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Abstract
Conventional network representation learning (N-
RL) models learn low-dimensional vertex repre-
sentations by simply regarding each edge as a bi-
nary or continuous value. However, there exists
rich semantic information on edges and the inter-
actions between vertices usually preserve distinc-
t meanings, which are largely neglected by most
existing NRL models. In this work, we present
a novel Translation-based NRL model, TransNet,
by regarding the interactions between vertices as a
translation operation. Moreover, we formalize the
task of Social Relation Extraction (SRE) to evalu-
ate the capability of NRL methods on modeling the
relations between vertices. Experimental results on
SRE demonstrate that TransNet significantly out-
performs other baseline methods by 10% to 20% on
hits@1. The source code and datasets can be ob-
tained from https://github.com/thunlp/
TransNet.

1 Introduction
How to represent networks is critical for network analysis,
such as vertex classification [Lindamood et al., 2009], clus-
tering [Shepitsen et al., 2008] and link prediction [Liben-
Nowell and Kleinberg, 2007]. Typically, researchers employ
one-hot representation and treat each vertex as a unique sym-
bol. Such representation method is fairly simple. Neverthe-
less, it faces the sparsity issue, and deteriorates the perfor-
mance of many machine learning algorithms when applied to
network analysis tasks.

Inspired by recent trends of representation learning on im-
age, speech and natural language, network representation
learning (NRL) is proposed as an efficient technique to ad-
dress the sparsity issue. NRL aims to encode the structure in-
formation of each vertex into a low-dimensional real-valued
vector, which can be further utilized as features in various
network analysis tasks.

There have been a large amount of NRL models proposed
in recent years. These models tend to learn efficient ver-
tex representations from local structure [Perozzi et al., 2014;
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Tang et al., 2015] or global patterns [Cao et al., 2015;
Tu et al., 2016a]. Besides, there are also some works pro-
posed to incorporate heterogeneous information into NRL,
such as text [Yang et al., 2015] and labels [Tu et al., 2016b;
Li et al., 2016].

What calls for special attention is that most existing NRL
models neglect the semantic information of edges. As one of
the essential network components, the edge is usually sim-
plified as a binary or continuous value in conventional NRL
models and most network analysis tasks. It is intuitive that
such simplification can not model rich information of edges
well. It is also well-acknowledged that the interactions be-
tween vertices in real-world networks exhibit rich and variant
meanings. For example, the following behaviors to the same
user in social media may be caused by different reasons; two
authors have co-authored with another one in an academic
network due to various common interests. Therefore, it is es-
sential to integrate the detailed relation information of edges
into NRL, which is expected to enable extracting latent rela-
tions between vertices in return.

In this work, we propose the task of Social Relation
Extraction (SRE) to model and predict social relations for so-
cial networks. SRE is similar to the task of relation extrac-
tion in knowledge graphs (KG), for which the most widely-
used methods are knowledge representation learning (KRL)
such as TransE [Bordes et al., 2013]. The difference is that
there are usually no well pre-defined relation categories in
SRE, and relations between vertices are typically hidden in
their interactive text (such as co-authored papers between t-
wo researchers). It is intuitive that social relations can be
represented by key phrases extracted from the interactive tex-
t, and there are usually multiple relational labels to indicate
the complex relation between two vertices.

SRE cannot be well addressed by existing NRL and KRL
methods. Conventional NRL models ignore the rich semantic
information on edges when learning vertex representations,
while typical KRL models such as TransE only perform well
when the relation between two entities is specifically annotat-
ed with a single label. According to our statistics, only 18%
entity pairs in FB15k (a typical KG) possess multiple rela-
tion labels, while the percentages of multi-label edges in SRE
datasets are severalfold. To address this issue, we present a
novel translation-based NRL model TransNet to incorporate
multiple relational labels on edges into NRL. “Translation”



here means the movement that changes the position of a vec-
tor in representation space. Inspired by the successful utiliza-
tion of translation analogy in word representation [Mikolov et
al., 2013] and KGs [Bordes et al., 2013], we embed vertices
and edges into the same semantic space and employ a trans-
lation mechanism to deal with the interactions among them,
i.e., the representation of tail vertex should be close to the
representation of head vertex plus the representation of edge.
To handle the multi-label scenario, in TransNet we design an
auto-encoder to learn edge representations. Moreover, the de-
coder part can be utilized to predict labels of unlabeled edges.

