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Abstract. Multi-behavior recommendation (MBR) aims to jointly con-
sider multiple behaviors to improve the target behavior’s performance.
We argue that MBR models should: (1) model the coarse-grained com-
monalities between different behaviors of a user, (2) consider both indi-
vidual sequence view and global graph view in multi-behavior modeling,
and (3) capture the fine-grained differences between multiple behaviors
of a user. In this work, we propose a novel Multi-behavior Multi-view
Contrastive Learning Recommendation (MMCLR) framework, includ-
ing three new CL tasks to solve the above challenges, respectively. The
multi-behavior CL aims to make different user single-behavior represen-
tations of the same user in each view to be similar. The multi-view CL
attempts to bridge the gap between a user’s sequence-view and graph-
view representations. The behavior distinction CL focuses on modeling
fine-grained differences of different behaviors. In experiments, we con-
duct extensive evaluations and ablation tests to verify the effectiveness
of MMCLR and various CL tasks on two real-world datasets, achieving
SOTA performance over existing baselines. Our code will be available on
https://github.com/wyqing20/MMCLR

Keywords: multi-behavior recommendation · contrastive learning

1 Introduction

Personalized recommendation aims to provide appropriate items for users ac-
cording to their preferences. The core problem of personalized recommendation
is how to accurately capture user preferences from user behaviors. In real-world
scenarios, users usually have different types of behaviors to interact with rec-
ommender systems. For example, users can click, add to cart, purchase, and
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write reviews for items in E-commerce systems (e.g., Amazon, Taobao). Some
conventional recommendation models [15] often rely on a single behavior for rec-
ommendation. However, it may suffer from severe data sparsity [14,11,38] and
cold-start problems [10,26,37,39] in practical systems, especially for some high-
cost and low-frequency behaviors . In this case, other behaviors (e.g., click and
add to cart) can provide additional information for user understanding, which
reflect user diverse and multi-grained preferences from different aspects.

Multi-behavior recommendation (MBR), which jointly considers differ-
ent types of behaviors to learn user preferences better, has been widely explored
and verified in practice [2,1,19]. ATRank [34] uses self-attention to model fea-
ture interactions between different behaviors of a user in sequence-based recom-
mendation with focusing on the individual sequence view of a single user’s
historical behaviors. In contrast, MBGCN [9] considers different behaviors in
graph-based recommendation, focusing on the global graph view of all users’
interactions. However, there are still three challenges in MBR:

(1) How to model the coarse-grained commonality between differ-
ent behaviors of a user? All types of behaviors of a user reflect this user’s
preferences from certain aspects, and thus these behaviors naturally share some
commonalities. Considering the commonalities between different behaviors could
help to learn better user representations to fight against the data sparsity issues.
However, it is challenging to extract informative commonalities between different
behaviors for recommendation, which is often ignored in existing MBR models.

(2) How to jointly consider both individual and global views of
multi-behavior modeling? Conventional MBR models are often implemented
on either sequence-based or graph-based models separately based on different
views. The sequence-based MBR focuses more on the individual view of a user’s
multiple sequential behaviors to learn user representations [34]. In contrast, the
graph-based MBR often concentrates on the global view of all users’ behaviors,
with multiple behaviors regarded as edges [9]. Different views (individual/global)
and modeling methods (sequence/graph-based) build up different sides of users,
which are complementary to each other and are helpful in MBR.

(3) How to learn the fine-grained differences between multiple be-
haviors of a user? Besides the coarse-grained commonalities, users’ multiple
behaviors also have fine-grained differences. There are preference priorities even
among the target and other behaviors (e.g., purchase > click). In real-world
E-commerce datasets, the average number of click is often more than 7 times
that of the average number of purchase [9]. The large numbers of clicked but
not purchased items, viewed as hard negative samples, may reflect essential la-
tent disadvantages that prevent users to purchase items. Existing works seldom
consider the differences between multiple behaviors, and we attempt to encode
this fine-grained information into users’ multi-behavior representations.

