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ABSTRACT
Reinforcement learning (RL) has been verified in real-world list-
wise recommendation. However, RL-based recommendation suffers
from huge memory and computation costs due to its large-scale
models. Knowledge distillation (KD) is an effective approach for
model compression widely used in practice. However, RL-based
models strongly rely on sufficient explorations on the enormous
user-item space due to the data sparsity issue, which multiplies the
challenges of KD with RL models. What the teacher should teach
and how much the student should learn from each lesson need to
be carefully designed. In this work, we propose a novel Distilled
reinforcement learning framework for recommendation (DRL-Rec),
which aims to improve both effectiveness and efficiency in list-
wise recommendation. Specifically, we propose an Exploring and
filtering module before the distillation, which decides what lessons
the teacher should teach from both teachers’ and students’ aspects.
We also conduct a Confidence-guided distillation at both output
and intermediate levels with a list-wise KL divergence loss and a
Hint loss, which aims to understand how much the student should
learn for each lesson. We achieve significant improvements on both
offline and online evaluations in a well-known recommendation
system. DRL-Rec has been deployed on WeChat Top Stories for
more than six months, affecting millions of users. The source codes
are released in https://github.com/modriczhang/DRL-Rec.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Real-world recommendation systems should provide personalized
and interesting items based on user diverse preferences. To learn
users’ personalized preferences, recommendation algorithms should
capture informative (high-order) feature interactions between users,
items and contexts, which derive from million or even billion level
user behaviors [44]. Recent years havewitnessed the great successes
of neural networks in recommendations [4], while they inevitably
suffer from the huge memory and computation costs due to their
large-scale models. These memory and computation costs will even
multiply when dealing with list-wise recommendation [38], which
should generate a recommended list instead of a single item for each
request. To capture the list-wise rewards, sophisticated reinforce-
ment learning (RL) based models are often conducted in real-world
systems [36, 38, 43]. Considering the billion-level behaviors, lots of
model compression strategies are explored to balance effectiveness,
efficiency, and expenses in practice.

Knowledge distillation (KD) [12], which eases the training of large-
scale neural networks by following a teacher-student paradigm,
is a classical and effective approach for knowledge transfer and
model compression. It transfers the knowledge of cumbersome
networks (i.e., teachers) into smaller networks (i.e., students), where
the student is trained from both real labels and a soft version of
the teacher’s outputs. KD not only makes the student smaller and
faster for deployment, but also improves the training by further
considering negative logits via these softened outputs [12].

There are some works that have verified knowledge distillation
in recommendation [19, 20]. However, there are very few works
that conduct knowledge distillation between RL-based models in
recommendation. The main challenges of conducting knowledge
distillation on RL for (list-wise) recommendation locate in two
aspects: (1) what lessons should the teacher pass on to the stu-
dent? Conventional KD in classification tasks could learn additional
knowledge from all negative logits of the teacher’s softmax layer,
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which often has less than a few hundred categories. In contrast, it is
not possible (and also unnecessary) to explore all state-action space
(i.e., million-level users and items in various contexts) in RL-based
recommendation models, especially in the list-wise recommenda-
tion that should further consider item positions. An effective KD in
RL-based recommendation should explore items that are most likely
to be clicked, filter other irrelevant items, and distill the refined
informative knowledge to the student. (2) How much should the
student learn from each lesson? The state-action space in list-
wise RL-based recommendation is tremendous, which makes the
interactions between users and item lists extremely sparse even
compared to regular recommendations. Hence, the teacher cannot
perfectly predict all possible state-action rewards, especially for
unsupervised instances in offline RL exploration that do not have
real user feedback. A confidence-aware distillation is required.

What should the 
teacher teach 

among all lessons?

How much should 
the student learn 
from each lesson?

millions of lessons (actions)

High 
confidence

Learn
90%

Low 
confidence

Learn
20%

filtered informative lessons

teacher student

teacher student

Figure 1: Challenges of KD in RL-based recommendation.

To address these challenges, we propose a novel Distilled rein-
forcement learning framework for recommendation (DRL-
Rec), which wants to compress RL-based models for efficiency and
even improve the performances in list-wise recommendation. DRL-
Rec mainly contains three modules, namely the Teacher and student
module, the Exploring and filtering module, and the Confidence-
guided distillation module. (1) We first adopt two value-based RL
models as the teacher and student models for list-wise recommenda-
tion. (2) In the Exploring and filtering module, we propose a novel
dual-led teaching strategy to decide what lessons the teacher should
teach the student. Specifically, we first conduct RL explorations to
retrieve a group of item candidates, and then conduct both teacher-
led and student-led lessons to select top-k teacher-concerned and
student-concerned items for the following distillation. This module
is regarded as the filtering process before distillation, which can
eliminate most impurities from irrelevant items to improve the
efficiency of knowledge distillation. (3) In the Confidence-guided
distillation module, we conduct knowledge distillation at both out-
put and intermediate levels. Precisely, we design a new list-wise KL
divergence loss for the output distillation, and rely on the Hint loss
[23] for the intermediate distillation. We further bring in the notion
of confidence according to the teacher’s accuracy to facilitate the
KD. The advantages of DRL-Rec are mainly located in two aspects:
(1) the Exploring and filtering module smartly selects informative
items for teaching, which addresses the “what to teach” problem of
the teacher. (2) The Confidence-guided distillation module enables
more effective distillation between RL-based models, which solves
the “how much to learn” issue of the student.

In experiments, we evaluate our DRL-Rec framework on a real-
world recommendation system named WeChat Top Stories. DRL-
Rec has significant improvements on both recommendation accu-
racy and model efficiency in memory and computation. To simulate
the real-world scenarios, we further evaluate DRL-Rec with an on-
line A/B test. Moreover, we also conduct several ablation tests to
verify the effectiveness of different components in our model. The
contributions of DRL-Rec are concluded as follows:

• We propose a novel DRL-Rec framework for RL-based knowl-
edge distillation in list-wise recommendation. To the best
of our knowledge, we are the first to conduct knowledge
distillation between RL-based models in recommendation.