We construct three network datasets for SRE, in which
edges are annotated with a set of labels. Experimental re-
sults show that TransNet achieves significant and consisten-
t improvements comparing with typical NRL models and
TransE. It demonstrates that our proposed TransNet is effi-
cient and powerful on modeling relationships between ver-
tices and edges.

To summarize, we make the following contributions:
(1) We are the first to formalize social relation extraction

(SRE) for evaluating the effectiveness of NRL models.
(2) We propose a novel translation-based NRL model,

TransNet, to incorporate the semantic information of edges.
As a simple and straightforward model, it models the relation-
ships among vertices and edges with translation mechanism.

(3) We collect three annotated datasets for SRE, and exper-
imental results on these datasets demonstrate the outstanding
capabilities of TransNet to model and predict the relations be-
tween vertices.

2 Related Work
Recently, network representation learning (NRL) becomes an
active research field that learns vertex representations from
network structure. Various NRL models have been present-
ed, which can be broadly divided into three categories. Deep-
Walk [Perozzi et al., 2014], LINE [Tang et al., 2015], n-
ode2vec [Grover and Leskovec, 2016] and SDNE [Wang et
al., 2016] tend to learn representations from local network
structure. Besides, there are also some works that intend to
capture the global structure and community patterns, such as
GraRep [Cao et al., 2015], CNRL [Tu et al., 2016a] and M-
NMF [Wang et al., 2017b]. Moreover, how to incorporate
heterogeneous information into NRL is also critical. TAD-
W [Yang et al., 2015] introduces text information into NR-
L with matrix factorization. CANE [Tu et al., 2017] learns
context-aware network representation with mutual-attention
mechanism. MMDW [Tu et al., 2016b] and DDRW [Li et
al., 2016] incorporate labelling information to learn discrim-
inative network representations. Besides, SiNE [Wang et
al., 2017a] learns vertex representations in signed network-
s, where each edge is either positive or negative. Neverthe-
less, such consideration of edges is over-simplified and not
suitable to other types of networks.

To the best of our knowledge, less work has been done to
consider the rich semantic of edges and make detailed pre-
dictions of relations on edges. It’s worth noting that relation
extraction has been an essential task in knowledge graph-
s [Mintz et al., 2009; Riedel et al., 2010; Hoffmann et al.,

2011; Surdeanu et al., 2012; Lin et al., 2016], which aims to
extract relational facts to enrich existing KGs. It usually per-
forms as relation classification, as there exist various large-
scale KGs such as Freebase [Bollacker et al., 2008], DBpe-
dia [Auer et al., 2007] and YAGO [Suchanek et al., 2007],
with labelled relations between entities. Nevertheless, there
are usually no annotated explicit relations on edges in social
networks, and it is also time-consuming to annotate edges in
large-scale networks with human efforts. To address this is-
sue, we propose to obtain the relations from interactive text
information through NLP techniques automatically.

How to model the relationships between vertices and edges
is crucial for predicting the relations precisely. In word repre-
sentation learning field, [Mikolov et al., 2013] found transla-
tion patterns such as “King”-“Man”=“Queen”-“Woman”. In
knowledge graphs, [Bordes et al., 2013] interprets the rela-
tions as translating operations between head and tail entities
in the representation space, i.e., “head”+“relation”=“tail”.
Inspired by these analogies, we assume there also exists trans-
lation mechanism in social networks, and propose translation-
based NRL model, TransNet.

3 Social Relation Extraction
SRE is similar to the task of relation extraction (RE) in KGs,
which is an important technique that aims to extract relation-
al facts to enrich existing KGs. Knowledge representation
learning (KRL) methods such as TransE [Bordes et al., 2013],
have been widely used for RE in KGs.