Recently, contrastive learning (CL) has shown its magic in recommendation,
which greatly alleviates the data sparsity and popularity bias issues [36]. We
find that CL is naturally suitable for modeling coarse-grained commonalities
and fine-grained differences between multi-behavior and multi-view user rep-
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resentations. To solve above challenges, we propose a novel Multi-behavior
Multi-view Contrastive Learning Recommendation (MMCLR) frame-
work. Specifically, MMCLR contains a sequence module and a graph module to
jointly capture multiple behaviors’ relationships, learning multiple user represen-
tations from different views and behaviors. We design three contrastive learning
tasks for existing challenges, including the multi-behavior CL, the multi-view
CL, and the behavior distinction CL. (1) The multi-behavior CL is conducted
between multiple behaviors in both sequence and graph views. It assumes that
user representations learned from different behaviors of the same user should
be closer to each other compared to other users’ representations, which focuses
on extracting the commonalities between different types of behaviors. (2) The
multi-view CL is a harder CL conducted between user representations in two
views. It highlights the commonalities between the local sequence-based and the
global graph-based user representations after behavior-level aggregations, and
thus improves both views’ modeling qualities. (3) The behavior distinction CL,
unlike the multi-behavior CL, concentrates on the fine-grained differences rather
than the coarse-grained commonalities between different types of behaviors. It is
specially designed to capture users’ fine-grained preferences on the target behav-
ior’s prediction task (e.g., purchase). The combination of CL tasks can multiply
the additional information brought by multiple behaviors in the target recom-
mendation task. Through the MMCLR framework assisted with three types of
auxiliary CL losses, MBR models can better understand the informative com-
monalities and differences between different user behaviors and modeling views,
and thus improve the overall performances.

In experiments, we evaluate MMCLR on real-world MBR datasets. The sig-
nificant improvements over competitive baselines and ablation versions demon-
strate the effectiveness of MMCLR and its different CL tasks and components.
The contributions of this work are summarized as follows:
– We systematically consider multiple contrastive learning tasks in MBR. To

the best of our knowledge, this is the first attempt to bring in contrastive
learning in multi-behavior recommendation.

– We propose a multi-behavior CL task and a multi-view CL task, which model
the coarse-grained commonalities between different behaviors and (individ-
ual sequence/global graph) views for better representation learning.

– We also design a behavior distinction CL task, which creatively highlights the
fine-grained differences and behavior priorities between multiple behaviors
via a contrastive learning framework.

– MMCLR outperforms SOTA baselines on all datasets and metrics. All pro-
posed CL tasks and the capability on cold-start scenarios are also verified.

2 Related Work

Sequence-based & Graph-based Recommendation. Sequence-based rec-
ommendation mainly leverages users’ sequential behavior to mine users’ inter-
ests, which focuses on individual information. Recently, various deep neural net-
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works have been employed for sequence-based recommendation, e.g., RNN [7],
memory networks [3], attention mechanisms [23,35,15,30] and mixed models [29,20].
Graph-based recommendation aims to use high-order interaction information con-
tained in the graph, which is able to model the global information of user prefer-
ences. Existing works have proved the effectiveness of GNNs in learning user and
item representations [17,27]. In this work, we exploit both individual sequence
view and global graph view in MBR.
Multi-behavior Recommendation. Inspired by transfer learning [42,40,41],
multi-behavior recommendation takes advantage of other behavior of user to help
the prediction of target behavior. Ajit et al. [14] take multi-behavior into con-
sideration via a collective matrix factorization. Recent works often model MBR
via sequence or graph-based models[19,25]. MRIG [16] builds sequential graphs
on users’ behavior sequences. MBGCN [9] learns user-item and item-item simi-
larities on the designed user-item graph and different co-behavior graphs. Other
works combine MBR with meta-learning [22] and external knowledge [21]. How-
ever, these methods do not make full use of the correlations between behaviors
via CL. In this paper, we propose a universal framework that utilizes contrastive
learning to model the relations of different behaviors.
Self-supervised Learning. Self-supervised learning (SSL) aims at training a
network by pretext tasks, which are designed according to the characteristics of
raw data. Recently, self-supervised learning has been shown its superior ability in
CV [5,31], NLP [4], and Graph [12] fields. Some works also adopt self-supervised
learning in recommender systems [36,28,18,24].

However, most of them fall into single-behavior methods. In this paper, we
focus on modeling the commonalities and differences between multiple behaviors
and views of users with CL.