• We design an Exploring and filtering module with a dual-
led teaching strategy to smartly select informative items for
distillation. It solves what lessons the teacher should teach
in KD with RL-based models.

• We also propose a Confidence-guided distillation with list-
wise KL divergences and Hint losses, which enables more
efficient knowledge transfer. It addresses how much the stu-
dent should learn from each lesson in DRL-Rec.

• DRL-Rec achieves significant improvements on both offline
and online evaluations and model efficiency. DRL-Rec has
been deployed on a recommendation scenario in WeChat
Top Stories, which affects millions of users.

2 RELATEDWORKS
2.1 Recommendation Systems
Real-world recommendation systems should have the ability to
capture informative feature interactions. Factorization machine
(FM) [22] is a widely-used method to capture second-order fea-
ture interactions via trainable latent embeddings. Wide&Deep [3]
builds a general framework that contains a Wide part and a Deep
part. DeepFM [9] improves the Wide part of Wide&Deep with a bi-
interaction layer to model second-order feature interactions as FM.
NFM [11] and AFM [34] extend FM by adding DNN and attention
layers after a neural FM model. Recently, AutoInt [25], BERT4Rec
[26], and AFT [10] adopt self-attention to model feature fields’ and
user behaviors’ interactions. Pre-training is also adopted in recom-
mendation [33, 41]. DFN [35] jointly considers explicit/implicit and
positive/negative feedbacks via self-attention. AFN [4] further in-
troduces the logarithmic neural network to smartly and efficiently
find informative high-order feature interactions. Practical large-
scale recommendation systems often have more than dozens of
feature fields. Hence, these introduced models are essential in rec-
ommendation, which could be used for directly recommending or
as a component for feature interaction modeling.

Real-world recommendation systems, especially list-wise sys-
tems, usually need to consider multiple objectives and long-term
rewards such as accuracy, diversity and user activeness [36, 43].
It is straightforward to introduce reinforcement learning (RL) to
address these factors. Recently, RL methods have also been veri-
fied in recommendation with both value-based (Deep Q-network
(DQN)) and policy-based (Policy gradient (PG)) strategies [16, 30].
DRN [44] and FeedRec [47] apply RL to model long-term rewards
of user activeness and engagement. Wang et al. [31] adopts RL for
explainable recommendation. As for the list-wise recommendation,
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Zhao et al. [43] conducts RL for E-commerce, and Zhao et al. [42]
brings the multi-goals abstraction in the high-level agent of hier-
archical RL. [38] also adopts a hierarchical RL that decouples the
integrated recommendation into an item recommender and a chan-
nel selector. PAPERec [36] also builds a personalized approximate
Pareto-efficient recommendation, using RL to find appropriate ob-
jective weights for different instances. These list-wise RL-based
models regard the item recommendation at each position as an ac-
tion, and thus can model the overall list-wise rewards conveniently.
Inspired by their successes, we implement list-wise RL-based mod-
els as both teacher and student in DRL-Rec, and also compare with
some competitive RL-based models as baselines.

2.2 Knowledge Distillation
Knowledge distillation aims to transfer the knowledge from a cum-
bersome model to a small model, which is instructed by a soften
Softmax probability distribution under certain temperatures [12].
Romero et al. [23] further considers the intermediate representa-
tions from the teacher as hints to improve the training of students.
Chen et al. [1] combines KD and hint loss with bounded regres-
sion loss in object detection. Fukuda et al. [8] conducts KD from
a teacher ensemble, distilling different aspects of knowledge from
multiple sources. Yim et al. [40] considers the inner product be-
tween features from two layers to transfer knowledge. Wang et al.
[32] also combines KD with adversarial training for smarter distil-
lation selection. Recently, with the thriving of pre-training models,
lots of works such as Jiao et al. [13] and Sun et al. [27] focus on
compressing pre-training models via certain combinations of MSE,
Hint and KL divergence losses to distill BERT.

For reinforcement learning, Teh et al. [29] distills multiple multi-
task RL models into one student model. Czarnecki et al. [6] adopts
KD with curriculum learning on policy gradient models. Rusu et al.
[24] discusses the Q value distillation, which gives three methods
including NLL, MSE and KL divergence based losses that enables
KD on value-based RL. Czarnecki et al. [7] further explores the
entire landscape of policy distillation via theoretical and empirical
analyses. In DRL-Rec, we propose a novel list-wise KL divergence
based loss with the Hint loss for distillation. We also bring in the
notion of confidence in knowledge distillation.

2.3 Distillation in Recommendation
KD has also shown its power in recommendation. Tang and Wang
[28] analyzes the differences and challenges in ranking distillation.
To capture more information and reduce the sparsity in recom-
mendation provides a solution with top-k items also regarded as
positive instances. Zhou et al. [45] also adopts the knowledge dis-
tillation for training well-performing light networks. The teacher
and student are jointly trained with a shared set of raw feature
embeddings. Chen et al. [2] brings adversarial distillation in rec-
ommendation with external knowledge Pan et al. [21] designs an
enhanced KD-based collaborative autoencoder for top-N recom-
mendation. Recently, Ader [20] proposes the adaptive distilled ex-
emplar replay that can help the continual learning in session-based
recommendation. Kang et al. [14] proposes relaxed distillation for
ranking. Liu et al. [19] attempts to distill multi-task teachers into

a small DNN student to better model long-term rewards in rec-
ommendation. Besides model distillation, PFD [14] proposes the
privileged feature distillation in E-commerce. It concentrates on
making full use of informative privileged features that cannot be
directly used in online via feature-based KD, such as the real-time
duration in CVR prediction and the complicated time-consuming
user-item feature interactions in the candidate generation module.
Liu et al. [17] jointly conducts four KD tasks including label-based,
feature-based, sample-based and model structure-based distillations
for counterfactual recommendation. Differing from these models,
we propose an Exploring and filtering module to effectively select
informative instances for distillation between RL models. We also
design the Confidence-guided list-wise KL divergence and Hint
losses to guide student’s training. To the best of our knowledge, we
are the first to conduct KD between RL-based teacher and student
in list-wise recommendation

3 METHODOLOGY
DRL-Rec aims to transfer knowledge from cumbersome RL models
to small RL models in list-wise recommendation. We first introduce
the key notions used in this work:

• The teacher network.We utilize teacher to represent the
large RL-based recommendation model that will be distilled
in knowledge distillation.

