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For instance, users that have watched videos related to The Great
Wall may also be interested in Monument or other ancient Chinese
buildings like Forbidden city. Besides, users interested in history or
tour are also willing to seek information of Qin Dynasty (when The
GreatWallwas built) or Tourism inventory. These nearest tags reflect
not only semantic similarities on tags, but also user preferences and
videos. We also conduct a quantitative analysis on 100 randomly-
sampled top-frequent tags with human annotators, which shows
that the percentage of diversified tag (the tag that has at least 3 tags
belonging to different categories in top 5 nearest tags) is 89%.

Table 5: Examples of target tags with nearest tags.

Tag Nearest tags

The Great
Wall

Monument; World Cultural Heritage; Forbidden
city; Qin Dynasty; Tourism inventory

Michelin star
restaurant

Michelin chef; French red wine; Gourmet show;
Spain Seafood Risotto; Japanese food

New energy
vehicle

Hydrogen powered vehicle; Fuel consumption; Bao-
jun; 4-wheel drive; Foreign car

5.7.2 Personalized Tag Ranking. Table 6 gives a real dynamic tag
case for different users. User1 is a fan of N Jia (an actor) and loves
variety shows (e.g., Go Champion!). User2 is crazy about basketball
and its superstars like Jordan and O’Neal. User3 is simply interested
in funny videos with no preferences in specific actors or stars.
GraphTR well captures these user preferences and explicitly shows
different personalized tags to highlights different contents. Hence,
all users are attracted and willing to click tags and watch this video.

Table 6: Tag ranking results for different users.

Video title Shaquille O’Neal performs his Dream shake and N
Jia imitates the movement comically.

User1 tags N Jia; Go Champion!; Variety show in China
User2 tags Shaquille O’Neal; Basketball; Variety show
User3 tags Imitation; Funny moment; Variety show

6 CONCLUSION AND FUTUREWORK
In this paper, we highlight the tag ranking in tag-enhanced video
recommendation. We propose a novel GraphTR, which creatively
uses a new HFIN model to combine transformer, GraphSAGE and
FM for node aggregation on heterogeneous networks. GraphTR
utilizes rich information in video-related behaviors and profiles
to learn user preferences on tags. Both online and offline evalua-
tions confirm the significant improvements in tag and video related
metrics. GraphTR has been deployed on a real-world tag-enhanced
video recommendation system in WeChat Top Stories.

In future, more interactions like social relations and tag-related
behaviors could be considered in network construction. Weighted
edges could also be used in our network. Moreover, we will design
more sophisticated NRL models and online ranking models with
supervised learning to improve the performances, and enhance the
user nodes with more sophisticated representations.
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