3 Methodology

3.1 Preliminaries

MMCLR aims to make full use of multi-behavior and multi-view information to
learn better representations for recommendation. We first give detailed defini-
tions of the key notions in our multi-behavior recommendation as follows:
Multi-behavior Modeling. In MBR, the most important and profitable be-
havior (e.g., purchase in E-commerce) is regarded as the target behavior. While
it suffers from data sparsity issues. Specifically, we denote the user and item as
u ∈ U and v ∈ V , where U and V are user set and item set. We suppose that users
have B types of behaviors {b1, · · · , bB} in a system, where bt is the target be-
havior. Multi-view Modeling. Users’ multiple behaviors can be modeled with
different views, highlighting different aspects of user preferences. In this work,
we construct two views, including the sequence vie and the graph view. For the
sequence view, we represent the multi-behavior historical sequence of user u as
Su = {sb1u , sb2u , ..., sbBu }, where sbu is the behavior sequence of user u under behav-
ior b. For each behavior, we have the item sequence sbu = {v1, v2, ..., v|sbu|}. For
the graph view, we build a global multi-relation user-item graph G = (V, E),
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where V is the node set, and E is the edge set. If user u and item v have an
interaction under a certain behavior b, there is a edge e = (u, v, b) ∈ E in graph
G. We use u0

i and v0
j to represent the corresponding raw feature of ui and vj .

Problem definition. Given a user’s multi-behavior sequences Su and the global
multi-relation user-item graph G, MMCLR should predict the most appropriate
item v that the user will interact under the target behavior bt.

3.2 Framework of Multi-view Multi-behavior Recommendation

Overview. The model structure of MMCLR is illustrated in Fig.1. Our model
mainly has three parts: multi-view encoder, multi-behavior fusion, and multi-
view fusion. Three types of contrastive learning tasks are proposed to capture
the multi-behavior and multi-view feature interactions. Specifically, for a user u,
the global user-item graph G and the user’s multi-behavior sequence Su are first
fed to the sequence-view encoder and the graph-view encoder as inputs. In both
sequence and graph encoders, we build B user single-behavior representations
according to each behavior, respectively. Second, these single-behavior represen-
tations under the same view are fused by the multi-behavior fusion module, with
sequence/graph-based multi-behavior CL and behavior distinction CL tasks as
auxiliary losses. Then, we combine the sequence-view and graph-view user rep-
resentations by the multi-view fusion module with the multi-view CL, jointly
considering individual and global preferences. Finally, the similarity between
the fused user and item representations is viewed as the ranking score.
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Fig. 1. Overall architecture of MMCLR with our proposed contrastive learning tasks.

Multi-view Encoder. Conventional sequence-based recommendation models
[34,15] often focus on the individual historical behaviors of a user, which aims to
precisely capture the local sequential information of a user. In contrast, graph-
based recommendation models [33,9] are often conducted on the whole user-item
graph built by all users’ behaviors, which can benefit from the global interactions.
We argue that both individual sequence and global graph views are beneficial in
multi-behavior recommendation.
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Specifically, we implement an individual sequence-based encoder SeqEnc(·)
and a global graph-based encoder GraphEnc(·) to learn users’ and items’ single-
behavior representations separately. Formally, for the behavior b:

us,b = SeqEncb(sbu), ug,b = GraphEncb(G, u, b), (1)

where sbu is the user’s historical behavior sequence of b, and G is the global
user-item graph. us,b and ug,b indicate the user sequence-view and graph-view
single-behavior representation of b. Finally, we learn 2B single-behavior repre-
sentations in two views for the next multi-behavior and multi-view fusions. Note
that we can flexibly select appropriate sequence and graph models for SeqEncb(·)
and GraphEncb(·). Specifically, We adopt Bert4rec and lightGCN as sequence
encoder and graph encoder. For lightGCN we replace the original aggregator
with meaning aggregator.
Multi-behavior Fusion. Single-behavior representations may suffer from data
sparsity issues, especially for some high-cost and low-frequent target behaviors
(e.g., purchase). In this case, other auxiliary behaviors (e.g., click, add to cart)
could provide essential information to infer user preferences on the target behav-
iors. Hence, we build a multi-behavior fusion module to fuse user single-behavior
representations in each view to get the integrated sequence-view representation
us and the integrated graph-view representation ug, which is noted as:

us = MLPs(us,b1 ||, · · · , ||us,bB ), ug = MLPg(u0||ug,b1 ||, · · · , ||ug,bB ). (2)

u0 is the raw user embedding in the graph view. MLPs and MLPg are two-layer
MLPs with ReLU as activation. We also build the graph-view item representation
vg similar to ug, where v0 is also used as the raw behavior features in Eq. (1).
Multi-view Fusion. To take advantage of representations in both views, we
apply a multi-view fusion to learn the final user and item representations, which
contain both individual and global information. We formalize the integrated user
representation u and item representation v as follows:

u = MLPU (us||ug), v = MLPV (v0||vg). (3)