In this work, we present the task of Social Relation Extrac-
tion (SRE), which is designed to extract relations between
social network vertices. Comparing with conventional RE in
KGs, there are two obvious distinctions of SRE:

(1) In KGs, relation categories are usually well pre-defined,
and relational facts are annotated precisely with human effort-
s. Conversely, SRE is proposed to deal with a new scenario,
in which relations between social network vertices are latent
and typically hidden in their interactive text information.

(2) In social networks, relations between vertices are ex-
tremely dynamic and complex, and cannot be portrayed well
with a single label, because such practice cannot provide suf-
ficient and accurate descriptions of these social relations. It
is intuitive to represent the social relations by extracting key
phrases from the interactive text information as a relation la-
bel set. These key phrases are flexible and capable of captur-
ing the complex semantic information within social relations,
as well as making these relations interpretable.

Formally, we define the problem of SRE as follows. Sup-
pose there is a social network G = (V,E), where V is the
set of vertices, and E ⊆ (V ×V ) are edges between vertices.
Besides, the edges in E are partially labeled, denoted as EL.
Without loss of generality, we define the relations between
vertices as a set of labels, instead of a single label. Specifi-
cally, for each labelled edge e ∈ EL, the label set of edge e
is denoted as l = {t1, t2, . . .}, where each label t ∈ l comes
from a fixed label vocabulary T .

Finally, given the overall network structure and the labeled
edges in EL, SRE aims to predict the labels over unlabeled
edges in EU , where EU = E − EL represents the unlabeled



edge set.

4 TransNet
In this work, we focus on the problem of incorporating rich
relation information on edges into NRL.
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Figure 1: The framework of TransNet.

As shown in Fig. 1, TransNet consists of two critical com-
ponents, i.e., translation part and edge representation con-
struction part. In the following parts, we first give the detailed
introduction of translation mechanism in TransNet. After-
wards, we introduce how to construct the edge representation-
s. At last, we give the overall objective function of TransNet.

4.1 Translation Mechanism
Motivated by translation mechanisms in word representation-
s [Mikolov et al., 2013] and knowledge representations [Bor-
des et al., 2013], we assume that the interactions between ver-
tices in social networks can also be portrayed as translations
in the representation space.

Specifically, for each edge e = (u, v) and its correspond-
ing label set l, the representation of vertex v is expected to
be close to the representation of vertex u plus the representa-
tion of edge e. As each vertex plays two roles in TransNet:
head vertex and tail vertex, we introduce two vectors v and
v′ for each vertex v, corresponding to its head representation
and tail representation. After that, the translation mechanism
among u, v and e can be formalized as

u+ l ≈ v′. (1)

Note that, l is the edge representation obtained from l, which
will be introduced in details in section 4.2.

We employ a distance function d(u+ l,v′) to estimate the
degree of (u, v, l) that matches the Eq. (1). In practice, we
simply adopt L1-norm.

With the above definitions, for each (u, v, l) and its nega-
tive sample (û, v̂, l̂), the translation part of TransNet aims to
minimize the hinge-loss as follows:

Ltrans = max(γ + d(u+ l,v′)− d(û+ l̂, v̂′), 0), (2)

where γ > 0 is a margin hyper-parameter and (û, v̂, l̂) is a
negative sample from the negative sampling set Ne as

Ne = {(û, v, l)|(û, v) /∈ E} ∪ {(u, v̂, l)|(u, v̂) /∈ E}

∪ {(u, v, l̂)|l̂ ∩ l = ∅}.
(3)

In Eq. (3), the head vertex or tail vertex is randomly replaced
by another disconnected vertex, and the label set is replaced
by a non-overlapping label set.

The vertex representations in Eq. (2) are treated as pa-
rameters, and the edge representations are generated from the
corresponding label set, which will be introduced in the fol-
lowing part.

4.2 Edge Representation Construction
As shown in Fig. 1, we employ a deep autoencoder to con-
struct the edge representations. The encoder part composes
of several non-linear transformation layers to transform the
label set into a low-dimensional representation space. More-
over, the reconstruction process of the decoder part makes the
representation preserve all the label information. In the fol-
lowing sections, we introduce how to realize it in detail.

