TransNet: Translation-Based Network Representation Learning for Social Relation Extraction

Cunchao Tu NLP Group, Dept. of CS&T, Tsinghua University

Network Representation Learning

 Learn a low-dimensional representation vector for each vertex in networks

Network Representation Learning

- Representations as features
 - Vertex classification -> User profiling/Anomaly detection

Gender: male Age: 35-40 Location: New York Occupation: engineer Social network activity: high Interests: family, books Sentiment about product category: Positive Brand affinity: Very positive Buying signals: IMMEDIATE PURCHASE

Network Representation Learning

- Representations as features
 - Vertex classification -> User profiling/Anomaly detection
 - Link prediction -> Friend recommendation

Challenges

- Typical NRL models
 - simplify each edge as a binary or continuous value.
 - ignore rich semantic information on edges.
- Typical NRL tasks
 - Vertex classification
 - Link prediction

Can we model and predict detailed relations between social network vertices?

A New Task – Social Relation Extraction

- Extract detailed relations between social network vertices
 - A new way to evaluate relation modeling of NRL models
- Relation Extraction/Prediction in knowledge graphs
 - Relation categories are well pre-defined
 - Relational facts are annotated precisely with human efforts

Definitions of SRE

Relations

Definitions of SRE

TransNet: Translation-Based NRL

- Translation Mechanism
 - "Interest" vector **u**, **v**
 - "Skill" vector **u', v'**

TransNet: Translation-Based NRL

Translation Mechanism

$$\mathcal{L}_{trans} = \max(\gamma + d(\mathbf{u} + \mathbf{l}, \mathbf{v}') - d(\hat{\mathbf{u}} + \hat{\mathbf{l}}, \hat{\mathbf{v}}'), 0)$$

TransNet: Translation-Based NRL

Edge Representation Construction

• Datasets: Arnetminer

Datasets	Arnet-S	Arnet-M	Arnet-L
Vertices	187,939	268,037	945,589
Edges	1,619,278	2,747,386	5,056,050
Train	1,579,278	2, 147, 386	3,856,050
Test	20,000	300,000	600,000
Valid	20,000	300,000	600,000
Labels	100	500	500
ML Proportion (%)	42.46	63.74	61.68

• Evaluation Metrics: Hits@k, MeanRank

• SRE

- Typical NRL models
- TransE and TransNet

Table 2: SRE results on Arnet-S. (×100 for hits@k, $\alpha = 0.5$ and $\beta = 20$)

Metric	hits@1	hits@5	hits@10	MeanRank	hits@1	hits@5	hits@10	MeanRank
DeepWalk LINE node2vec	$13.88 \\ 11.30 \\ 13.63$	$36.80 \\ 31.70 \\ 36.60$	$50.57 \\ 44.51 \\ 50.27$	$19.69 \\ 23.49 \\ 19.87$	$18.78 \\ 15.33 \\ 18.38$	$39.62 \\ 33.96 \\ 39.41$	$52.55 \\ 46.04 \\ 52.22$	$18.76 \\ 22.54 \\ 18.92$
TransE	39.16	78.48	88.54	5 .39	57.48	84.06	90.60	4.44
TransNet	47.67	86.54	92.27	5.04	77.22	90.46	93.41	4.09

Table 4: SRE results on Arnet-L. (×100 for hits@k, $\alpha = 0.5$ and $\beta = 50$)

Metric	hits@1	hits@5	hits@10	MeanRank	hits@1	hits@5	hits@10	MeanRank
DeepWalk LINE node2vec	$5.41 \\ 4.28 \\ 5.39$	$16.17 \\ 13.44 \\ 16.23$	$23.33 \\ 19.85 \\ 23.47$	102.83 114.95 102.01	$7.59 \\ 6.00 \\ 7.53$	$17.71 \\ 14.60 \\ 17.76$	$24.58 \\ 20.86 \\ 24.71$	$100.82 \\ 112.93 \\ 100.00$
TransE	15.38	41.87	55.54	32.65	23.24	47.07	59.33	30.64
TransNet	28.85	66.15	75.55	29.60	56.82	73.42	78.60	27.40

• Label comparison

Tags	Top 5 labels		Bottom 5 lab	els
Metric hits@	1 $hits@5$ $hits@10$ Me	anRank $hits@1$	hits@5 $hits$	@10 MeanRank
TransE 58.82	85.68 91.61	3.70 52.21	82.03 87.	75 5.65
TransNet 77.20	3 90.35 93.53	3.89 78.27	90.44 93	30 4.18

Table 5: Label comparisons on Arnet-S. ($\times 100$ for hits@k)

• Case study: "A. Swami","

Table 6: Recommended top-3 labels for each neighbor.

Neighbors	TransE	TransNet
Matthew Duggan	ad hoc network ; wireless sensor network; wireless sensor networks	management system; ad hoc network ; wireless sensor
K. Pelechrinis	wireless network; wire- less networks; ad hoc net- work	wireless network; wire- less sensor network; rout- ing protocol
Oleg Korobkin	wireless network; wire- less networks; wireless communication	resource management; system design; wireless network

Conclusion

- A new task Social Relation Extraction
 - Relations -> Automatically constructed label set
- Translation-based NRL TransNet
 - Translation mechanism
 - Deep autoencoder
- 10%~20% improvements than TransE on SRE

Homepage

Code and Datasets

Email: tucunchao@gmail.com