• The student network.We use student to indicate the small
RL-based model in KD, which receives the distilled knowl-
edge from the teacher. Without loss of generality, we im-
plement the student with the same neural network as the
teacher, which only differs in the dimensions of embeddings.

• Filtered exploration candidate. Knowledge distillation
sometimes conducts an additional knowledge transfer on the
unlabelled data guided by the teacher, which could enable
a more sufficient training of students [18, 28]. In DRL-Rec,
besides real training instances, the teacher network also in-
structs the student’s training via informative unlabelled user-
item pairs. Due to the enormous item space, these unlabelled
pairs are pre-selected by an Exploring and filtering module.
These filtered items are regarded as the filtered exploration
candidates, which are used for the following knowledge dis-
tillation as supplements to real training instances.

Specifically, in Sec. 3.1, we first introduce the overall framework
of our DRL-Rec. Second, we describe the details of our list-wise
RL models and network structures in both student and teacher net-
works in Sec. 3.2. Third, we introduce the Exploring and filtering
module in Sec. 3.3, which works as a pre-filter of the following
knowledge distillation to smartly select informative unlabelled ac-
tions. Fourth, in Sec. 3.4, we discuss the Confidence-guided list-wise
KL divergence and Hint losses for more effective KD in RL-based
recommendation. Finally, we give the joint optimization objective
in Sec. 3.5. We will show the details of the online system and de-
ployment in Sec. 4.

3.1 Overall Framework
Fig. 2 displays the overall architecture of DRL-Rec, which mainly
consists of three modules, including the Teacher and student mod-
ule, the Exploring and filtering module, and the Confidence-guided
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Figure 2: Overall architecture of DRL-Rec. The solid lines represent the real instances’ forward and backward flows, while the
dotted lines indicate the explored unlabelled items’ flows. Both real user-item instances and filtered exploration candidates
are used for the following Confidence-guided distillation.

distillation module. (1) The Teacher and student module contains
two value-based RL models, which attempts to predict the scores of
recommending certain items in the current states. Without knowl-
edge distillation, the teacher and student are trained separately. (2)
The Exploring and filtering module focuses on exploring countless
user-item combinations and filtering informative user-item pairs
for the teacher to teach the student in the following KD. We design
various criteria to decide which unlabelled user-item explorations
should be taught from both teacher’s and student’s aspects. These
filtered exploration candidates are utilized as additional lessons be-
sides real training instances for the following knowledge distillation.
(3) After filtering, the Confidence-guided distillation module con-
ducts both intermediate and output distillations with the teacher’s
confidences being considered. We design a list-wise KL divergence
based manner to distill the Q values in a list, and conduct a classical
Hint loss for intermediate distillation. Besides the original RL-based
ranking loss, the student can learn from both real training instances
and filtered exploration candidates via KDs. In online, we only de-
ploy the student network for recommendation to fit the time and
memory requirements.

3.2 Teacher and Student Module
In this subsection, we introduce the details of our RL-based teacher
and student. We follow most conventional list-wise RL-based mod-
els [36, 38, 43], which regard recommending a whole item list as
a round, and generating each item as the action. Specifically, we
adopt a value-based RL method Double DQN [30], and define the
key RL notions used in list-wise recommendation as:

• State 𝑠 : the state 𝑠 contains information of user profiles, user
historical behaviors, recommendation contexts, and previous
recommended item in the list.

• Action 𝑎: the action 𝑎 is generating an item in the list.
• Reward 𝑟 : the reward 𝑟 is measured by the click times of
the current item in the recommended list.

• Discount factor 𝛾 : 𝛾 ∈ [0, 1] measures the importance of
future rewards to the current state.

The RL model sequentially generates items to form an item list for
each request. For faster and better model convergence, we adopt

the same neural networks for the teacher and student, which only
differ in model size. It is also not difficult to conduct different RL
models for the student.

3.2.1 Network Structures of Teacher and Student. In list-wise recom-
mendation, the RL states should describe not only user preferences
and current item features, but also previously recommended items
in the list. Therefore, differing from conventional ranking models
that use click behaviors to learn user interests, DRL-Rec uses the
impression behaviors (i.e., items being exposed to users) in the cur-
rent session to model the list-level state. Precisely, inspired by [38],
when recommending the 𝑡-th item in the list, we use the previous
𝑚 impressed items before 𝑡 to form the input feature sequence 𝑠𝑒𝑞𝑡 ,
noted as 𝑠𝑒𝑞𝑡 = {𝒇1, · · · ,𝒇𝑚}.

The 𝑖-th feature 𝒇𝑖 mainly contains four feature groups: (a) user
basic information (e.g., age, gender, long-term interests), (b) recom-
mendation contexts (e.g., timestamp, city), (c) current item features
(e.g., ID, tag, category embeddings), and (d) cumulative features of
the current session (e.g., cumulative item-specific information of
the former 𝑖 − 1 items in the input sequence, reflecting the list-level
information). Inspired by the Transformer-based feature interac-
tions used in Song et al. [25], we divide these feature groups into 𝑛
feature fields, and conduct a multi-head self-attention to capture
useful feature interactions. For the 𝑖-th feature matrix 𝑭 ′

𝑖
∈ R𝑛×𝑑𝑟

that consists of four feature groups, we calculate its flatten feature
embedding 𝒇𝑖 after a field-level self-attention as follows:

𝒇𝑖 = Flatten(Transformer(𝑭 ′
𝑖 )), 𝒇𝑖 ∈ R𝑛𝑑𝑟 . (1)

𝑑𝑟 is the dimension of raw feature fields. The Flatten(·) operation
concatenates all field embeddings after Transformer to form a 1D
embedding 𝒇𝑖 . Next, we conduct an RNN with GRU to represent
the state embedding 𝒔𝑡 as the last hidden state in GRU. We have:

