
OpenKE: An Open Toolkit for Knowledge Embedding

Xu Han1∗, Shulin Cao2∗, Xin Lv1, Yankai Lin1, Zhiyuan Liu1, Maosong Sun1,3, Juanzi Li1
1Department of Computer Science and Technology, Tsinghua University, Beijing, China

2Department of Computer Science and Technology, Beijing Normal University, Beijing, China
3Beijing Advanced Innovation Center for Imaging Technology,

Capital Normal University, Beijing, China

Abstract

We release an open-source toolkit for knowl-
edge embedding (OpenKE), which provides
a unified framework and various fundamental
models to embed knowledge graphs into con-
tinuous low-dimensional spaces. OpenKE pri-
oritizes operational efficiency to support quick
model validation and large-scale knowledge
embedding. Meanwhile, OpenKE maintains
enough modularity and extensibility to enable
new models to be easily integrated into the
framework. Besides the toolkit, the embed-
dings of some existing large-scale knowledge
graphs pre-trained by OpenKE are also avail-
able, which can be directly used for relevant
applications. The toolkit, technical documen-
tation, and pre-trained embeddings are all re-
leased on our website 1.

1 Introduction

People construct various large-scale knowledge
graphs (KGs) to organize structural knowledge
about the world, such as WordNet (Miller, 1995),
Freebase (Bollacker et al., 2008) and Wikidata
(Vrandečić and Krötzsch, 2014). These typical
KGs are organized in the form of triples (h, r,
t), with h and t indicating head and tail entities
and r indicating the relation between h and t, e.g.,
(Mark Twain, PlaceOfBirth, Florida). Abun-
dant structural information in KGs is widely used
to enhance various knowledge-driven applications
(e.g. question answering and web search) with the
ongoing effective construction of KGs.

Limited by the scale and sparsity of KGs, we
have to represent KGs with corresponding dis-
tributed representations to utilize knowledge in-
formation for specific applications. Therefore, a
variety of knowledge embedding (KE) approaches

∗ indicates equal contribution
1http://openke.thunlp.org/

have been proposed to embed both entities and re-
lations in KGs into continuous low-dimensional
spaces, such as linear models (Bordes et al., 2011,
2012, 2014), latent factor models (Sutskever et al.,
2009; Jenatton et al., 2012; Yang et al., 2015; Liu
et al., 2017), neural models (Socher et al., 2013;
Dong et al., 2014), matrix factorization models
(Nickel et al., 2011, 2012, 2016; Trouillon et al.,
2016), and translation models (Bordes et al., 2013;
Wang et al., 2014; Lin et al., 2015; Ji et al., 2015).
Although these models achieve great results on
the benchmark datasets, their existing implemen-
tations are scattered and unsystematic. Moreover,
the codes for model validation are often time-
consuming and their interfaces are also different
from each other.

These issues lead to difficulty in further devel-
opment based on these models, and adopting them
for real-world applications. Hence, it becomes im-
portant to develop an efficient and effective open-
source toolkit for KE, which may benefit both the
communities in academia and industry. For this
purpose, we develop an open-source KE toolkit
and name the toolkit “OpenKE”. The toolkit pro-
vides a flexible framework and unified interfaces
for developing KE models. While taking in some
targeted optimization methods, the platform of
OpenKE enables KE models to become more effi-
cient and capable of embedding large-scale KGs.
The design and optimization features of OpenKE
are threefold:

(1) At the data and memory level, the uni-
fied framework of OpenKE serves KE models via
the underlying management of data and memory.
Model developments based on OpenKE no longer
require complicated data processing.

(2) At the algorithm level, OpenKE unify the
mathematical forms of various specific models to
implement them based on the unified framework.
We also propose a novel negative sampling strat-

http://openke.thunlp.org/


Model Scoring Function Parameters Loss Function

RESCAL (Nickel et al., 2011) h>Mrt Mr ∈ Rk×k,h ∈ Rk, t ∈ Rk margin-based loss

TransE (Bordes et al., 2013) −‖h+ r− t‖L1/L2
r ∈ Rk,h ∈ Rk, t ∈ Rk margin-based loss

TransH (Wang et al., 2014) −‖(h− w>r hwr) + r− (t− w>r twr)‖L1/L2 wr ∈ Rk, r ∈ Rk,h ∈ Rk, t ∈ Rk margin-based loss

TransR (Lin et al., 2015) −‖Mrh+ r−Mrt‖L1/L2
Mr ∈ Rkr×ke , r ∈ Rkr ,h ∈ Rke , t ∈ Rke margin-based loss

TransD (Ji et al., 2015) −‖(rph>p + I)h+ r− (rpt
>
p + I)t‖L1/L2

rp ∈ Rkr ,hp ∈ Rke , tp ∈ Rke , I ∈ Rkr×ke ,
r ∈ Rkr ,h ∈ Rke , t ∈ Rke margin-based loss

DistMult (Yang et al., 2015) < h, r, t > r ∈ Rk,h ∈ Rk, t ∈ Rk logistic loss

HolE (Nickel et al., 2016) r>
(
F−1

(
F(h)�F(t)

))
r ∈ Rk,h ∈ Rk, t ∈ Rk logistic loss

ComplEx (Trouillon et al., 2016) <(< h, r, t >) r ∈ Ck,h ∈ Ck, t ∈ Ck logistic loss

Table 1: The brief introduction of some typical KE models. For most models, k is the dimension of both
entities and relations. For some other models, Ke is the dimension of entities and kr is the dimension of
relations. F denotes the Fourier transform. � denotes the element-wise product. < a, b, c > denotes the
element-wise multi-linear dot product.

egy instead of the original one to merge arithmetic
operations for further acceleration.

(3) At the computational level, OpenKE can
separate the overall KG into several parts and
adapts KE models for parallel training. Based on
the underlying management of data and memory,
we also adopt TensorFlow (Abadi et al., 2016) and
PyTorch (Paszke et al., 2017) to build a convenient
platform to run models on GPUs. These interfaces
and functions almost cover the usual development
habits of users.

Besides the toolkit, we also provide the pre-
trained embeddings of some existing large-scale
KGs, which can be used directly for other rel-
evant works without repeatedly spending much
time embedding KGs. In this paper, we mainly
present the architecture design and implementa-
tion of OpenKE, as well as the benchmark eval-
uation results of some typical KE models imple-
mented with OpenKE. Other related resources and
details can be found on our website.

2 Background

For a typical KG G, it expresses data as a directed
graph G = {E ,R, T }, where E ,R and T indicate
the sets of entities, relations and facts respectively.
Each triple (h, r, t) ∈ T indicates there is a re-
lation r ∈ R between h ∈ E and t ∈ E . For the
entities h, t ∈ E and the relation r ∈ R, we use the
bold face h, t, r to indicate their low-dimensional
vectors respectively.

For any entity pair (h, t) ∈ E × E and any re-
lation r ∈ R, we can determine whether there is
a fact (h, r, t) ∈ T via their low-dimensional em-
beddings learned by KE models. These embed-
dings greatly facilitate understanding and mining
knowledge in KGs. In practice, the KE models

define a scoring function S(h, r, t) for each triple
(h, r, t). In most cases, there are only true triples
in KGs, and KGs are also far from completion.
Non-existing triples can be either false or missing.
Local closed world assumption (Dong et al., 2014)
has been proposed to solve this problem, which re-
quires existing triples to have higher scores than
those non-existing ones. