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Abstract
Many Network Representation Learning (NRL)
methods have been proposed to learn vector repre-
sentations for vertices in a network recently. In this
paper, we summarize most existing NRL methods
into a unified two-step framework, including prox-
imity matrix construction and dimension reduction.
We focus on the analysis of proximity matrix con-
struction step and conclude that an NRL method
can be improved by exploring higher order proxim-
ities when building the proximity matrix. We pro-
pose Network Embedding Update (NEU) algorithm
which implicitly approximates higher order prox-
imities with theoretical approximation bound and
can be applied on any NRL methods to enhance
their performances. We conduct experiments on
multi-label classification and link prediction tasks.
Experimental results show that NEU can make a
consistent and significant improvement over a num-
ber of NRL methods with almost negligible run-
ning time on all three publicly available datasets.
The source code of this paper can be obtained from
https://github.com/thunlp/NEU.

1 Introduction
A network is an essential data type widely used in our

daily lives and academic researches, such as friendship net-
works in Facebook and citation networks in DBLP [Ley,
2002]. Researchers have made great effort on developing ma-
chine learning algorithms for various network applications,
e.g. vertex classification [sen, ], tag recommendation [Tu et
al., 2014], anomaly detection [Akoglu et al., 2015] and link
prediction [Liben-Nowell and Kleinberg, 2007]. Most super-
vised machine learning algorithms applied on these applica-
tions require a set of informative features as input [Grover and
Leskovec, 2016]. Hand-crafted features may suit the need but
require much human effort and expert knowledge. There-
fore, representation learning [Bengio et al., 2013] which
learns feature embeddings via optimization learning was pro-
posed to avoid feature engineering and improve the flexibil-
ity of features. In terms of network analysis, Network Rep-
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resentation Learning (NRL) which aims to learn distributed
real-valued embeddings for vertices of a network has at-
tracted much attention in recent years [Perozzi et al., 2014;
Tang et al., 2015b; Cao et al., 2015; Grover and Leskovec,
2016].

In this paper, we summarize most existing NRL meth-
ods into a unified two-step framework, including proximity
matrix construction and dimension reduction. The first step
builds a proximity matrix M where each entry Mij encodes
the proximity information between vertex i and j. The sec-
ond step reduces the dimension of the proximity matrix to
obtain network embeddings. Different NRL methods employ
various dimension reduction algorithms such as eigenvector
computation and SVD decomposition. Our analysis of the
first step, i.e. proximity matrix construction, shows that the
quality of network embeddings can be improved when higher
order proximities are encoded into the proximity matrix.

However, an accurate computation of high-order proxim-
ities is time-consuming and thus not scalable for large-scale
networks. Thus we can only approximate higher order prox-
imity matrix for learning better network embeddings. In order
to be more efficient, we also seek to use the network repre-
sentations which encode the information of lower order prox-
imities as our basis to avoid repeated computations. There-
fore, we propose Network Embedding Update (NEU) algo-
rithm which could be applied to any NRL methods to enhance
their performances. The intuition behind is that the embed-
dings processed by NEU algorithm can implicitly approxi-
mate higher order proximities with a theoretical approxima-
tion bound and thus achieve better performances.

We conduct experiments on multi-label classification and
link prediction tasks over three publicly available datasets to
evaluate the quality of network embeddings. Experimental
results show that the network embeddings learned by existing
NRL methods can be improved consistently and significantly
on both evaluation tasks after enhanced by NEU. Moreover,
the running time of NEU takes less than 1% training time of
popular NRL methods such as DeepWalk and LINE, which
could be negligible.

Our main contributions are two-fold:
1) We summarize a number of existing NRL methods into

a unified framework, i.e. proximity matrix construction and
dimension reduction, and conclude that the quality of network
embeddings can be enhanced if higher order proximities are



encoded into the proximity matrix.
2) We propose NEU algorithm to improve the perfor-

mances of any network embeddings learned by existing NRL
algorithms. The embeddings processed by NEU can im-
plicitly approximate higher order proximities with theoretical
bound. Experimental results on multi-label classification and
link prediction demonstrate the efficiency and effectiveness
of our algorithm.