𝒔𝑡 = GRU(𝑠𝑒𝑞𝑡 ) = GRU({𝒇1, · · · ,𝒇𝑚}). (2)

With the learned state embedding 𝒔𝑡 and the target item embedding
𝒂𝑡 (a trainable embedding), we conduct an MLP to generate the
final predicted Q value 𝑞𝑡 as follows:

𝑞𝑡 = MLP(Concat(𝒔𝑡 , 𝒂𝑡 )). (3)
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In DRL-Rec, the Q value is defined as the expected return of the
current and rest items in the list. We adopt the Temporal difference
(TD) learning [30], which is formalized as:

𝑄 (𝑠𝑡 , 𝑎𝑡 ) = E𝑠𝑡+1,𝑟𝑡∼𝐸 [𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1)], (4)

where 𝑎𝑡 indicates the 𝑡-th recommended item, and 𝑟𝑡 is calculated
as the clicked number of the 𝑡-th item. The discount factor 𝛾 con-
siders the position bias factors in list-wise recommendation. Items
with higher ranks should be more concerned (for their higher im-
pression rates and user experience), and thus the future rewards of
low-rank items in the list are discounted via 𝛾 . Both teacher and
student models share this structure with different parameters. Fig.
3 shows the detailed structure of the student network.

T
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1st layer

2nd layer

3th layer

listfeature fields

Confidence-guided 
Hint loss LHint

MSE loss LS
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ft-1
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st

q(st, at)

Confidence-guided KL 
divergence loss LKLMLP layers

Figure 3: The network structures of the student.

3.2.2 Training Objectives of Teacher and Student. For teacher’s
Double DQN model training, we use the classical mean squared
loss (MSE) [30] for value-based RL training as:

𝐿𝑇 = E𝑠𝑡 ,𝑟𝑡∼𝐸 [(𝑦𝑡 −𝑄 (𝑠𝑡 , 𝑎𝑡 |𝜃𝑇 ))2],
𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, argmax𝑎𝑄 (𝑠𝑡+1, 𝑎 |𝜃𝑇 ) |𝜃 ′𝑇 ) .

(5)

𝑦𝑡 indicates the 𝑡-th target Q value. 𝜃𝑇 is the online parameter to be
trained, and 𝜃 ′

𝑇
is the parameters of the target network fixed during

training. Similarly, the student’s MSE-based loss 𝐿𝑆 is defined the
same as that of the teacher. We have:

𝐿𝑆 = E𝑠𝑡 ,𝑟𝑡∼𝐸 [(𝑦𝑡 −𝑄 (𝑠𝑡 , 𝑎𝑡 |𝜃𝑆 ))2],
𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄 (𝑠𝑡+1, argmax𝑎𝑄 (𝑠𝑡+1, 𝑎 |𝜃𝑆 ) |𝜃 ′𝑆 ) .

(6)

𝜃𝑆 and 𝜃 ′
𝑆
are the parameters of the trained and target networks.

In DRL-Rec, we train the teacher and student simultaneously with
𝐿𝑇 , 𝐿𝑆 and two distillation losses in Sec. 3.4.

3.3 Exploring and Filtering Module
Conventional knowledge distillation models could benefit from
the softmax distributions and negative logits of the teacher as sup-
plements to the hard labels [12]. However, the action in recom-
mendation (i.e., recommending an item) may have million-level
candidates. The action combinations even multiply in list-wise sce-
narios for each user request. It is extremely time-consuming (even
impossible) and not necessary to explore and learn from all “nega-
tive” instances. In real-world physical scenarios, scientists usually
conduct the filtration process before distillation, which filters all
irrelevant impurities that may reduce the distillation efficiency. In-
spired by this, we assume that an effective KD should also filter

irrelevant user-item candidates before the following KD, focusing
on the high-quality informative user-item pairs in teaching. Hence,
we propose the Exploring and filtering module to find what lessons
(i.e., state-action pairs) the teacher should teach the student.

Specifically, we first conduct an offline exploration to generate in-
formative user-item pairs as additional unlabelled instances beyond
real instances in KD. A simple fast item retrieval model (e.g., two-
tower matching model [5] or random selection) is first conducted
to generate thousand-level item candidates (noted as the input ex-
ploration candidates) for each state, working as a coarse-grained
filtration considering the efficiency. Next, we propose a combination
of teacher-led and student-led lessons to smartly collect appropriate
user-item instances from both aspects for the following distillation.
Teacher-led Lessons. The teacher-led lessons collect user-item
instances that the teacher thinks are worth teaching. It selects
items with top-k Q values generated by the teacher in Eq. (3) for
the following exploration-based distillation. The lessons with the
teacher’s top-k Q value items make full use of the generalization
ability of the teacher, which bring additional informative knowledge
in KD. Note that differing from Tang andWang [28], our teacher-led
lessons distill the Q values of top-k items given by the teacher, not
directly viewing them as true labels.
Student-led Lessons. The student-led lessons concentrate on in-
stances the student thinks are worth learning. It focuses on the
items with top-k Q values predicted by the student. In such lessons,
instead of passively learning from the teacher, the student actively
predicts what it thinks is appropriate and then asks the teacher for
advice. In teacher-led lessons, the teacher teaches based on what it
thinks will be clicked, while in student-led lessons, the teacher cor-
rects the student’s current perceptions on what the student thinks
will be clicked, which also matters in online recommendation.

By combining the teacher-led and student-led lessons, the Ex-
ploring and filtering module can generate possible clicked items
from both teacher’s and student’s opinions for a more effective dis-
tillation. It is also convenient to conduct other high-quality lessons
to select items for KD, such as the teacher-student deviation-led
lessons. This filtering process is essential, since most item candi-
dates are irrelevant and inappropriate to be recommended, which
may even disturb the distillation. The filtered exploration candi-
dates provided by the Exploring and filtering module are useful
supplements to real training instances, which are used in the fol-
lowing Confidence-guided knowledge distillation.