Input Mapping: We first map the label set to an in-
put vector of autoencoder. Specifically, for a label set l =

{t1, t2, . . .} of edge e, we obtain a binary vector s = {si}|T |
i=1,

where si = 1 if ti ∈ l, and si = 0 otherwise.
Non-linear Transformation: Taking the obtained binary

vector s as input, the encoder and decoder parts of the au-
toencoder consist of several non-linear transformation layers
as follows:

h(1) = f(W(1)s+ b(1)),

h(i) = f(W(1)h(i−1) + b(i)), i = 2, . . . ,K.
(4)

Here, K represents the number of layers and f denotes the
activation function. h(i), W(1) and b(i) represent the hidden
vector, transformation matrix and bias vector in the i-th layer
respectively. Specifically, we employ tanh activation function
to get the edge representation l = h(K/2) as the vertex repre-
sentations are real-valued, and sigmoid activation function to
get the reconstructed output ŝ as the input vector s is binary.

Reconstruction Loss: Autoencoder aims to minimize the
distance between inputs and the reconstructed outputs. The
reconstruction loss is shown as:

Lrec = ||s− ŝ||. (5)

Here, we also adopt L1-norm to measure the reconstruction
distance, the same as in Eq. (2).

However, due to the sparsity of the input vector, the number
of zero elements in s is much larger than that of non-zero el-
ements. That means the autoencoder will tend to reconstruct
the zero elements rather than non-zero ones, which is incom-
patible with our purpose. Therefore, we set different weights
to different elements, and re-defined the loss function in Eq.
(5) as follows:

Lae = ||(s− ŝ)� x||, (6)

where x is a weight vector and � means the Hadamard prod-
uct. For x = {xi}|T |

i=1, xi = 1 when si = 0 and xi = β > 1
otherwise.



With the utilization of deep autoencoder, the edge repre-
sentation not only remains the critical information of corre-
sponding labels, but also has the ability of predicting the re-
lation (labels) between two vertices.

4.3 Overall Architecture
To preserve the translation mechanism among vertex and
edge representations, as well as the reconstruction ability of
edge representations, we combine the objectives in Eqs. (2)
and (6), and propose a unified NRL model TransNet. For each
(u, v, l) and its negative sample (û, v̂, l̂), TransNet jointly op-
timizes the objective as follows:

L = Ltrans + α[Lae(l) + Lae(l̂)] + ηLreg. (7)

Here, we introduce two hyper-parameters α and η to balance
the weights of different parts. Besides, Lreg is an L2-norm
regularizer to prevent overfitting, which is defined as

Lreg =

K∑
i=1

(||W (i)||22 + ||b(i)||22). (8)

In order to prevent overfitting, we also employ dropout [S-
rivastava et al., 2014] to generate the edge representations.
At last, we adopt Adam algorithm [Kingma and Ba, 2015] to
minimize the objective in Eq. (7).

4.4 Prediction
With the learnt vertex representations and the edge autoen-
coder, TransNet is capable of predicting the labels on the
edges in EU .

To be specific, given an unlabeled edge (u, v) ∈ EU ,
TransNet assumes that the representations of u and v confor-
m to the Eq. (1) with the potential edge representation. Thus,
we can get the approximate edge representation through l =
v′ − u. Naturally, we decode the edge representation l with
the decoder part in Eq. (4) to obtain the predicted label vector
ŝ. A larger weight ŝi indicates ti is more possible in l.

5 Experiments
In order to investigate the effectiveness of TransNet on mod-
eling relations between vertices, we compare the performance
of our model to several baseline methods on social relation
extraction (SRE) with three automatically constructed social
network datasets.

5.1 Datasets
ArnetMiner1 [Tang et al., 2008] is an online academic web-
site that provides search and mining services for researcher
social networks. It releases a large-scale co-author network2,
which consists of 1, 712, 433 authors, 2, 092, 356 papers and
4, 258, 615 collaboration relations.

In this network, authors collaborate with different people
on different topics, and the co-authored papers can reflect the
detailed relations between them. Therefore, we construct the
co-authored network with labeled edges in the following step-
s. Firstly, we collect all the research interest phrases from

1https://cn.aminer.org/
2https://cn.aminer.org/aminernetwork

the author profiles and build the label vocabulary with these
phrases. These phrases are mainly crawled from the authors’
personal home pages and annotated by themselves. Hence,
these phrases are rather credible, which is also confirmed by
our manual check. Secondly, for each co-author relationship,
we filter out the in-vocabulary labels in the abstracts of co-
authored papers and regard them as the ground truth labels
of this edge. Note that, as the edges in co-author networks
are undirected, we replace each edge with two directed edges
with opposite directions.

Specifically, to better investigate the characteristics of d-
ifferent models, we construct three datasets with differen-
t scales, denoted as Arnet-S(small), Arnet-M(medium) and
Arnet-L(large). The details are shown in Table 1.

Table 1: Datasets. (ML indicates multi-label edges.)
Datasets Arnet-S Arnet-M Arnet-L

Vertices 187, 939 268, 037 945, 589
Edges 1, 619, 278 2, 747, 386 5, 056, 050
Train 1, 579, 278 2, 147, 386 3, 856, 050
Test 20, 000 300, 000 600, 000
Valid 20, 000 300, 000 600, 000

Labels 100 500 500

ML Proportion (%) 42.46 63.74 61.68

5.2 Baselines
We employ the following NRL models as baselines:

DeepWalk [Perozzi et al., 2014] performs random walk-
s over networks to generate random walk sequences. With
these sequences, it employs Skip-Gram [Mikolov et al.,
2013], an efficient word representation model, to learn ver-
tex representations.

LINE [Tang et al., 2015] defines the first-order and
second-order proximities of networks and optimizes the joint
and conditional probabilities of edges in large-scale network-
s.

node2vec [Grover and Leskovec, 2016] extends DeepWalk
with a biased random walk strategy. It can explore the neigh-
borhood architecture more efficiently.

For these NRL models, we treat SRE as a multi-label clas-
sification task. Therefore, we concatenate the head and tail
vertex representations to form the feature vector and adopt
one-vs-rest logistic regression implemented by [Pedregosa et
al., 2011] to train a multi-label classifier.

Besides, we also compare our model with the typical
knowledge embedding model, TransE [Bordes et al., 2013].
For each training instance (u, v, l), where l = {t1, t2, . . .},
it is intuitive to obtain several triples, i.e., (u, v, ti) for each
ti ∈ l, which can be directly utilized to train TransE mod-
el. We adopt the similarity based predicting method as intro-
duced in [Bordes et al., 2013].

5.3 Evaluation Metrics and Parameter Settings
For a fair comparison, we evaluate the performance for each
triple (u, v, ti) as in TransE, where ti ∈ l. Besides, we also



Table 2: SRE results on Arnet-S. (×100 for hits@k, α = 0.5 and β = 20)
Metric hits@1 hits@5 hits@10 MeanRank hits@1 hits@5 hits@10 MeanRank

DeepWalk 13.88 36.80 50.57 19.69 18.78 39.62 52.55 18.76
LINE 11.30 31.70 44.51 23.49 15.33 33.96 46.04 22.54

node2vec 13.63 36.60 50.27 19.87 18.38 39.41 52.22 18.92

TransE 39.16 78.48 88.54 5.39 57.48 84.06 90.60 4.44

TransNet 47.67 86.54 92.27 5.04 77.22 90.46 93.41 4.09

Table 3: SRE results on Arnet-M. (×100 for hits@k, α = 0.5 and β = 50)
Metric hits@1 hits@5 hits@10 MeanRank hits@1 hits@5 hits@10 MeanRank

DeepWalk 7.27 21.05 29.49 81.33 11.27 23.27 31.21 78.96
LINE 5.67 17.10 24.72 94.80 8.75 18.98 26.14 92.43

node2vec 7.29 21.12 29.63 80.80 11.34 23.44 31.29 78.43

TransE 19.14 49.16 62.45 25.52 31.55 55.87 66.83 23.15

TransNet 27.90 66.30 76.37 25.18 58.99 74.64 79.84 22.81

Table 4: SRE results on Arnet-L. (×100 for hits@k, α = 0.5 and β = 50)
Metric hits@1 hits@5 hits@10 MeanRank hits@1 hits@5 hits@10 MeanRank

DeepWalk 5.41 16.17 23.33 102.83 7.59 17.71 24.58 100.82
LINE 4.28 13.44 19.85 114.95 6.00 14.60 20.86 112.93

node2vec 5.39 16.23 23.47 102.01 7.53 17.76 24.71 100.00

TransE 15.38 41.87 55.54 32.65 23.24 47.07 59.33 30.64

TransNet 28.85 66.15 75.55 29.60 56.82 73.42 78.60 27.40

employ hits@k and MeanRank [Bordes et al., 2013] as evalu-
ation metrics. Here, MeanRank is the mean of predicted ranks
of all annotated labels, while hits@k means the proportion of
correct labels ranked in the top k. Note that, the above metrics
will under-estimate the models that rank other correct labels
in the same label set high. Hence, we can filter out these la-
bels before ranking. We denote the primal evaluation setting
as “Raw” and the latter one as “Filtered”.

We set all the representation dimension to 100 for all mod-
els. In TransNet, we set the regularizer weight η to 0.001, the
learning rate of Adam to 0.001 and the margin γ to 1. Be-
sides, we employ a 2-layer autoencoder for all datasets and
select the best-performed hyper-parameters α and β on vali-
dation sets.

5.4 Results and Analysis
Table 2, Table 3 and Table 4 show the SRE evaluation result-
s with different evaluation metrics on different datasets. In
these tables, the left four metrics are raw results, and the right
are filtered ones. From these tables, we have the following
observations:

(1) Our proposed TransNet achieves consistent and sig-
nificant improvements than all the baselines on all different
datasets. More specifically, TransNet outperforms the best
baseline, i.e., TransE, by around 10% to 20% absolutely. It
demonstrates the effectiveness and robustness of TransNet on
modeling and predicting relations between vertices.

(2) All NRL models have poor performance on SRE task
under various situations, due to the neglect of rich semantic
information over edges when learning vertex representation-
s. On the contrary, both TransE and TransNet incorporate
this information into the learned representations, thus achieve
promising results on SRE. It indicates the importance of con-
sidering the detailed edge information, as well as the rational-
ity of translation mechanism on modeling relations between
vertices.

(3) Comparing with TransNet, TransE also performs poor-
ly as it can only consider a single label on an edge each
time, which turns the representation of labels on the same
edge to be identical. Such practice may accord with the sce-
nario in knowledge graph, where only 18% entity pairs pos-
sess multiple relation labels, according to our statistics on F-
B15k [Bordes et al., 2013]. Conversely, the percentages of
multi-label edges on SRE datasets are larger (42%, 64% and
62% on Arnet-S, Arnet-M, and Arnet-L respectively). There-
fore, TransNet models all the labels over an edge simultane-
ously and can handle these issues well according to the re-
sults.

(4) TransNet has stable performance under different scales
of networks. Moreover, when the number of labels turns larg-
er, the performance of TransNet only has a small drop (from
90% to 80% on filtered hits@10), while NRL models and
TransNet decrease more than 20%. This indicates the flexi-
bility and stability of TransNet.



Table 5: Label comparisons on Arnet-S. (×100 for hits@k)
Tags Top 5 labels Bottom 5 labels

Metric hits@1 hits@5 hits@10 MeanRank hits@1 hits@5 hits@10 MeanRank

TransE 58.82 85.68 91.61 3.70 52.21 82.03 87.75 5.65

TransNet 77.26 90.35 93.53 3.89 78.27 90.44 93.30 4.18

5.5 Comparison on Labels
To investigate the strengths of TransNet on modeling relation-
s between vertices, we compare TransNet with TransE under
high-frequency labels and low-frequency ones. In Table 5,
we show the filtered hits@k and MeanRank results on Arnet-
S over top-5 labels and bottom-5 labels respectively.