Related Works Here we give a brief introduction to ex-
isting NRL methods and some of which will be thoroughly
analyzed in next section. Spectral Clustering [Tang and
Liu, 2011] computes top-d eigenvectors of normalized Lapla-
cian matrix as d-dimensional network embeddings. Deep-
Walk [Perozzi et al., 2014] employs Skip-gram [Mikolov et
al., 2013] model, which is originally used in word repre-
sentation learning, on random walks for NRL. LINE [Tang
et al., 2015b] models first-order and second-order proximi-
ties between vertices for learning large-scale network embed-
dings. GraRep [Cao et al., 2015] factorizes different k-order
proximity matrices and concatenates the embeddings learned
from each proximity matrix. Though GraRep achieves bet-
ter performance than DeepWalk and LINE, GraRep suffers
heavily from inefficiency problem. Besides the above NRL
methods that focus on network topology, researchers also ex-
plore algorithms to incorporate meta information, e.g. text
and label information, into NRL. TADW [Yang et al., 2015]
takes text information into consideration under matrix fac-
torization framework and MMDW [Tu et al., 2016] learns
semi-supervised network embeddings with max-margin con-
straints between vertices from different labels. As an-
other semi-supervised NRL method, node2vec [Grover and
Leskovec, 2016] further generalizes DeepWalk with Breadth-
First Search (BFS) and Depth-First Search (DFS) on random
walks. GCN [Kipf and Welling, 2017], DDRW [Li et al.,
2016] and Planetoid [Yang et al., 2016] are also proposed
for semi-supervised graph embeddings. SDNE [Wang et al.,
2016] employs deep neural model for NRL. Other extensions
include asymmetric transitivity [Ou et al., 2016], community
preserving [Wang et al., 2017] and heterogenous [Tang et
al., 2015a; Chang et al., 2015; Huang and Mamoulis, 2017;
Xu et al., 2017; Huang et al., 2017] network embeddings. We
focus on the most general case where NRL methods use only
network topology in this paper.

2 Framework of Existing NRL Algorithms
In this section, we present a unified framework which can

cover several representative NRL algorithms include Spectral
Clustering [Tang and Liu, 2011], DeepWalk [Perozzi et al.,
2014], TADW [Yang et al., 2015], LINE [Tang et al., 2015b]
and GraRep [Cao et al., 2015]. First, we clarify the notations
and formalize the problem of NRL. Then we introduce the
concept of k-order proximity. Finally, we summarize an NRL
framework based on proximity matrix factorization and show
that the aforementioned NRL methods fall into the category.

Let G = (V,E) be a given network where V is vertex
set and E is edge set. The task of NRL is to learn a real-
valued representation rv ∈ Rd for each vertex v ∈ V where
d is the embedding dimension. We assume that networks are

unweighted and undirected in this paper without loss of gen-
erality and define adjacency matrix Ã ∈ R|V |×|V | as Ãij = 1

if (vi, vj) ∈ E and Ãij = 0 otherwise. Diagonal matrix
D ∈ R|V |×|V | denotes the degree matrix where Dii = di
represents the degree of vertex vi. A = D−1Ã is normalized
adjacency matrix where the summation of each row equals to
1. Similarly, we also have Laplacian matrix L̃ = D − Ã and
normalized Laplacian matrix L = D− 1

2 L̃D− 1
2 .

2.1 K-order Proximity
The (normalized) adjacency matrix and Laplacian matrix

characterize the first-order proximity which models the lo-
cal pairwise proximity between vertices. Note that each off-
diagonal nonzero entry of the first-order proximity matrix
corresponds to an edge in the network. However, real-world
networks are always sparse which indicates that O(E) =
O(V ). Therefore the first-order proximity matrix is usu-
ally very sparse and insufficient to fully model the pair-
wise proximity between vertices. As a result, people also
explore higher order proximity to model the strength be-
tween vertices [Perozzi et al., 2014; Tang et al., 2015b;
Cao et al., 2015]. For example, the second-order proximity
can be characterized by the number of common neighbors be-
tween vertices. As an alternative view, the second-order prox-
imity between vi and vj can also be modeled by the probabil-
ity that a 2-step random walk from vi reaches vj . Intuitively,
the probability will be large if vi and vj share many common
neighbors. In the probabilistic setting based on random walk,
we can easily generalize it to k-order proximity [Cao et al.,
2015]: the probability that a random walk starts from vi and
walks to vj with exactly k steps. Note that the normalized
adjacency matrix A is the transition probability matrix of a
single step random walk. Then we can compute k-step tran-
sition probability matrix as the k-order proximity matrix

Ak = A ·A . . . A︸ ︷︷ ︸
k

, (1)

where the entry Ak
ij is the k-order proximity between vertex

vi and vj .