3.4 Confidence-guided Distillation Module
The Confidence-guided distillation module aims to distill useful
knowledge from the teacher to the student, where the distilled in-
stances derive from both real training instances and filtered explo-
ration instances. We conduct KDs on both intermediate embeddings
and output Q values in our list-wise RL scenario. We also bring
in the notion of confidence according to the teacher’s accuracy to
further enhance the effectiveness of distillation.

3.4.1 Confidence-guided List-wise Output Distillation. Differing
from Hinton et al. [12] that focuses on a classifier, the teacher is
a value-based RL model predicting Q value lists, which is a dif-
ficult regression task. Inspired by Rusu et al. [24], we propose a
confidence-guided list-wise output distillation. Specifically, we use
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the Kullback-Leibler divergence (KL) between the teacher’s and
student’s Q value lists as our distillation objective, and then conduct
distillation with temperature 𝜏 to distill the Q value lists as follows:

𝐿𝐾𝐿 =
∑︁
𝑞𝑖 ∈𝑄

softmax(
𝒒𝑇
𝑖

𝜏
) ln

softmax( 𝒒
𝑇
𝑖

𝜏 )
softmax(𝒒𝑆

𝑖
)
. (7)

𝑄 indicates the overall Q value list set. 𝒒𝑇
𝑖
and 𝒒𝑆

𝑖
are the Q value

embeddings of the 𝑖-th Q value list given by the teacher and student
respectively, where the 𝑗-th element in 𝒒𝑇

𝑖
indicates the Q value of

the 𝑗-th item in the 𝑖-th list. Comparing with simply using point-
wise MSE loss between teacher’s and student’s Q values, our list-
wise KL-based distillation further considers the overall distribution
in the list, which helps RL modeling in list-wise scenarios. 𝜏 is the
distillation temperature, which is used to adjust the sharpness of
the Q value distributions in the lists.

In addition, we also introduce the notion of confidence in dis-
tillation. For each real user-item instance, the confidence 𝑐𝑡 of the
𝑡-th item is defined via the gap between the teacher’s predicted Q
value 𝑞𝑇𝑡 and the real Q value 𝑦𝑡 , noted as:

𝑐𝑡 = 1 −
||𝑞𝑇𝑡 − 𝑦𝑡 | |22

𝜂
, 𝜂 = max | |𝑞𝑇𝑡 − 𝑦𝑡 | |22 + 𝜖. (8)

𝑦𝑡 is the Q value in Eq. (5). This confidence measures the reliability
of teacher’s predictions, which is added to the learning rates of
corresponding items as discount weights when updating the stu-
dent. For filtered exploration instances, we simply set the average
confidence equally for all instances, since we do not have real user
feedbacks on these unlabelled instances. In distillation, to avoid the
disturbances from the student, we also conduct a gradient block for
the teacher as [45]. The confidence-guided KL distillation enables a
more effective learning for the student via emphasized lessons.

3.4.2 Confidence-guided Intermediate Distillation. We also conduct
a confidence-guided intermediate distillation following the Hint
loss [23]. We conduct a point-wise distillation on the last MLP
hidden embeddings in Eq. (3), which is formalized as follows:

𝐿𝐻𝑖𝑛𝑡 =

|𝑇 |∑︁
𝑖=1

𝑐𝑖 | |𝒉𝑇𝑖 − 𝒉𝑆𝑖 | |
2
2 . (9)

𝑇 indicates the overall instances (including real and filtered ex-
ploration instances). 𝒉𝑇

𝑖
and 𝒉𝑆

𝑖
are the last hidden states of the

teacher and student. 𝑐𝑖 is the 𝑖-th confidence of current instance
introduced in Eq. (8). The Hint loss with confidence also improves
the distillation from the point-wise intermediate level, distilling
useful information from another aspects.

3.5 Optimization Objective
In training, we combine the teacher/student RL losses 𝐿𝑇 and 𝐿𝑆 in
Eq. (5) and Eq. (6) with the two confidence-guided distillation losses
𝐿𝐾𝐿 and 𝐿𝐻𝑖𝑛𝑡 in Eq. (7) and Eq. (9) as our final training objective:

𝐿 = 𝜆1𝐿𝑇 + 𝜆2𝐿𝑆 + 𝜆3𝐿𝐾𝐿 + 𝜆4𝐿𝐻𝑖𝑛𝑡 . (10)

We empirically set 𝜆1 : 𝜆2 : 𝜆3 : 𝜆4 = 2 : 2 : 1 : 1 according to both
offline and online performances. The teacher network is trained
only via 𝐿𝑇 , while the student network is directly influenced by 𝐿𝑆 ,
𝐿𝐾𝐿 and 𝐿𝐻𝑖𝑛𝑡 .

4 ONLINE DEPLOYMENT
We have deployed our DRL-Rec framework on a well-known rec-
ommendation system named WeChat Top Stories for more than
six months. In this section, we will introduce the online system,
serving, and efficiency of our real-world list-wise system.

4.1 Online System and Serving
WeChat Top Stories is a popular recommendation system inWeChat.
It has nearly million-level users and items, generating tens of mil-
lions of daily user behaviors. To model future rewards and recom-
mendation diversity, we adopt a list-wise recommendation system.
Specifically, we directly deploy the student RL model of DRL-Rec
on the ranking module of a recommendation scenario, with other
modules unchanged for control experiments. Inspired by [36, 38],
we also adopt the online RL exploration on small online traffic to
collect real user feedbacks on diversified state-action instances. The
online exploration randomly recommends one of the top-k best
items pre-selected by the matching module (rather than the item
with the highest score) as a recommendation trial. It improves the
diversity of RL explorations and thus helps RL models to discover
users’ potential interests. Note that the offline exploration in the
Exploring and filtering module aims to select informative items
as unsupervised information for KD, while the online exploration
focuses on collecting diverse real user feedbacks as supervised
information. Specifically, we conduct on TensorFlow PS-Worker
architecture. We have 50 ps machines and 150 worker machines for
training (4 cores and 6G memory). We spend an average of 2 hours
completing the training. We have also tested various parameter
combinations to confirm the model convergence.