Following the classical ranking model [13], the inner product of u and v is used
to calculate the ranking scores of user-item pairs, trained under Lo as:

Lo = −
∑

(u,vi)∈S+

∑
(u,vj)∈S−

log σ(u>vi − u>vj), (4)

where (u, vi) ∈ S+ indicates the positive set of the target behavior, and (u, vj) ∈
S− indicates the randomly-sampled negative set.
Multi-view Multi-behavior Contrastive Learning. The above architecture
is a straightforward combination of multi-view multi-behavior representations.
To better capture the coarse-grained commonalities and fine-grained differences
between different behaviors and views to learn better user representations in
different views and behaviors, we design three types of CL tasks. Next we will
introduce details of them.
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3.3 Multi-behavior Contrastive Learning

A user’s single-behavior representations reflect user preferences on the corre-
sponding behaviors, which also share certain commonalities to reflect the user
itself. We build two multi-behavior CL tasks in the sequence and graph views
respectively as auxiliary losses to better use multi-behavior information.
Sequential Multi-behavior CL. We adopt a sequential multi-behavior CL,
which attempts to minimize the differences between different single-behavior
representations of the same user and maximize the differences between different
users. In this case, we naturally regard different single-behavior representations
of a user as certain kinds of (behavior-level) user augmentations.

Precisely, considering a mini-batch of N users {u1, · · · , uN}, we randomly

select two single-behavior representations (us,b1
i ,us,b2

i ) of behavior b1 and b2 for

each ui as the positive pair in CL. And we consider (us,b1
i ,us,b2

j ) as the negative
pair. Following [2], we also conduct a projector MLPp1

(·) to map all user single-
behavior representations into the same sequential semantic space. We have:

us,b1
i,p1

= MLPp1
(us,b1

i ), us,b2
j,p1

= MLPp1
(us,b2

j ). (5)

The sequential multi-behavior CL loss LSeqCL is defined as follows:

LSeqCL = −
N∑
i=1

∑
uj 6=ui

f(us,b1
i,p1

,us,b2
i,p1

,us,b2
j,p1

),

f(x,y, z) = log(σ(x>y − x>z)).

(6)

f(x,y, z) denotes our pair-wise distance function, σ(·) is the sigmoid activation.
Graphic Multi-behavior CL. Similar with the sequential multi-behavior CL,
we also build a graphic multi-behavior CL for the graph-view representations. For
ug,b1
i , we consider ug,b2

i as the positive sample and ug,b2
j as the negative sample

in this CL. We also have ug,b1
i,p2

= MLPp2
(ug,b1

i ) and ug,b2
j,p2

= MLPp2
(ug,b2

j ) as
Eq. (5). We define the graphic multi-behavior CL loss LGraphCL as follows:

LGraphCL = −
N∑
i=1

∑
uj 6=ui

f(ug,b1
i,p2

,ug,b2
i,p2

,ug,b2
j,p2

), (7)

in which f(x,y, z) is the same as Eq. (6). Through the sequential and graphic
multi-behavior CL tasks, MMCLR can learn better and more robust single-
behavior representations, which is the fundamental of user diverse preferences.
It functions well, especially when the target behaviors are sparse.

3.4 Multi-view Contrastive Learning

The multi-view CL aims to highlight the relationships between the individual
sequence and global graph views. It is natural that the sequence-view and graph-
view user representations of the same user should be closer than others, since
they reflect the same user’s preferences (though learned from different informa-
tion). Hence, we propose the multi-view CL task on the integrated sequence-view
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and graph-view user representations in Eq. (2). We regard (us
i ,u

g
i ) of the same

user ui as the positive pair, considering us
i and ug

i as different view-level user
augmentations of ui, and regard (us

i ,u
g
j ) and (ug

i ,u
s
j) as the in-batch nega-

tive pairs of two views. After the projector, we have us
i,p3

= MLPp3(us
i ) and

ug
j,p3

= MLPp3
(ug

j ). The multi-view CL loss LV iewCL is noted as follows:

LV iewCL = −
N∑
i=1

∑
uj 6=ui

f(us
i,p3

,ug
i,p3

,ug
j,p3

). (8)

We are the first to propose the notion of multi-view CL. Through this CL,
individual sequence and global graph views can cooperate well in MBR.