2.2 NRL Framework
Now we have introduced the concept of k-order proxim-

ity matrix. In this subsection, we first summarize the NRL
framework based on dimension reduction of a proximity ma-
trix and then conduct a theoretical analysis to show that most
existing NRL algorithms can be formalized into this frame-
work.

We summarize NRL methods as a two-step framework:
Step 1: Proximity Matrix Construction. Compute a

proximity matrix M ∈ R|V |×|V | which encodes the informa-
tion of k-order proximity matrix where k = 1, 2 . . . ,K. For
example, M = 1

KA+ 1
KA2 · · ·+ 1

KAK stands for an average
combination of k-order proximity matrix for k = 1, 2 . . . ,K.
The proximity matrix M is usually represented by a poly-
nomial of normalized adjacency matrix A of degree K and
we denote the polynomial as f(A) ∈ R|V |×|V |. Here the
degree K of polynomial f(A) corresponds to the maximum



order of proximities encoded in proximity matrix. Note that
the storage and computation of proximity matrix M does not
necessarily take O(|V |2) time because we only need to save
and compute the nonzero entries.

Step 2: Dimension Reduction. Find network embedding
matrix R ∈ R|V |×d and context embedding C ∈ R|V |×d

so that the product R · CT approximates proximity matrix
M . Here different algorithms may employ different distance
functions to minimize the distance between M and R · CT .
For example, we can naturally use the norm of matrix M −
R · CT to measure the distance and minimize it.

Spectral Clustering [Tang and Liu, 2011] computes the
first d eigenvectors of normalized Laplacian matrix L as d-
dimensional network representations. The information em-
bedded in the eigenvectors comes from the first-order prox-
imity matrix L. Note that the real-valued symmetric matrix
L can be factorized as L = QΛQ−1 via Eigendecomposi-
tion where Λ ∈ R|V |×|V | is a diagonal matrix, Λ11 ≥ Λ22 ≥
. . .Λ|V ||V | are eigenvalues and Q ∈ R|V |×|V | is the eigen-
vector matrix.

We can equivalently reduce Spectral Clustering to our NRL
framework by setting proximity matrix M as the first-order
proximity matrix L, network embedding R as the first d
columns of eigenvector matrix Q and context embedding CT

as the first d rows of ΛQ−1.
DeepWalk [Perozzi et al., 2014] generates random walks

and employs Skip-gram model for representation learning.
DeepWalk learns two representations for each vertex and
we denote the network embedding and context embedding
as matrix R ∈ R|V |×d and C ∈ R|V |×d. As proved by
[Yang et al., 2015], DeepWalk implicitly factorizes a matrix
M ∈ R|V |×|V | into the product of R · CT , where

M = log
A+A2 + · · ·+Aw

w
, (2)

and w is the window size used in Skip-gram model. Matrix
M characterizes the average of the first-order, second-order,
. . . , w-order proximities. DeepWalk algorithm approximates
high-order proximity by Monte Carlo sampling based on ran-
dom walk generation without calculating the k-order proxim-
ity matrix directly.

To adopt DeepWalk algorithm to our two-step frame-
work, we can simply set proximity matrix M = f(A) =
A+A2+···+Aw

w . Note that we omit the log operation in Eq. (2)
because they yield competitive performance as reported by
[Yang et al., 2015].

GraRep [Cao et al., 2015] accurately calculates k-order
proximity matrix Ak for k = 1, 2 . . . ,K, computes a spe-
cific representation for each k, and concatenates these embed-
dings. Specifically, GraRep reduces the dimension of k-order
proximity matrix Ak for k-order representation via SVD de-
composition. In detail, we assume that k-order proximity ma-
trix Ak is factorized into the product of UΣS where Σ ∈
R|V |×|V | is a diagonal matrix, Σ11 ≥ Σ22 ≥ . . .Σ|V ||V | ≥ 0

are singular values and U, S ∈ R|V |×|V | are unitary matrices.
GraRep defines k-order network embedding and context em-
bedding R{k}, C{k} ∈ R|V |×d as the first d columns of UΣ

1
2

and STΣ
1
2 , respectively. The computation of k-order rep-

resentation R{k} naturally follows our framework. However,
GraRep cannot efficiently scale to large networks [Grover and
Leskovec, 2016]: though the first-order proximity matrix A
is sparse, a direct computation of Ak (k ≥ 2) takes O(|V |2)
time which is unacceptable for large-scale networks.