4.2 Online Efficiency
DRL-Rec attempts to conduct knowledge distillation on RL-based
recommendations, where the computation andmemory costs are es-
sential. In both offline training and online serving, the computation
costs mainly locate in the state encoder. In training, the Exploring
and filtering module should first evaluate all candidates via the
teacher and the student, which is extremely time-consuming. For-
tunately, the Transformer and GRU calculations at each position in
Eq. (1) to Eq. (3) can be reused for all candidates, which greatly re-
duces the amount of computation. Moreover, a fast retrieval model
(e.g., matching models or simple random selection) is adopted as
a coarse filter. In online, we only need to conduct the forward Q
value calculation for all item candidates (i.e., top 200 items retrieved
by the previous matching module), whose time cost is related to the
student network. The online time complexity is 𝑂 (𝑘𝑁 ), where 𝑘 is
the number of input item candidates of DRL-Rec, and 𝑁 is the time
cost of the student. The online memory and computation costs of
the deployed DRL-Rec are only 49.7% and 76.7% of the teacher.

5 EXPERIMENTS
We propose DRL-Rec for distilling value-based RL models in list-
wise recommendation. In this section, we conduct extensive offline
and online experiments, aiming to answer the following three re-
search questions: RQ1: How does DRL-Rec perform against com-
petitive baselines in offline (see Sec. 5.4)? RQ2: How does DRL-Rec
perform in online recommendation systems with various real-world
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metrics (see Sec. 5.5)?RQ3: What are the influence of different com-
ponents in DRL-Rec (see Sec. 5.6)? RQ4: What are the influence of
different parameters on the performance (see Sec. 5.7)?

5.1 Datasets
Since there is no large-scale dataset for list-wise recommendation
and the online exploration requires real user feedbacks for RL train-
ing, we build a new dataset LRec-1B from a widely-used list-wise
system WeChat Top Stories. This system generates 10 items for
each user request. Precisely, we randomly select nearly 36 million
users, and utilize their 1.1 billion item impression instances in 151
million lists. We split these impressed instances into a train set and
a test set following the chronological order. The instance numbers
of the train set and the test set are approximately set as 7 : 3 in
LRec-1B. All data are preprocessed via data masking to protect user
privacy. Table 1 shows the detailed statistics of LRec-1B.

Table 1: Statistics of the LRec-1B dataset.

#user #list #click #impression

36,984,728 151,530,216 92,802,521 1,092,114,138

5.2 Competitors
We implement several competitive methods as our baselines, which
are roughly grouped into two categories, including the classical
point-wise ranking models and the list-wise RL-based models.

Point-wise Ranking Models. We implement seven representative
point-wise ranking models, including FM [22], Wide&Deep [3],
NFM [11], AFM [34], DeepFM [9], AutoInt [25], and AFN [4] for
baselines, which are widely verified in industry. Compared to DRL-
Rec, these models do not optimize the list-wise rewards in their
training objectives. Precisely, we have:

• FM [Rendle 2010]. Factorizationmachine (FM) is a classical
model that captures the second-order feature interactions
via latent vectors. It is considered as the base model in our
offline evaluation.

• Wide&Deep [Cheng et al. 2016].Wide&Deep jointlymod-
els raw features via a LR-based Wide part, and conducts a
DNN-based Deep part to learn high-order feature interac-
tions. It is widely used in industry.

• NFM [He and Chua 2017]. NFM uses a neural FM module
followed by a DNN module to model feature interactions.

• AFM [Xiao et al. 2017]. AFM brings in an attention layer
after a neural FM layer to weight different second-order
feature combinations.

• DeepFM[Guo et al. 2017].DeepFM adopts theWide&Deep
framework, using a neural FM layer as the Wide part.

• AutoInt [Song et al. 2019].AutoInt introduces the popular
self-attention across feature fields, which is widely used as
a fundamental module in recommendation. DRL-Rec also
adopts a self-attention layer to model feature interactions.

• AFN [Cheng et al. 2020]. AFN is a recent SOTA ranking
model, which adopts the logarithmic neural network to au-
tomatically select effective high-order feature interactions.

Note that all raw features of users, items and contexts and all user
historical behaviors used in DRL-Rec are also considered in these
baselines for fair comparisons.

List-wise RL-based Models. We further conduct comparisons with
two competitive list-wise RL-based recommendation models.

• Teacher network. In knowledge distillation, the teacher
network is always a strong and essential competitor. Pre-
cisely, we directly adopt the teacher network introduced in
Sec. 3.2, which is trained via Eq. (5) with Double DQN [30].

• HRL-Rec [Xie et al. 2021b]. HRL-Rec is the state-of-the-
art list-wise RL-based recommendation framework. It is spe-
cially designed for the integrated recommendation with het-
erogeneous items, which adopts a hierarchical RL model for
channel selection and item recommendation. For this task,
we directly use the item recommender of HRL-Rec trained
with DDPG as a challenging baseline.

For fair comparisons, all RL baselines share the same input features
and list-wise rewards as DRL-Rec. Moreover, the dimensions of
feature embeddings in all baselines are set to the same, while the
DRL-Rec model is compressed (i.e., 50%) via KD. Sec. 5.3 and Sec.
5.7 give detailed analyses on the model compression rates.

5.3 Experimental Settings
In DRL-Rec, the discount factor 𝛾 , the numbers of input explo-
ration candidates and filtered exploration candidates in the Ex-
ploring and filtering module, and the temperature 𝜏 are the most
essential parameters, which have great impacts on the final perfor-
mances. We conduct a grid search and test the discount factor 𝛾
among {0.0, 0.2, 0.4, 0.6, 0.8}, the number of input candidates among
{100, 500, 1000}, the number of filtered exploration candidates for
KD among {1, 3, 5, 10}, and the temperature among {1, 2, 3, 5, 10, 20}.
In conclusion, a larger discount factor 𝛾 indicates that DRL-Rec val-
ues more about future rewards. The discount factor 𝛾 is set to be 0.4
considering the position bias. Larger numbers of input and filtered
output candidates in the Exploring and filtering module imply that
more additional lessons are explored and taught. Too few candidates
may be insufficient in finding informative KD lessons via explo-
rations. However, too many lessons may also bring in tremendous
computation costs and noises. Hence, we select 1, 000 candidates
as inputs and top 3 filtered items as outputs for both teacher- and
student- led lessons to balance effectiveness and efficiency. These
top 3 filtered items are combined with the original train set for KD.
In distillation, the temperature 𝜏 is set as 10 according to the offline
and online performances.

For the Teacher and student module, the teacher and student
share the same neural network structure and feature fields. The
compression rate (i.e., student model size / teacher model size) is
the key parameter in KD. We have tested various compression rates
(see Sec. 5.7), and set it as 50% balancing both effectiveness and
efficiency. Precisely, we have more than 15 feature fields in online.
Each feature field’s dimensions 𝑑𝑟 of teacher and student are 16 and
8, and other hidden embeddings also follow the 50% compression
rate. The maximum length𝑚 of the impression sequence is 10. We
conduct a 3-layer MLP to get 𝑞𝑡 for both the teacher and student.

In optimization, we jointly train both teacher and student si-
multaneously, and train DRL-Rec once over all training instances
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considering the efficiency. We deploy DRL-Rec on a value-based
DQN model, since it is more convenient and stable for DQN to con-
verge in knowledge distillation. We use Adam [15] for optimization
with the batch size set as 256. We conduct a grid search for parame-
ter selection. All models share the same features (if beneficial) and
experimental settings. More parameter analyses are in Sec. 5.7.

5.4 Offline Evaluation (RQ1)
We first evaluate DRL-Rec with other baselines on LRec-1B to show
its effectiveness on recommendation accuracy.

5.4.1 Evaluation Protocols. In offline evaluation, we first score all
instances with all models, and then use the classical metrics Area
Under Curve (AUC) and RelaImpr widely-utilized in real-world
(list-wise) recommendation [36, 38, 46] to evaluate models. AUC
measures the probability of clicked instances having higher ranks
than unclicked instances, while RelaImpr [39] reflects the relative
improvements of current models over the base model (i.e., FM in
offline evaluations). In offline evaluation, we conduct 3 runs and
report the average results for all models.

Table 2: Results of offline evaluation on LRec-1B. Note that
the online memory cost and computation cost of DRL-Rec
are only 49.7% and 76.7% of the teacher network.

model AUC RelaImpr

FM (Rendle 2010) 0.7321 0.00%
Wide&Deep (Cheng et al. 2016) 0.7413 3.96%
NFM (He and Chua 2017) 0.7384 2.71%
AFM (Xiao et al. 2017) 0.7382 2.63%
DeepFM (Guo et al. 2017) 0.7426 4.52%
AutoInt (Song et al. 2019) 0.7463 6.12%
AFN (Cheng et al. 2020) 0.7459 5.95%

The teacher network 0.7619 12.84%
HRL-Rec (Xie et al. 2021b) 0.7625 13.10%

DRL-Rec (ours) 0.7653 14.30%

5.4.2 Experimental Results. Table 2 shows the results of all models,
from which we can observe that:

(1) DRL-Rec achieves significant improvements on AUC over
all representative point-wise and list-wise RL-based baselines. We
should highlight that the improvements of DRL-Rec are significant
(significance level 𝛼 = 0.01) with our billion-level dataset. Based on
the 50% compression rate, the online memory cost and computation
cost of DRL-Rec are only 49.7% and 76.7% of the teacher network. It
indicates that DRL-Rec has successfully learned informative knowl-
edge from the large-scale teacher with a smaller size, which can
jointly improve both effectiveness and efficiency.

(2) The advantages of DRL-Rec over simple knowledge distilla-
tion mainly locate in two aspects: (a) the Exploring and filtering
module can smartly select informative lessons from tremendous
action space, which solves the “what the teacher should teach” issue
respecting the wishes of both teachers and students. These high-
quality explorations bring in additional training opportunities for
the student. (b) The Confidence-guided list-wise KL loss and Hint
loss enable a more effective knowledge distillation via high-quality

instances according to the teacher’s accuracy, which addresses the
“how much the student should learn” for each KD lesson. In Sec. 5.6
and Sec. 5.7, we will give detailed analyses on the effectiveness of
different components and parameters.

(3) It is astonishing that DRL-Rec (i.e., the distilled student net-
work) even outperforms the teacher network which has the same
neural network, features, and RL method with a twice model size.
It is because that: (a) DRL-Rec jointly uses both real user-item
instances and filtered exploration candidates in knowledge distil-
lation. These filtered exploration candidates could be viewed as
additional unlabelled training lessons for the student. The student
is learned from (i) direct training with real instances, (ii) KL/Hint
losses with real instances, and (iii) KL/Hint losses with top-3 fil-
tered exploration candidates, while the teacher only learns from
real instances. (b) The Confidence-guided KD further improves the
knowledge transfer, where the student can concentrate more on the
correct experiences of the teacher. (c) The list-wise KL divergence
loss in KD further considers the overall reward distributions in
the recommended list. We also show the results of students with
different compression rates in Sec. 5.7.

5.5 Online A/B Tests (RQ2)
To evaluate DRL-Rec on online scenarios, we further conduct an
online A/B test on a real-world list-wise recommendation scenario
in WeChat Top Stories.

5.5.1 Evaluation Protocols. Following Sec. 4, we deploy DRL-Rec
and the online baseline (i.e., the teacher network) in the ranking
module with other modules unchanged. We use the average click
number per capita (ACN) as the main metric. ACN is a practical
and widely-used online metric, which could jointly measure both
recommendation accuracy and user activeness [37]. Besides, we
also report the online serving computation cost per request and the
online memory cost. We conduct the online A/B tests for 5 days,
affecting nearly 2 million users.

