
i=1

Mc(i) = Mc(1)Mc(2) . . .Mc(m) , (5)

in whichm is the number of layers for type c in the hierarchi-
cal structure, while Mc(i) represents the projection matrix of
the i-th sub-type c(i).

Weighted Hierarchy Encoder
RHE proposes a recursive method of building hierarchical
type projection matrices. However, different granularities of
sub-types in hierarchical structures may vary in significance
when mapping entities. In this case, we propose the Weighted
Hierarchy Encoder (WHE) to consider weights in hierarchy.
In WHE, sub-types are represented as projection matrices too.
However, instead of using recursive operation to encode dif-
ferent granularities of sub-types, we sum up those projection
matrices with different weights to represent the hierarchical
type matrix Mc as follows:

Mc =

m∑
i=1

βiMc(i) = β1Mc(1) + · · ·+ βmMc(m) , (6)

in which m is the number of layers in the hierarchical struc-
ture, Mc(i) is the projection matrix of c(i), while βi is the cor-
responding weight of c(i). We design a proportional-declined
weighting strategy between c(i) and c(i+1) as follows:

βi : βi+1 = (1− η) : η,
m∑
i=1

βi = 1, (7)

in which we set η ∈ (0, 0.5). The strategy indicates that the
more precise sub-type c(i) is, the higher weight βi will be,
thus the greater influence c(i) will have on Mc.

3.4 Objective Formalization
We formalize a margin-based score function with negative
sampling as objective for training:

L =
∑

(h,r,t)∈T

∑
(h′,r′,t′)∈T ′

max(γ + E(h, r, t))

−E(h′, r′, t′), 0),

(8)

where E(h, r, t) is the energy function score of positive triple
and E(h′, r′, t′) is that of negative triple. γ > 0 is a hyper-
parameter of margin. T ′ stands for the negative sampling set
of T . Since there are no explicit negative triples in knowledge
graphs, T ′ is constructed as follows:

T ′ ={(h′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E}
∪ {(h, r′, t)|r′ ∈ R}, (h, r, t) ∈ T,

(9)

in which the head or tail in a positive triple is randomly re-
placed by any other entity in E. Differed from [Bordes et al.,
2013; Lin et al., 2015b], we also add relation replacements to
negative sampling for better performances in relation predic-
tion. Moreover, the new triples after replacements will not be
considered as negative samples if they are already in T .



3.5 Type Information as Constraints
We use hierarchical type encoders to build type-specific pro-
jection matrices mapping entities to different semantic vector
spaces in different scenarios. Besides we can use type infor-
mation not only as projection matrices but also as constraints
with the help of relation-specific type information. We pro-
pose two methods for using type information as constraints in
both training and evaluation.

Type Constraints in Training
In training, we select negative entity samples from all entities
in E with equal probability. In this case, entities sharing the
same types tend to cluster and have similar representation-
s, which actually becomes the main cause of errors in entity
prediction. To solve this problem, we propose a method for
negative sampling named Soft Type Constraint (STC). STC
improves the probability of selecting entities which have the
same types constrained by relation-specific type information,
and thus broadens the distances between similar entities. In-
stead of setting hard constraints as in [Krompaß et al., 2015]
which may disturb the clustering of similar entities, we uti-
lize soft constraints in which the probability of entities with
the same types being selected is as follows:

P (e′ ∈ Ec) =
(k + 1)|Ec|
|E|+ k|Ec|

, k ∈ N, (10)

where c is the golden type for e in this triple, Ec ∈ E is the
entity set in which all entities have type c, with |Ec| to be
the number of entities in Ec. k is a hyper-parameter that a
smaller k means a softer type constraint. It indicates that the
probability of selecting entities in Ec is k times bigger than
the probability of selecting entities which are not. With STC
in negative sampling, we can balance the diversity as well as
similarity between entities with the same types to get better
performances.

Type Constraints in Evaluation
Besides type constraints in training, we can also utilize the
information as type constraints in evaluation (TCE). It is intu-
itive that the head and tail entities should follow the type con-
straints provided by relation-specific type information. We
can simply remove the candidates which don’t follow the
type constraints in evaluation. However, the performances of
TCE are mostly based on the correctness and completeness
of relation-specific type information, since type constraints
could be incomplete or even wrong, which may lead to miss-
es in prediction. In evaluation, we will show the power of
TCE in auxiliary experiments.

3.6 Optimization and Implementation Details
The TKRL model can be stated as a parameter set θ =
(E,R,M), in which E and R stand for the embeddings of
entities and relations, and M stands for the projection matri-
ces of all sub-types.

Optimization and Model Initialization
The TKRL model is optimized with mini-batch stochastic
gradient descent (SGD), while chain rule is applied to up-
date all parameters. The sub-type projection matrix set M

could be initialized randomly or by identity matrix. Both E
and R could be either initialized randomly or be pre-trained
by existing translation-based models like TransE.

Implementation Details
We look through KGs to collect type instances for entities and
relation-specific type information. To decrease the influence
of incompleteness located in KGs, we also follow the local
closed-world assumptions (LCWA) proposed in [Krompaß et
al., 2015] as a supplementary method. In LCWA, all entities
appear in head (or tail) with the same relation should be al-
located with the same type. Following [Wang et al., 2014b],
we implement two strategies (i.e. “unif” and “bern”) for re-
placing head or tail with equal or different probabilities when
selecting negative samples. For the consideration of efficien-
cy, we employ a multi-thread version for learning.

4 Experiments

4.1 Datasets and Experiment Settings

Datasets
In this paper, we first use a typical knowledge graph FB15K
[Bordes et al., 2013] to evaluate our models on knowledge
graph completion and triple classification. FB15K is a dataset
extracted from Freebase [Bollacker et al., 2008] which con-
tains 14,951 entities, 1,345 relations and 592,213 triples in
total. Following [Bordes et al., 2013], we split those triples
into train, validation and test set.

As for the type information, we collect all type instances
for entities in FB15K located in type/instance field, as
well as the relation-specific type information located in rdf-
schema#domain and rdf-schema#range fields. We also filter
the type instances which never appear in extracted relation-
specific type information, since those types have little influ-
ence on relations in FB15K. After filtering, we have 571 type-
s. All entities in FB15K have at least one hierarchical type
and the average number of types is approximately 8.

Entities and relations in FB15K are limited that they should
have at least 100 mentions in Freebase [Bordes et al., 2013].
However, relations and entities in real-world KGs are much
more sparse than FB15K due to the long tail. To further
present the advantages of our models in real-world distribu-
tion, we construct FB15K+, which contains the same entities
in FB15K and almost all relations between those entities. We
only discard relations which just appear once, for they can’t
exist both in train and test set. The new-added 6,607 triples
are split into train and test set where every relation is men-
tioned at least once in train set. FB15K+ have 806 types after
filtering. The statistics of datasets are listed in Table 1.

Table 1: Statistics of datasets
Dataset #Rel #Ent #Train #Valid #Test

FB15K 1,345 14,951 483,142 50,000 59,071
FB15K+ 1,855 14,951 486,446 50,000 62,374



Experiment Settings
In evaluation, we implement TransE and TransR for com-
parison. For TransE, we improve their dissimilarity mea-
sure with L1-norm and replace relations as well as enti-
ties during negative sampling. We also use “bern” to re-
place head or tail with different probability following [Wang
et al., 2014b]. For TransR, we directly use the released
code given in [Lin et al., 2015b] and utilize replacements
of relations in negative sampling for better performances in
relation prediction. Both TransE and TransR are trained
with the best parameters reported in their papers. For
other baselines including RESCAL [Nickel et al., 2011;
2012], SE [Bordes et al., 2011], SME [Bordes et al., 2012;
2014] and LFM [Jenatton et al., 2012], we directly use the
results reported in [Lin et al., 2015b].

We train TKRL model with mini-batch SGD. As for pa-
rameters, we select the batch size B among {20, 240, 1200,
4800}, and margin γ among {0.5, 1.0, 1.5, 2.0}. We also set
the dimensions of entity and relation to be the same n, and
all projection matrices are set to be n × n. For learning rate
λ, we could select a fixed rate following [Bordes et al., 2013;
Lin et al., 2015b] or design a flexible learning rate which will
descend through iteration. For WHE, we select the descend-
ing weight η between sub-types among {0.1, 0.15, 0.2}. For
k in type constraints, we select among {5, 10, 15}. The opti-
mal configurations of our models are: B = 4800, γ = 1.0,
η = 0.1, k = 10, with λ designed by a linear-declined strat-
egy which ranges from 0.0025 to 0.0001. TKRL and Tran-
sR are trained with entities and relations initialized by pre-
trained TransE (unif) model. For a fair comparison, all mod-
els are trained under the same dimension n = 50.

