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HJD
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word2vec
ƪƻƹƭƾƈƤƵƷƻƸƻǁ ƱƿƈƭƸƍƈƛƵƾƿƽƵƮǀƿƱưƈƽƱƼƽƱƾƱƺƿƭƿƵƻƺƾƈƻƲƈǂƻƽưƾƈƭƺưƈƼƴƽƭƾƱƾƈƭƺưƈƿƴƱƵƽƈ
ƯƻƹƼƻƾƵƿƵƻƺƭƸƵƿǄƍƈƥƠƧƩƈƑƏƐƒƍ 11
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ĬĨĻĎ}�
• ŔµŤ.�ŧď"ĬĨ (k=2)

ƧƱƽƻǅǅƵ ƱƿƈƭƸƍƈƛƱƱƼƫƭƸƷƗƈƦƺƸƵƺƱƈƣƱƭƽƺƵƺƳƈƻƲƈƩƻƯƵƭƸƈƨƱƼƽƱƾƱƺƿƭƿƵƻƺƾƍƈƢƛƛƈƑƏƐƓ 14



DeepWalk
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LINE
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node2vec
• VÄ¼GÿųÕñŐ
–ŝhäöVÄpƅ��BFS
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ĬĨĻĎ}��Ĉů@Łÿ9ġ
• �Ä}�ņË�Spectral	Clustering,	DeepWalkd
GraRepĚĬĨĻĎ}�ĞêĚ��Ĉů@Ł

ƬƭƺƳ Ʊƿ ƭƸƍ ƥƱƿǂƻƽƷ ƨƱƼƽƱƾƱƺƿƭƿƵƻƺ ƣƱƭƽƺƵƺƳ ǂƵƿƴ ƨƵƯƴ ƪƱǃƿ ƠƺƲƻƽƹƭƿƵƻƺƍ ƠơƚƙƠ ƑƏƐƔƍ
ƬƭƺƳ Ʊƿ ƭƸƍ Ɲƭƾƿ ƥƱƿǂƻƽƷ ƜƹƮƱưưƵƺƳ ƜƺƴƭƺƯƱƹƱƺƿ ǁƵƭ ƟƵƳƴ ƦƽưƱƽ ƧƽƻǃƵƹƵƿǄ ƙƼƼƽƻǃƵƹƭƿƵƻƺ
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Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec

parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F
1

scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F

1

scores
for comparing performance in Table 2 and the relative performance
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�6ÆÓ-¬
• ĬĨ�|j��ÿÆÓ-¬
• �ĶóÆÓ-¬�6ĬĨĻĎ}�

ƬƭƺƳ Ʊƿ ƭƸƍ ƥƱƿǂƻƽƷ ƨƱƼƽƱƾƱƺƿƭƿƵƻƺ ƣƱƭƽƺƵƺƳ ǂƵƿƴ ƨƵƯƴ ƪƱǃƿ ƠƺƲƻƽƹƭƿƵƻƺƍ ƠơƚƙƠ ƑƏƐƔƍ
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Text-Associated	DeepWalkƃTADWƄ
• Ĉů@ŁàÜ
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Context-Aware	Network	Embedding
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• ß¹Ķó�aŦ�ƅ}��aÿcŪĻĎ
• DúÆÓ-¬Şĺă�9ìƃmutual attentionƄ

ƪǀƋ Ʊƿ ƭƸƍ ƚƙƥƜƗ ƚƻƺƿƱǃƿƌƙǂƭƽƱ ƥƱƿǂƻƽƷ ƜƹƮƱưưƵƺƳ Ʋƻƽ ƨƱƸƭƿƵƻƺ ƤƻưƱƸƵƺƳƍ ƙƚƣ ƑƏƐƖƍ



Context-Aware	Network	Embedding
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Context-Aware	Network	Embedding

33

• Mutual Attention



�6ÝĜ-¬
• ą��üĬĨĶó¡¡ļÝìğEÝĜ

#ĩƥƨƣÌÉĀĆÈêƅÉêİĸÝĜ-¬
jżí K�ÃÛ�

34



Max-Margin DeepWalk
• 8aŅĥDW+ÏtŮŴ@ğg

ƪǀƋ Ʊƿ ƭƸƍ ƤƭǃƌƤƭƽƳƵƺ ƛƱƱƼƫƭƸƷƗ ƛƵƾƯƽƵƹƵƺƭƿƵǁƱ ƣƱƭƽƺƵƺƳ ƻƲ ƥƱƿǂƻƽƷ ƨƱƼƽƱƾƱƺƿƭƿƵƻƺƍ
ƠơƚƙƠ ƑƏƐƕƍ 35



Max-Margin DeepWalk
• Max-Margin DeepWalk (MMDW)
–DúMFDWCxNĶóĻĎ
–DúÝìĶóŅĥSVM
–��ÝìĶóŃĞ:1ĭcŪ
–ũÇŅĥMFDW

+řüÁ¶cŪc_ĵğEēL
ńğE�Ů@ğüŲÎJËÍ
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Max-Margin DeepWalk
• Ķó@ğħÛ
– >5%ÿ¾Q
–�ú�RŅĥÄ¹U]ŚFbaselineÿ@ğÃÛ
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Max-Margin DeepWalk
• ĶóĻĎ]ĿNƃt-SNEƄ
– DeepWalk�MMDW
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• �ď�ĬĨdú±ÿēLŖšĳ`�å

ƬƭƺƳƈƱƿƈƭƸƍƈƙƈƥƱǀƽƭƸƈƥƱƿǂƻƽƷƈƙƼƼƽƻƭƯƴƈ ƿƻƈơƻƵƺƿƸǄƈƤƻưƱƸƵƺƳƈƩƻƯƵƭƸƈƥƱƿǂƻƽƷƾƈƭƺưƈƤƻƮƵƸƱƈ
ƪƽƭƶƱƯƿƻƽƵƱƾƍƈƙƚƤƈƪƦƠƩƍ 50
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ċĖœM
• ºģõæď"ĬĨĻĎ}�
– Bipartite Networks, Signed Networks, Hetereogeneous
Networks, …

• ºģL©ĬĨ�ÿĻĎ}�

• ÂŞď"ŃĞ<m K
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ƛƱƾƯƽƵƼƿƵƻƺƌƜƹƮƻưƵƱư Ƣƨƣ
ƛƢƨƣ ƉƙƙƙƠ ƑƏƐƕƊ

ƧƭƿƴƌƮƭƾƱư ƪƽƭƺƾƜ
ƧƪƽƭƺƾƜ ƉƜƤƥƣƧ ƑƏƐƔƊƪƽƭƺƾƨ ƉƙƙƙƠ ƑƏƐƔƊ

Ƣƨƣ ǂƵƿƴƈƱƺƿƵƿƵƱƾƋƈƭƿƿƽƵƮǀƿƱƾƈƭƺưƈƽƱƸƭƿƵƻƺƾ
ƢƨƌƜƙƨ ƉƠơƚƙƠ ƑƏƐƕƊ

����������	ćŇĻĎÈê
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