It is straightforward that TADW [Yang et al., 2015] and
LINE [Tang et al., 2015b] can also be formalized into our
framework and the proofs are omitted due to space limitation.

3 Observation and Problem Formalization
By far, we have shown five representative NRL algorithms

can be formulated into our two-step framework, i.e. proxim-
ity matrix construction and dimension reduction. In this sec-
tion, we focus on the first step and study how to define a good
proximity matrix for NRL. The study of different dimension
reduction methods, e.g. SVD decomposition, will be left as
future work.

Table 1: Comparisons among three NRL methods.
SC DeepWalk GraRep

Proximity Matrix L
∑K

k=1
Ak

K
Ak, k = 1 . . .K

Computation Accurate Approximate Accurate
Scalability Yes Yes No

Performance Low Middle High

We summarize the comparisons among Spectral Cluster-
ing (SC), DeepWalk and GraRep in Table 1 and conclude the
following observations.

Observation 1 Modeling higher order and accurate prox-
imity matrix can improve the quality of network represen-
tation. In other words, NRL could benefit if we explore a
polynomial proximity matrix f(A) of a higher degree.

From the development of NRL methods, we can see that
DeepWalk outperforms Spectral Clustering because Deep-
Walk considers higher order proximity matrices and the
higher order proximity matrices can provide complementary
information for lower order proximity matrices. GraRep out-
performs DeepWalk because GraRep accurately calculates
the k-order proximity matrix rather than approximating it by
Monte Carlo simulation as DeepWalk did.

Observation 2 Accurate computation of high order prox-
imity matrix is not feasible for large-scale networks.

The major drawback of GraRep is the computation com-
plexity of calculating the accurate k-order proximity matrix.
In fact, the computation of high order proximity matrix takes
O(|V |2) time and the time complexity of SVD decomposition
also increases as k-order proximity matrix gets dense when k
grows. In summary, a time complexity of O(|V |2) is too ex-
pensive to handle large-scale networks.

The first observation motivates us to explore higher order
proximity matrix in NRL algorithm but the second obser-
vation prevents us from an accurate inference of higher or-
der proximity matrices. Therefore we turn out to study the
problem that how to learn network embeddings from approx-
imate higher order proximity matrices efficiently. In order



to be more efficient, we aim to use the network representa-
tions which encode the information of lower order proximity
matrices as our basis to avoid repeated computations. We for-
malize our problem below.

Problem Formalization Assume that we have normalized
adjacency matrix A as the first-order proximity matrix, net-
work embedding R and context embedding C where R,C ∈
R|V |×d. Suppose that the embeddings R and C are learned by
the above NRL framework which indicates that the product
R ·CT approximates a polynomial proximity matrix f(A) of
degree K. Our goal is to learn a better representation R′ and
C ′ which approximates a polynomial proximity matrix g(A)
with higher degree than f(A). Also, the algorithm should be
efficient in the linear time of |V |. Note that the lower bound
of time complexity is O(|V |d) which is the size of embedding
matrix R.

4 Approximation Algorithm
In this section, we present a simple, efficient and effective

iterative updating algorithm to solve the above problem.
Method Given hyperparameter λ ∈ (0, 1

2 ], normalized ad-
jacency matrix A, we update network embedding R and con-
text embedding C as follows:

R′ = R+ λA ·R,

C ′ = C + λAT · C.
(3)

The time complexity of computing A · R and AT · C is
O(|V |d) because matrix A is sparse and has O(|V |) nonzero
entries. Thus the overall time complexity of one iteration of
operation (3) is O(|V |d).

Recall that product of previous embedding R and C ap-
proximates polynomial proximity matrix f(A) of degree K.
Now we prove that the algorithm can learn better embeddings
R′ and C ′ where the product R′ · C ′T approximates a poly-
nomial proximity matrix g(A) of degree K + 2 bounded by
matrix infinite norm.