4.2 Knowledge Graph Completion
Evaluation Protocal
Knowledge graph completion aims to complete a triple
(h, r, t) when one of h, r, t is missing, which is used in [Bor-
des et al., 2011; 2012; 2013]. Two measures are considered
as our evaluation metrics: (1) mean rank of correct entities or
relations; (2) proportion of correct answers ranked in top 10
(for entities) or top 1 (for relations). We also follow the two
evaluation settings named “raw” and “filter”.

We conduct our evaluation on FB15K and divide the task
into two sub-tasks: entity prediction and relation prediction.
For a fair comparison, evaluation conditions are the same for
all models. We also evaluate on the method of type constraint
in evaluation (TCE) and a new dataset with long-tail distribu-
tion as auxiliary experiments.

Entity Prediction
The results of entity prediction are shown in Table 2. From
the results we observe that: (1) Both RHE and WHE signifi-
cantly outperform all baselines in mean rank and Hits@10. It
indicates that the hierarchical type information, which is suc-
cessfully encoded into entity and relation embeddings, could
improve the representation learning of knowledge graphs. (2)
WHE+STC achieves the best performance with approximate-
ly 6.2% improvement compared to TransR in Hits@10, and
such improvement provided by Soft Type Constraint (STC)
can also be found in RHE. It is because that STC increases the

probability of entities with the same types as the golden one
being selected during negative sampling, which widens the
distances between entities sharing the same types, and thus
lowers the errors caused by those similar entities. However,
STC has side effects that it may result in higher mean rank,
since some wrong-predicted instances with extremely high
rank will significantly increase mean rank. (3) Type informa-
tion, either in form of projection matrices or type constraints,
could provide significant supplements for RL in KGs.

Table 2: Evaluation results on entity prediction

Metric Mean Rank Hits@10(%)
Raw Filter Raw Filter

RESCAL 828 683 28.4 44.1
SE 273 162 28.8 39.8

SME (linear) 274 154 30.7 40.8
SME (bilinear) 284 158 31.3 41.3

LFM 283 164 26.0 33.1
TransE 238 143 46.4 62.1
TransR 199 77 47.2 67.2

TKRL (RHE) 184 68 49.2 69.4
TKRL (WHE) 186 68 49.2 69.6

TKRL (RHE+STC) 202 89 50.4 73.1
TKRL (WHE+STC) 202 87 50.3 73.4

Relation Prediction
The results of relation prediction are shown in Table 3. We
implement two typical models including TransE and Tran-
sR as baselines. From Table 3 we observe that: (1) Both
RHE and WHE significantly outperform TransE and Tran-
sR in mean rank and Hits@10, and RHE achieves the best
performance. It proves that RHE is better in relation predic-
tion while WHE is better in entity prediction. (2) STC lowers
the performances on relation prediction since wider distances
between entities with the same types may confuse the entity
clustering. In spite of this, all models with STC still out-
perform TransE, which indicates the positive effects of type
information as constraints.

Table 3: Evaluation results on relation prediction

Metric Mean Rank Hits@1(%)
Raw Filter Raw Filter

TransE 2.79 2.43 68.4 87.2
TransR 2.49 2.09 70.2 91.6

TKRL (RHE) 2.12 1.73 71.1 92.8
TKRL (WHE) 2.22 1.83 70.8 92.5

TKRL (RHE+STC) 2.38 1.97 68.7 90.7
TKRL (WHE+STC) 2.47 2.07 68.3 90.6

Type Constraints in Evaluation
Type constraints in training have been proved to be effective,
while type constraints in evaluation (TCE) could be utilized
to achieve even better performances in entity prediction, on
condition that the relation-specific type information is rela-
tively complete. For a fair comparison, we implement base-
lines with the helps of both STC and TCE. Results in Table 5



Table 4: Evaluation results on long-tail distribution

Relation Frequency Test Number Hits@10 for Entity (%) Hits@1 for Relation (%)
TransE TransR TKRL (WHE) TransE TransR TKRL (WHE)

fr <= 10 1,444 28.0 32.4 (+4.4) 38.1 (+10.1) 13.2 17.0 (+3.8) 21.5 (+8.3)
fr <= 100 4,763 49.9 54.5 (+4.6) 57.9 (+8.0) 45.7 50.5 (+4.8) 54.3 (+8.6)
fr <= 1000 18,296 66.1 69.1 (+3.0) 71.6 (+5.5) 70.9 75.4 (+4.5) 77.8 (+6.9)

total 62,374 61.9 67.2 (+5.3) 69.2 (+7.3) 80.4 88.8 (+8.4) 89.7 (+9.3)

show that: (1) All models have better performances with TCE
compared to those corresponding results without TCE shown
in Table 2, and the improvements will be more significan-
t when combined with STC. It is because that TCE removes
the candidates which don’t follow the type constraints, while
STC sharpens the differences between similar entities. (2)
TKRL models outperform all baselines even when compared
with the enhanced versions with STC, which implies the sig-
nificance of hierarchical type encoders.

Table 5: Evaluation results on entity prediction with TCE

Metric Mean Rank Hits@10(%)
Raw Filter Raw Filter

TransE+TCE 212 116 46.9 63.4
TransR+TCE 182 60 47.9 68.6

TransE+STC+TCE 203 104 49.8 69.9
TransR+STC+TCE 185 63 48.5 71.7

TKRL (RHE+STC+TCE) 169 56 51.4 75.4
TKRL (WHE+STC+TCE) 170 55 51.3 75.6

Knowledge Graph Completion with Long Tail
Representation learning of real-world KGs suffers from the
long-tail distribution. We construct FB15K+, which contain-
s almost all relations between entities in FB15K as well as
the corresponding triples, to simulate the distribution in real-
world KGs. From Table 4 we can observe that: (1) WHE
significantly and consistently outperforms TransE and Tran-
sR in all conditions even without STC. (2) WHE achieves
5.8% and 4.5% improvements on entity and relation predic-
tion compared to TransR with fr <= 10, while it achieves
2.0% and 0.9% improvements with all triples. It demonstrates
that TKRL takes advantages over TransR especially with low-
frequency relations, and thus is more robust when modeling
KGs with real-world distribution.

4.3 Triple Classification
Triple classification aims to confirm whether a triple (h, r, t)
is correct or not. This binary classification task has been ex-
plored in [Socher et al., 2013; Wang et al., 2014b; Lin et al.,
2015b] for evaluation.

Evaluation Protocal
We evaluate this task on FB15K. Since FB15K has no explic-
it negative triples, we construct the negative triples following
the same protocol used in [Socher et al., 2013]. The clas-
sification strategy is conducted as follows: We set different
relation-specific thresholds δr for each relation. For a triple

(h, r, t), if the dissimilarity score of E(h, r, t) is below δr,
the triple is then predicted to be positive and otherwise neg-
ative. The relation-specific thresholds δr are optimized by
maximizing the classification accuracies in all triples with the
corresponding r on the validation set.

Results
Evaluation results on triple classification are shown in Table
6. From Table 6 we observe that: (1) TKRL models outper-
form all baselines, and WHE+STC achieves the best perfor-
mance, which confirms the advantages TKRL has over base-
lines in triple classification. (2) STC improves the perfor-
mances of both RHE and WHE, which indicates that sharp-
ening the dissimilarity between entities with the same types
is significantly helpful for triple classification.

Table 6: Evaluation results on triple classification
Methods Accuracy(%)

TransE 85.7
TransR 86.4

TKRL (RHE) 86.9
TKRL (WHE) 87.1

TKRL (RHE+STC) 88.4
TKRL (WHE+STC) 88.5

5 Conclusion and Future Work
In this paper, we propose TKRL model for representation
learning of knowledge graphs with hierarchical types. We
consider type information as projection matrices for entities,
which are constructed with two hierarchical type encoders.
Moreover, type information is also regarded as constraints
in training and evaluation. In experiments, we evaluate our
models on two tasks including knowledge graph completion
and triple classification. Experimental results show that type
information is significant in both tasks especially with long-
tail distribution, and TKRL model is capable of encoding hi-
erarchical type information into KG representations.

We will explore the following research directions in future:
(1) TKRL model only considers type information into repre-
sentation learning of KGs, while there is rich information in
the form of images and texts which could be integrated to our
model. We will explore the advantages of those rich informa-
tion in future. (2) More hierarchical type structures such as
Wikipedia categories could be introduced to bring in deeper
hierarchical information, while the hierarchical type encoders
could be further improved with more sophisticated algorithms
designed for hierarchical structures.
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