Table 3: Online A/B test on WeChat Top Stories.

metrics ACN computation cost memory cost

DRL-Rec +1.38% -23.3% -50.3%

5.5.2 Experimental Results. Table 3 shows the improvement per-
centages of DRL-Rec, from which we can find that:

(1) DRL-Rec significantly outperforms the online baseline on
ACN with the significance level 𝛼 = 0.05, which indicates that DRL-
Rec is capable of improving both accuracy and efficiency in online
scenarios. It reconfirms that DRL-Rec could capture informative
knowledge from the teacher and learn to be better via the exploring,
filtering, and distillation training framework.

(2) Real-world recommendation systems should balance effective-
ness, efficiency, and time/memory expenses in online deployment.
Comparing with the original teacher network, DRL-Rec achieves
1.38% ACN improvement with only 50%memory cost and 77% com-
putation cost. The time and memory surplus could be used for more
complex algorithms, high-order features, or multiple objectives to
improve recommendation accuracy and user experience.
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5.6 Ablation Tests (RQ3)
To verify that different components are essential in DRL-Rec, we
implement seven ablation versions with different model settings.

5.6.1 Evaluation Protocols. Precisely, we categorize these ablation
versions into three groups. The first group evaluates the two essen-
tial contributions of DRL-Rec, namely the Exploring and filtering
module and the Confidence-guided KD. The second group tests the
effectiveness of two KD losses, namely the list-wise KL divergence
loss in Eq. (7) and the Hint loss in Eq. (9). The third group attempts
to demonstrate the necessity of three technics in the neural network,
including the sequence modeling, the self-attention based feature
interaction modeling, and the consideration of future rewards.

5.6.2 Experimental Results. From Table 4 we can find that:
(1) The first ablation group indicates that both the Exploring and

filtering module and the Confidence-guided manner are beneficial
in the knowledge distillation of RL models. The improvements of
these modules are significant. Besides the performance improve-
ments, the Exploring and filtering module filters most irrelevant
exploration candidates, which greatly reduces the computation cost.
Moreover, the Confidence-guided manner also plays an important
role in ensuring a stable RL training, which is essential in daily
model updates of online systems.

(2) The second ablation group represents that both the inter-
mediate Hint loss and the output list-wise KL divergence loss are
essential in KD. The Hint loss focuses on the point-wise knowl-
edge transfer between hidden embeddings after MLP, while the
KL divergence loss concentrates on distilling the knowledge of list-
wise Q value distributions. Both knowledge distillation losses at
intermediate and output levels can cooperate well with each other.

(3) In the third ablation group, we conduct an average pooling to
replace the GRU in Eq. (3) and another average pooling to replace
the self-attention in Eq. (1) for ablation tests. We find that the GRU
and self-attention in DRL-Rec’s network are necessary. Moreover,
the discount factor𝛾 = 0 equals that DRL-Rec does not consider any
future rewards in list-wise recommendation. This ablation result
indicates that considering long-term list-wise rewards is important
in real-world scenarios.

Table 4: Ablation tests on LRec-1B dataset.

Task AUC RelaImpr

DRL-Rec 0.7653 14.30%

– Exploring and filtering 0.7622 12.97%
– Confidence in KD 0.7611 12.49%

– KL loss 0.7614 12.62%
– Hint loss 0.7629 13.27%

– GRU 0.7525 8.79%
– self-attention 0.7598 11.93%
– future rewards (𝛾 = 0) 0.7600 12.02%

5.7 Model Analyses (RQ4)
We further conduct two model analyses to investigate the impacts
of different key parameters in DRL-Rec.

5.7.1 Analysis on Compression Rate. We first evaluate DRL-Rec
with different compression rates (i.e., student model size / teacher
model size) to evaluate the robustness of DRL-Rec. Fig. 4 (a) shows
the results, and we can find that: (1) in general, the AUC will first
keep stable with the compression rate set from 87.5% to 50.0%, and
then decrease sharply from 50.0% to 25.0%. It is natural that the AUC
(and the computation cost) will decrease as the compression rate de-
creases, since the student has smaller parameter sizes. (2) In online
and offline evaluations, we set the compression rate as 50.0%, which
has a good balance between effectiveness and efficiency. (3) The
robustness of DRL-Rec is also verified with different compression
rates, which confirms the feasibility in online deployment.

5.7.2 Analysis on the Number of Filtered Exploration Items. In the
Exploring and filtering module, the numbers of input items and fil-
tered exploration candidates are also essential in DRL-Rec. We have
tested various combinations of different input item and filtered ex-
ploration candidate sizes in the Exploring and filtering module. Fig.
4 (b) gives the parameter analysis of different filtered exploration
item numbers. We can know that: (1) the AUCwill first increase and
then decrease as the number of top-k filtered items increases from
1 to 10. DRL-Rec achieves the best performance when we select
top-3 filtered items. (2) It is because that too few filtered items will
lead to an insufficient exploration of distillation on unlabelled data,
while too many filtered items will bring in distillation noises. (3) We
also evaluate DRL-Rec with different numbers of input exploration
candidates. We find that too few inputs are insufficient, and choose
1, 000 input candidates to balance effectiveness and efficiency.

87.5 0.7663
75.0 0.7659
62.5 0.7662
50.0 0.7653
37.5 0.7622
25.0 0.754
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Figure 4: Results of two parameter analyses: (a) AUC with
different compression rates. (b) AUCwith different numbers
of filtered exploration items.

6 CONCLUSION AND FUTUREWORK
In this work, we propose a novel DRL-Rec framework for knowledge
distillation between RL-based models in list-wise recommendation.
We design a novel Exploring and filtering module to learn what the
teacher should teach from both teacher’s and student’s aspects. We
also conduct a Confidence-guided distillation with both list-wise
KL divergence and Hint losses to address how much the student
should learn. DRL-Rec achieves significant offline and online im-
provements, and has been deployed on WeChat Top Stories.

In the future, we will continue to polish the compression rate
and performances of DRL-Rec via more sophisticated knowledge
distillation methods or paths between RL models. We will also
explore deeper into the Exploring and Filtering module to discover
more effective exploration and distillation directions.
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