3.5 Behavior Distinction Contrastive Learning

The above two CL tasks highlight the commonalities between a user’s multi-
ple behaviors and views compared to other users’ representations. However, the
fine-grained differences between different behaviors of a user are also essential.
For example, in E-commerce, the low-frequent high-cost purchase behaviors re-
flect the user’s high-priority preferences, comparing with other low-cost auxiliary
behaviors like click and add to cart. To some extent, these auxiliary behaviors
(viewed as positive pair instances in multi-behavior CL) could be even regarded
as certain hard negative samples of the high-cost target behaviors [8]. Consid-
ering the fine-grained differences and behavior priorities can further improve
the target behavior’s (e.g., purchase) performances, especially when distinguish-
ing “the good but negative” candidates (e.g., clicked but not purchased items),
which are challenging interference terms in practical ranking systems. Hence, we
propose a novel behavior distinction CL for the first time in MBR.

Specifically, we define the behavior priority in MBR as follows: items of the
target behavior vi > items of auxiliary behaviors vj >> other random in-batch
items vk. In the target behavior prediction task, the integrated user represen-
tation u should firstly be close to vi, and then the hard negative samples of
auxiliary behaviors vj , and finally be distinct with the random negative items
vk. Similarly, we conduct a projector MLPp4

to get up4
, vi,p4

, vj,p4
, and vk,p4

,
and then learn the item-aspect behavior distinction CL LDisCL as follows:

LDisCL = −
∑
u

∑
(vi,vj)

∑
vk

(f(up4
,vi,p4

,vj,p4
) + βf(up4

,vj,p4
,vk,p4

)). (9)

β is a loss weight, vi and vj are one of the target/auxiliary behaviors of u.
The multi-behavior CL (i.e., Eq. (6, 7)) aims to narrow the distances between

different behaviors of a user from the global perspective, thus distinguishing them
from other items. In contrast, the behavior distinction CL explores to capture the
fine-grained differences between different types of behaviors of a user, achieving
deeper and more precise understandings of user’s target-behavior preferences.

3.6 Optimization

Overall Loss. The overall loss L is defined with hyper-parameters λ as:

L = λoLo + λ1LSeqCL + λ2LGraphCL + λ3LV iewCL + λ4LDisCL. (10)
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Model Analysis.
For complexity, the graph and sequential encoders can run parallel, so the

encoder complexity is decided by the more complex model. Hence, MMCLR does
not produce extra encoding time. For contrastive tasks, the training complexity
of the MLP layer is O(|U |d2), and the complexity of CL is O(|U |Nd), where
|U | is the number of users and N is the batch size. The complexity is equal
with existing CL models [36,18] and can be computed in parallel with fusion
operations. Moreover, the CL losses are only calculated in offline, which means
our model has equal online serving complexity as others.

4 Experiments

In this section, we aim at answering the following research questions: (RQ1)
How does MMCLR perform compared with other SOTA baselines in MBR on
various evaluation metrics? (RQ2) What are the effects of different contrastive
learning tasks in our proposed MMCLR? (RQ3) How does MMCLR perform on
cold-start scenarios compared to baselines and ablation versions? (RQ4) How
do different hyper-parameters affect the final performance?

4.1 Datasets

We evaluate MMCLR on two real-world MBR datasets on E-commerce, includ-
ing the Tmall and CIKM2019 EComm AI dataset. Tmall6: It is collected by
Tmall, which is one of the largest E-commerce platforms in China. We process
this dataset following [2]. After processing, our Tmall dataset contains 22,014
users and 27,155 items. We consider three behaviors (i.e., click, add-to-cart, pur-
chase), collecting 83,778 purchase behaviors, 44,717 add-to-cart behaviors, and
485,483 click behaviors. CIKM2019 EComm AI: It is provided by the CIKM2019
EComm AI challenge. In this dataset, each instance is made up by an item, a
user and a behavior label (i.e., click, add-to-cart, purchase). We process this
dataset following [2] as well. Finally, this dataset includes 23,032 users, 25,054
items, 100,529 purchase behaviors, 38,347 add-to-cart behaviors, and 276,750
click behaviors.

4.2 Competitors

We compare MMCLR against several state-of-the-art baselines. For baselines not
designed for MBR, we adopt our MMCLR’s fusion function to jointly consider
multi-behavior data. All baselines exploit data of multiple behaviors.
– BERT4RecMB. BERT4Rec [15] is a self-attention-based sequential recom-

mendation model. We conduct separate Transformer encoders on all behav-
iors, and fuse them via MMCLR’s fusion function, denoted as BERT4RecMB .

– LightGCNMB. lightGCN [6] is a widely-used GNN model. Similarly, we
construct multiple user-item graphs for all behaviors, encode them by it.

– MRIG. MRIG [16] is one of the SOTA sequence-based models for MBR.
It adopts user’s individual behavior sequence to build a sequential graph,
which regards two items having an edge if they are adjacent in a sequence.

6 https://tianchi.aliyun.com/competition/entrance/231721/introduction
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– MBGCN. MBGCN [9] is a recent graph-based MBR model. It integrates
multi-behavior information by user-item and item-item propagations.

– MBGMN. MBGMN [22] is one of the SOTA graph-based models for MBR.
MBGMN first models the behavior heterogeneity and interaction diversity
jointly with the meta-learning paradigm.

– MGNN. MGNN [32] is one of the SOTA multiplex-graph-based models for
MBR. It builds users’ multi-behavior to a multiplex-graph and learns shared
graph embedding and behavior-specific embedding for recommendation.

We also compare with MMCLR’s ablation versions for further comparisons:
– BERT4RecCL. We add the sequential multi-behavior CL LSeqCL to the

BERT4RecMB , which is noted as BERT4RecCL.
– LightGCNCL. Similarly, We also add the graphic multi-behavior CL to the

LightGCNMB , which is denoted as LightGCNCL.
– MMR. MMR is an ablation version of MMCLR without all CL tasks. It

can be viewed as a simple multi-view multi-behavior model, which combines
BERT4RecMB with LightGCNMB via embedding concatenation and MLP.

4.3 Experimental Settings

Parameter Settings. The embedding sizes of users and items are 64 and batch
size is 256 for all methods. We optimize all models by Adam optimizer. For
BERT4Rec, we stack two-layer transformers and each transformer with two at-
tention heads. The depth of our graph encoder is set to 2. The learning rate and
L2 normalization coefficient of MMCLR are set as 1e−3 and 1e−4, respectively.
The weights of supervised loss Lo and four CL losses (i.e., LSeqCL, LGraphCL,
LV iewCL, LDisCL) are set as 1.0, 0.2, 0.2, 0.2, and 0.05, respectively. For all
baselines, We conduct a grid search for parameter selections.

Evaluation Protocols. Following [28,36], We adopt the leave-one-out strat-
egy to evaluate the models’ performance; We also employ the top-K hit rate
(HIT), top-K Normalized Discounted Cumulative Gain (NDCG), Mean Recip-
rocal Rank (MRR), and AUC (Area Under the Curve). For HIT and NDCG, we
report top 5 and 10; For each ground truth, we randomly sample 99 items that
user did not interact with under the target behavior as negative samples.

4.4 Results of Multi-behavior Recommendation (RQ1)

The main MBR results are shown in Table 1, from which we find that:
(1) MMCLR performs the best among all baselines and ablation versions of

MMCLR on all metrics in two datasets. It achieves 4% ∼ 11.8% improvements
over the best baselines on most metrics, with the significance level as p < 0.05
(paired t-test of MMCLR V.S. baselines). It indicates that MMCLR can well cap-
ture the commonalities and differences between different behaviors and views,
and thus can better take advantage of all multi-view and multi-behavior in-
formation in MBR.(2) BERT4RecCL and LightGCNCL perform much better
than their original models without CL. It verifies the importance of modeling
relations between different types of behaviors when jointly learning user repre-
sentations. It also implies that our multi-behavior CL can help to capture the
behavior-level commonalities. Nevertheless, MMCLR still performs better than
single-view models, which verifies the significance of jointly modeling multi-view
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information.(3) We notice that MMR performs comparably with BERT4RecMB .
It reflects that the simple fusion of individual sequence-based and global graph-
based models may not make full use of the multi-view information.

Table 1. Results on multi-behavior recommendation. * indicates significance (p<0.05).