Theorem Given network and context embedding R and C,
we suppose that the approximation between R ·CT and prox-
imity matrix M = f(A) is bounded by r = ||f(A) − R ·
CT ||∞ and f(·) is a polynomial of degree K. Then the prod-
uct of updated embeddings R′ and C ′ from Eq. (3) approxi-
mates a polynomial g(A) = f(A) + 2λAf(A) + λ2A2f(A)
of degree K + 2 with approximation bound r′ = (1 + 2λ +
λ2)r ≤ 9

4r.
Proof Assume that S = f(A)−RCT and thus r = ||S||∞.

||g(A)−R′C′T ||∞ = ||g(A)− (R+ λAR)(CT + λCTA)||∞
= ||g(A)−RCT − λARCT − λRCTA− λ2ARCTA||∞
= ||S + λAS + λSA+ λ2ASA||∞
≤ ||S||∞ + λ||A||∞||S||∞ + λ||S||∞||A||∞ + λ2||S||∞||A||2∞
= r + 2λr + λ2r.

(4)
where the second last equality replaces g(A) and f(A) −
RCT by the definitions of g(A) and S and the last equal-
ity uses the fact that ||A||∞ = maxi

∑
j |Aij | = 1 because

the summation of each row of A equals to 1.

In our experimental settings, we assume that the weight
of lower order proximities should be larger than higher order
proximities because they are more directly related to the orig-
inal network. Therefore, given g(A) = f(A) + 2λAf(A) +
λ2A2f(A), we have 1 ≥ 2λ ≥ λ2 > 0 which indicates
that λ ∈ (0, 1

2 ]. The proof indicates that the updated em-
bedding can implicitly approximate a polynomial g(A) of 2
more degrees within 9

4 times matrix infinite norm of previous
embeddings. QED.

Algorithm The update Eq. (3) can be further generalized
in two directions. First we can update embeddings R and C
according to Eq. (5):

R′ = R+ λ1A ·R+ λ2A · (A ·R),

C ′ = C + λ1A
T · C + λ2A

T · (AT · C).
(5)

The time complexity is still O(|V |d) but Eq. (5) can obtain
higher proximity matrix approximation than Eq. (3) in one
iteration. More complex update formulas which explores fur-
ther higher proximities than Eq. (5) can also be applied but
we use Eq. (5) in our experiments as a cost-effective choice.

Another direction is that the update equation can be pro-
cessed for T rounds to obtain higher proximity approxima-
tion. However, the approximation bound would grow ex-
ponentially as the number of rounds T grows and thus the
update cannot be done infinitely. Note that the update op-
eration of R and C are completely independent. Therefore
we only need to update network embedding R for NRL. We
name our algorithm as Network Embedding Update (NEU).
NEU avoids an accurate computation of high-order proxim-
ity matrix but can yield network embeddings that actually ap-
proximate high-order proximities. Hence our algorithm can
improve the quality of network embeddings efficiently. Intu-
itively, Eq. (3) and (5) allow the learned embeddings to fur-
ther propagate to their neighbors. Thus proximities of longer
distance between vertices will be embedded.

5 Experiments
We evaluate the qualities of network embeddings on two

tasks: multi-label classification and link prediction. We per-
form our Network Embedding Update algorithm (NEU) over
the embeddings learned by baseline methods and report both
evaluation performance and running time.

5.1 Datasets
We conduct experiments on three publicly available

datasets: Cora1 [sen, ], BlogCatalog and Flickr2 [Tang and
Liu, 2011]. We assume that all three datasets are undirected
and unweighted networks.

Cora contains 2, 708 machine learning papers drawn from
7 classes and 5, 429 citation links between them. Each paper
has exactly one class label. Each paper in Cora dataset also
has text information denoted by a 1, 433 dimensional binary
vector indicating the presence of the corresponding words.

1http://linqs.cs.umd.edu/projects/
/projects/lbc/index.html.

2http://socialcomputing.asu.edu/pages/
datasets.



BlogCatalog contains 10, 312 bloggers and 333, 983 social
relationships between them. The labels represent the topic
interests provided by the bloggers. The network has 39 labels
and a blogger may have multiple labels.

Flickr contains 80, 513 users from a photo sharing website
and 5, 899, 882 friendships between them. The labels repre-
sent the group membership of users. The network has 195
labels and a user may have multiple labels.

5.2 Baselines and Experimental Settings
We consider a number of baselines to demonstrate the ef-

fectiveness and robustness of NEU algorithm. For all meth-
ods and datasets, we set the embedding dimension d = 128.

Graph Factorization (GF) simply factorizes the normal-
ized adjacency matrix A via SVD decomposition to reduce
dimensions for network embeddings.

Spectral Clustering (SC) [Tang and Liu, 2011] computes
the first d eigenvectors of normalized Laplacian matrix as d-
dimensional embeddings.

DeepWalk [Perozzi et al., 2014] generates random walks
and employs Skip-gram model for representation learning.
DeepWalk has three hyperparameters besides embedding di-
mension d: window size w, random walk length t and walks
per vertex γ. As these hyperparameters increase, the num-
ber of training samples and running time will increase. We
evaluate three groups of hyperparameters of DeepWalk, i.e. a
default setting of the authors’ implementation DeepWalklow
where w = 5, t = 40, γ = 10, the setting used in
node2vec [Grover and Leskovec, 2016] DeepWalkmid where
w = 10, t = 80, γ = 10 and the setting used in the
original paper [Perozzi et al., 2014] DeepWalkhigh where
w = 10, t = 40, γ = 80.

LINE [Tang et al., 2015b] is a scalable NRL algorithm
which models first-order and second-order proximities be-
tween vertices using two separate network representations
LINE1st and LINE2nd respectively. We use default settings
for all hyperparameters except the number of total training
samples s = 104|V | so that LINE has comparable running
time against DeepWalkmid.

TADW [Yang et al., 2015] incorporates text information
into DeepWalk under the framework of matrix factorization.
We add this baseline for Cora dataset.

node2vec [Grover and Leskovec, 2016] is a semi-
supervised NRL method which generalizes DeepWalk algo-
rithm with BFS and DFS of random walks. We use the same
hyperparameter setting used in their paper: w = 10, t =
80, γ = 10. We employ a grid search over return parame-
ter and in-out parameter p, q ∈ {0.25, 0.5, 1, 2, 4} for semi-
supervised training.

GraRep [Cao et al., 2015] accurately calculates k-order
proximity matrix Ak for k = 1, 2 . . . ,K, computes a spe-
cific representation for each k, and concatenates these embed-
dings. We only use GraRep [Cao et al., 2015] for the small-
est dataset Cora due to its inefficiency [Grover and Leskovec,
2016]. We set K = 5 and thus GraRep has 128 × 5 = 640
dimensions.

Experimental Settings For Spectral Clustering, Deep-
Walk, LINE, node2vec, we directly use the implementations
provided by their authors. We set the hyperparameters of

NEU as follows: λ1 = 0.5, λ2 = 0.25 for all three datasets,
T = 3 for Cora and BlogCatalog and T = 1 for Flickr. Here
λ1, λ2 are set empirically following the intuition that lower
proximity matrix should have a higher weight and T is set as
the maximum iteration before the performance on 10% ran-
dom validation set begins to drop. In fact, we can simply set
T = 1 if we have no prior knowledge of downstream tasks.
The experiments are executed on a single CPU for the ease
of running time comparison and the CPU type is Intel Xeon
E5-2620 @ 2.0GHz.

5.3 Multi-label Classification
For multi-label classification task, we randomly select a

portion of vertices as training set and leave the rest as test
set. We treat network embeddings as vertex features and feed
them into a one-vs-rest SVM classifier implemented by Li-
bLinear [Fan et al., 2008] as previous works did [Tang and
Liu, 2009; 2011]. We repeat the process for 10 times and
report the average Macro-F1 and Micro-F1 score. Since a
vertex of Cora dataset has exactly one label, we only re-
port classification accuracy for this dataset. We normalize
each dimension of network embeddings so that the L2-norm
of each dimension equals to 1 before we feed the embed-
dings into the classifier as suggested by [Ben-Hur and We-
ston, 2010]. We also perform the same normalization be-
fore and after NEU. The experimental results are listed in
Table 2, 3 and 4. The numbers in the brackets represent
the performances of corresponding methods after processing
NEU. “+0.1”,“+0.3”,“+1” and “+8” in the time column in-
dicate the additional running time of NEU on Cora, BlogCat-
alog and Flickr dataset, respectively. As an illustrative ex-
ample on Cora dataset, NEU takes 0.1 second and improves
the classification accuracy from 78.1 to 84.4 for network em-
beddings learned by TADW when labeled ratio is 10%. We
exclude node2vec on Flickr as node2vec failed to terminate
in 24 hours on this dataset. We bold the results when NEU
achieves more than 10% relative improvement. We conduct
0.05 level paired t-test and mark all entries that fail to reject
the null hypothesis with ∗.

Table 2: Classification results on Cora dataset.
% Accuracy Time (s)% Labeled Nodes 10% 50% 90%

GF 50.8 (68.0) 61.8 (77.0) 64.8 (77.2) 4 (+0.1)
SC 55.9 (68.7) 70.8 (79.2) 72.7 (80.0) 1 (+0.1)

DeepWalklow 71.3 (76.2) 76.9 (81.6) 78.7 (81.9) 31 (+0.1)
DeepWalkmid 68.9 (76.7) 76.3 (82.0) 78.8 (84.3) 69 (+0.1)
DeepWalkhigh 68.4 (76.1) 74.7 (80.5) 75.4 (81.6) 223 (+0.1)

LINE1st 64.8 (70.1) 76.1 (80.9) 78.9 (82.2) 62 (+0.1)
LINE2nd 63.3 (73.3) 73.4 (80.1) 75.6 (80.3) 67 (+0.1)
node2vec 76.9 (77.5) 81.0 (81.6) 81.4 (81.9) 56 (+0.1)
TADW 78.1 (84.4) 83.1 (86.6) 82.4 (87.7) 2 (+0.1)
GraRep 70.8 (76.9) 78.9 (82.8) 81.8 (84.0) 67 (+0.3)

5.4 Link Prediction
For the purpose of link prediction, we need to score each

pair of vertices given their embeddings. For each pair of net-
work embedding ri and rj , we try three scoring functions, i.e.
cosine similarity ri·rj

||ri||2||rj ||2 , inner product ri · rj and inverse
L2-distance 1/||ri − rj ||2. We use AUC value [Hanley and



Table 3: Classification results on BlogCatalog dataset.
% Macro-F1 % Micro-F1 Time (s)% Labeled Nodes 1% 5% 9% 1% 5% 9%

GF 6.6 (7.9) 9.8 (11.3) 10.3 (12.2) 17.0 (19.6) 22.2 (25.0) 23.7 (26.7) 19 (+1)
SC 8.4 (9.3) 13.1 (14.8) 14.5 (17.0) 19.4 (20.3) 26.9 (28.1) 29.0 (31.0) 10 (+1)

DeepWalklow 11.3 (12.4) 15.9 (17.4) 17.1 (18.6) 24.5 (26.4) 31.0 (33.4) 32.8 (35.1) 100 (+1)
DeepWalkmid 11.2 (13.3) 16.9 (19.2) 18.4 (20.8) 24.0 (27.1) 31.0 (33.8) 32.8 (35.7) 225 (+1)
DeepWalkhigh 12.4 (13.6) 18.3 (20.1) 20.4 (22.0) 24.9 (26.4) 31.5 (33.7) 33.7 (35.9) 935 (+1)

LINE1st 11.1 (12.2) 16.6 (18.3) 18.6 (20.1) 23.1 (24.7) 29.3 (31.6) 31.8 (33.5) 241 (+1)
LINE2nd 10.3 (11.2) 15.0 (16.8) 16.5 (18.3) 21.5 (25.0) 27.9 (31.6) 30.0 (33.6) 244 (+1)
node2vec 12.5 (13.0) 19.2 (19.8) 21.9 (22.5) 25.0 (27.0) 31.9 (34.5) 35.1 (37.2) 454 (+1)

Table 4: Classification results on Flickr dataset.
% Macro-F1 % Micro-F1 Time (s)% Labeled Nodes 1% 5% 9% 1% 5% 9%

GF 4.3 (5.2) 4.9 (5.4) 5.0 (5.4) 21.1 (21.8) 22.0 (23.1) 21.7 (23.4) 241 (+8)
SC 8.6 (10.9) 11.6 (14.3) 12.3 (15.0) 24.1 (29.2) 27.5 (34.1) 28.3 (34.7) 102 (+8)

DeepWalklow 7.8 (8.6) 10.1 (11.6) 10.4 (12.1) 28.5 (31.4) 30.9 (33.5) 31.3 (33.8) 1,449 (+8)
DeepWalkmid 8.8 (9.9) 12.3 (14.3) 13.2 (15.1) 29.5 (31.9) 32.4 (35.1) 33.0 (35.4) 2,282 (+8)
DeepWalkhigh 10.5 (11.6) 17.1 (17.8) 19.1 (19.8) 31.8 (33.1) 36.3 (36.7) 37.3 (37.6) 9,292 (+8)

LINE1st 10.3 (10.7) 16.0 (16.6) 17.6 (18.2) 32.0 (32.7) 35.9 (36.4) 36.8 (37.2) 2,664 (+8)
LINE2nd 7.8 (8.5) 13.1 (13.5) 14.7 (15.2) 30.0 (31.0) 34.2 (34.4) 35.1 (35.2)∗ 2,740 (+8)

McNeil, 1982] which indicates the probability that the score
of an unobserved link is higher than that of a nonexistent link
as our evaluation metric and select the scoring function with
best performance for each baseline. We remove 20% edges
of Cora, 50% of BlogCatalog and Flickr as test set and use
the remaining links to train network embeddings. We also
add three commonly used link prediction baselines for com-
parison: Common Neighbors (CN), Jaccard Index and Salton
Index [Salton and McGill, 1986]. We only report the best
performance for DeepWalk∈{DeepWalklow, DeepWalkmid,
DeepWalkhigh} and LINE∈{LINE1st, LINE2nd} and omit
the results of node2vec as it only yields comparable and even
worse performance than the best performed DeepWalk. The
experimental results are shown in Figure 1. For each dataset,
the three leftmost columns represent the traditional link pre-
diction baselines. Then each pair of columns stands for an
NRL method and its performance after NEU.
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Figure 1: Experimental results on link prediction.

5.5 Experimental Results Analysis

We have four main observations over the experimental re-
sults of two evaluation tasks:

(1) NEU consistently and significantly improves the per-
formance of various network embeddings using almost neg-
ligible running time on both evaluation tasks. The absolute
improvements on Flickr are not as significant as that on Cora
and BlogCatalog because Flickr dataset has an average degree
of 147 which is much denser than Cora and BlogCatalog and
thus the impact of higher order proximity information is di-
luted by rich first-order proximity information. But for Cora
dataset where the average degree is 4, NEU has very signifi-
cant improvement as high-order proximity plays an important
role for sparse networks.

(2) NEU facilitates NRL method to converge fast and sta-
bly. We can see that the performances of DeepWalklow+NEU
and DeepWalkmid+NEU are comparable and even better than
that of DeepWalkmid and DeepWalkhigh respectively and the
former ones use much less time. Also, DeepWalk encounters
the overfitting problem on Cora dataset as the classification
accuracy drops when hyperparameters increase. However,
the performances of DeepWalk+NEU are very stable and ro-
bust.

(3) NEU also works for NRL algorithms which don’t fol-
low our two-step NRL framework, i.e. node2vec. NEU
doesn’t harm the performance of node2vec and even improve
a little bit. This observation demonstrates the effectiveness
and robustness of NEU.

(4) NEU can serve as a standard preprocessing step for
evaluations of future NRL methods. In other words, network
embeddings will be evaluated only after enhanced by NEU as
NEU won’t increase time and space complexity at all.



6 Conclusion
In this paper, we propose a unified NRL framework which

covers a number of existing NRL methods. We analyze
the first step of the framework, i.e. proximity matrix con-
struction, compare the proximity matrices used in different
NRL algorithms and conclude that we can learn better net-
work embeddings if higher order proximities are encoded
into the proximity matrix. Then we present Network Embed-
ding Update (NEU) algorithm to improve the performance of
any given network embeddings by implicitly approximating
higher order proximity matrix. The running time of NEU is
almost negligible and the improvement over baseline methods
are consistent and significant.

For future work, we will consider the analysis of the sec-
ond step of our framework, i.e. dimension reduction. We will
also explore the extendibility of our algorithm in other repre-
sentation learning tasks.
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