From this table, we find that TransE performs much bet-
ter on high-frequency labels than low-frequency labels s-
ince there is a liberal quantity of training instances for high-
frequency labels. Compared with TransE, TransNet has sta-
ble and worthy performance on both types of labels. The
reason is that TransNet employs an autoencoder to construc-
t edge representations, which can take the correlations be-
tween labels into consideration. These correlations can pro-
vide additional information for low-frequency labels, which
will benefit the modeling and predicting of them.

5.6 Parameter Sensitivity
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Figure 2: Parameter sensitivity.

There are two crucial hyper-parameters in TransNet, i.e., α
and β. We investigate the parameter sensitivities on Arnet-S.

For β, it balances the weight of non-zero elements in auto-
encoder. We determine the value of β according to the recon-
struction performance when we initialize the auto-encoder us-
ing Eq. (6). In the left part of Fig 2, we show the raw hits@1
trends on validation set under different values of β. From this
figure, we find that the reconstruction performance becomes
stable after several iterations. More specifically, when β is
too small (e.g., 5), the autoencoder will tend to reconstruc-
t zero element rather than non-zero ones, which will lead to
the poor reconstruction performance.

The hyperparameter α controls the weight of auto-encoder
loss comparing with the translation loss. When the optimal
β is determined, we show the raw hits@10 results in the
right part of Fig 2 when α takes values under different or-

ders of magnitude. From this figure, we observe that the per-
formance of TransNet rises rapidly at the beginning, and then
becomes stable. When α varies broadly, all the implements of
TransNet can exceed TransE within 20 iterations and achieves
stable performance at last. Therefore, TransNet can be easily
implemented and well trained in practice due to its insensitiv-
ity of hyper-parameters.

5.7 Case Study

Table 6: Recommended top-3 labels for each neighbor.
Neighbors TransE TransNet

Matthew Duggan ad hoc network; wireless
sensor network; wireless
sensor networks

management system; ad
hoc network; wireless
sensor

K. Pelechrinis wireless network; wire-
less networks; ad hoc net-
work

wireless network; wire-
less sensor network; rout-
ing protocol

Oleg Korobkin wireless network; wire-
less networks; wireless
communication

resource management;
system design; wireless
network

To demonstrate the effectiveness of TransNet, we provide
a case in the test set of Arnet-S. The selected researcher is
“A. Swami”, and the recommended labels for its co-authors
are shown in Table 6. In this table, labels in bold are cor-
rect ones. We observe that, both TransE and TransNet can
recommend reasonable labels to different neighbors, which
can reflect their distinct co-author topics. However, for a spe-
cific neighbor, TransE only recommends similar labels due
to its similarity-based recommendation method. Conversely,
TransNet can recommend discriminative labels with the us-
age of decoder.

6 Conclusion
In this paper, we formalize the problem of social relation ex-
traction (SRE) in social networks, which aims to extract de-
tailed relations between vertices and can be used to evaluate
the ability of NRL models on relation modeling. Moreover,
we propose a novel translation-based NRL model, TransNet,
to model interactions between vertices with translation mech-
anism. Experimental results on SRE show that TransNet
can successfully integrate the rich semantic information pre-
served on edges into vertex representations and achieves sig-
nificant improvements comparing with all baseline methods.

In future, we will explore the following directions:
(1) The effectiveness of TransNet has been verified on ex-

tracting explicit relations in homogeneous networks. In fu-
ture, we want to explore how to model the relations between
various types of vertices in heterogeneous networks.



(2) In SRE, the co-occurring vertex pairs and labels on
edges can be regarded as a hyperedge in hypergraphs, where
each edge contains three or more various vertices. Thus, we
will explore network representation learning in hypergraph-
s, and the learned representations of vertices and labels are
expected to benefit the SRE task.
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