Database Model MRR AUC HIT@5 NDCG@5 HIT@10 NDCG@10

Tmall

BERT4RecMB 0.1568 0.6671 0.2138 0.1448 0.3133 0.1769
LightGCNMB 0.1449 0.6542 0.1983 0.1318 0.3020 0.1651
MRIG 0.1545 0.6823 0.2084 0.1401 0.3207 0.1762
MBGCN 0.1534 0.6912 0.2100 0.1396 0.3208 0.1751
MBGMN 0.1673 0.6808 0.2273 0.1559 0.3308 0.1892
MGNN 0.1782 0.6955 0.2332 0.1651 0.3389 0.1991

LightGCNCL 0.1609 0.6863 0.2201 0.1483 0.3293 0.1835
BERT4RecCL 0.1754 0.6971 0.2385 0.1641 0.3467 0.1990
MMR 0.1576 0.6606 0.2152 0.1466 0.3108 0.1773

MMCLR 0.1861* 0.7237* 0.2608* 0.1770* 0.3751* 0.2138*
Improvement 4.4% 4.1% 11.8% 7.3% 10.7% 7.4%

CIKM

BERT4RecMB 0.1792 0.6990 0.2451 0.1687 0.3552 0.2042
LightGCNMB 0.1705 0.6979 0.2332 0.1584 0.3466 0.1949
MRIG 0.1795 0.7026 0.2489 0.1696 0.3649 0.2068
MBGCN 0.1850 0.6897 0.2479 0.1751 0.3492 0.2077
MBGMN 0.1887 0.7035 0.2575 0.1795 0.3648 0.2140
MGNN 0.1973 0.7116 0.2616 0.1866 0.3718 0.2222

LightGCNCL 0.1746 0.7031 0.2398 0.1633 0.3530 0.1998
BERT4RecCL 0.1984 0.7282 0.2728 0.1912 0.3929 0.2281
MMR 0.1788 0.6941 0.2506 0.1700 0.3627 0.2061

MMCLR 0.2046* 0.7313* 0.2878* 0.1981* 0.4049* 0.2358*
Improvement 3.7% 2.9% 10.0% 6.2% 8.9% 6.1%

4.5 Ablation Study (RQ2)

In this section, we aim to prove that MMCLR can solve the three challenges men-
tioned in the introduction section via three CL tasks. We build seven ablation
versions of MMCLR, which are different combinations of CL tasks and the multi-
view fusion, to show the effectiveness of different components. Specifically, we
regard the basic sequence-based model of MMCLR with multi-behavior informa-
tion as seq (i.e., BERT4RecMB), and the basic graph-based model of enhanced
LightGCN with multi-behavior information as graph (i.e., LightGCNMB). We
set seq+graph as the simple multi-view fusion version (i.e., MMR). Moreover, we
represent the multi-behavior CL, multi-view CL, and behavior distinction CL as
BCL, VCL, and DCL, respectively. The final MMCLR is noted as seq+graph
+BCL+VCL+DCL. From Table 2, we can observe that:
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(1) Comparing ablation versions with and without BCL, we find that both
sequential and graphic multi-behavior CL tasks are beneficial. BCL tasks even
function well on the seq+graph model. The improvements of BCL are impres-
sive, which have over 2% improvements in most metrics. It is because that mul-
tiple behaviors produced by the same user should reflect related preferences
of the user. Modeling the coarse-grained commonalities of different behaviors
helps to learn better representations to fight against the data sparsity issues.
Moreover, through BCL, we can learn better user representations that are more
precise and distinguishable from other users’. It reconfirms the effectiveness of
the multi-behavior CL in modeling such coarse-grained commonality.(2) Com-
paring models with and without VCL, we know that the multi-view CL is also
essential in multi-view fusion (getting nearly 1% improvements on most metrics).
We also implement a simple fusion model with seq and graph models, whose im-
provements over single-view models are marginal. The multi-view CL smartly
aligns sequence-view and graph-view representations via the CL-based learning,
which well captures useful information from both individual and global aspects.
These improvements verify the significance of multi-view CL.(3) Comparing with
the last two versions, we can observe that the behavior distinction CL further
improves the performances on all metrics. The 0.6− 1.4% improvements are sig-
nificant. It verifies that jointly considering both coarse-grained commonalities
and fine-grained differences are essential in MMCLR.

Table 2. Ablation tests on CL tasks and multi-view fusion in MMCLR.

Ablation HIT@5 NDCG@5 HIT@10 NDCG@10

seq 0.2138 0.1448 0.3133 0.1769
graph 0.2108 0.1442 0.3136 0.1773
seq+graph 0.2152 0.1466 0.3108 0.1773
seq+BCL 0.2385 0.1641 0.3467 0.1990
graph+BCL 0.2380 0.1620 0.3456 0.1966
seq+graph+BCL 0.2418 0.1632 0.3527 0.1988
seq+graph+BCL+VCL 0.2521 0.1722 0.3614 0.2074

MMCLR (final) 0.2608* 0.1770* 0.3751* 0.2138*

4.6 Results on Cold-start Scenarios (RQ3)

Real-world multi-behavior recommendation systems usually suffer from cold-
start issues (e.g., cold-start users that have few historical behaviors), especially
for the high-cost purchase behaviors in MBR of E-commerce. Hence, we further
conduct an evaluation on the cold-start (user) scenario to verify the effectiveness
of MMCLR on more challenging tasks. Without loss of generality, we regard
all users that have less than 3 target behaviors in the train set as our cold-
start users and select these cold-start users’ test instances in the overall Tmall
dataset as the test set of the cold-start scenario. To comprehensively display the
effectiveness of MMCLR and its multiple CL tasks on the cold-start scenario,
we draw three figures in Fig. 2 from different aspects. Precisely, we can observe
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that: (1) Fig. 2(a) shows different models’ NDCG performances in both overall
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Fig. 2. Results of different models and ablation versions on the overall and cold-start
scenarios. (a) NDCG@10 on the overall and cold-start datasets. (b) MMCLR’s relative
improvements of NDCG@10 on different baselines. (c) Different MMCLR’s ablation
versions’ relative improvements of NDCG@10 on the baseline MRIG.

and cold-start users. We can know that: (a) All models perform better on the
overall users than the cold-start users. (b) Results on both overall and cold-
start users have consistent improvements from graph+BCL to MMCLR.(2) Fig.
2(b) shows MMCLR’s relative improvements on other models. We find that: (a)
Comparing with different models and ablation versions (except MMCLR w/o
DCL), MMCLR has higher improvements on cold-start scenarios (e.g., nearly
35% astonishing improvements on MRIG). It is because that MMCLR can make
full use of the multi-behavior and multi-view information via CL tasks, which
can alleviate the data sparsity in cold-start users. (b) We notice that DCL brings
in a slight improvement on cold-start users. It is natural since cold-start users
usually have very few target behaviors, and rely more on auxiliary behaviors
via the commonality-led CL tasks as supplements.(3) Fig. 2(c) gives the relative
improvements of different MMCLR’s ablation versions on MRIG. We observe
that: (a) Both sequential and graphic multi-behavior CL, multi-view CL, and
behavior distinction CL has improvements on cold-start scenarios. (b) Relatively,
the multi-behavior CL contributes more on the overall dataset, while the multi-
view CL focuses more on the cold-start users. It may be because that a different
view can bring in more information for cold-start users thanks to the global
graph view and its multi-view CL task.

4.7 Parameter Analyses (RQ4)

Loss Weight. We start the experiment with different main-task loss weights on
the Tmall dataset to explore its influence. We change the weight of supervised
Lo among {0.2, 1, 2, 4, 8}. From Fig. 3(a) we can find that: (1) Both HIT@10 and
NDCG@10 first increase and then decrease from 0.2 to 8, and MMCLR achieves
the best results when λo = 1.0 (here CL loss weights are 0.2, 0.2, 0.2, and
0.05). It indicates that the supervised loss is the fundamental of model training,
and a proper loss weight helps to balance the supervised and self-supervised
learning. (2) MMCLR consistently outperforms baselines with different weights.
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It shows the effectiveness and robustness of our model with different loss weights.
Embedding Dimension. We also test different input embedding dimensions on
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Fig. 3. Parameter analyses on (a) loss weights, and (b) embedding dimensions.

the Tmall dataset. We vary the embedding dimensions in {16, 32, 64, 128, 256},
and keep other optimal hyper-parameters unchanged. The results of different
dimensions are shown in Fig. 3. We observe that the model achieves better
performance with bigger dimension, while dimension from 16 to 128. It shows
that enough embedding dimension helps to increase model capacity. In contrast,
the model with 256 dimensions has worse performance than 128 dimensions. The
performance may be suffered from overfitting. It also suggests that too large an
embedding dimension is not necessary.

5 Conclusion

In this work, We study the multi-behavior recommendation problem. Specifi-
cally, to alleviate the sparsity problem of target behaviors existing in recom-
mender systems, we propose a novel MMCLR framework to jointly consider the
commonalities and differences between different behaviors and views in MBR
via three CL tasks. Extensive experimental results verify the effectiveness of our
MMCLR and its CL tasks. The performance of MMCLR on cold-start users
further demonstrates the superiority of MMCLR on the cold-start problem.
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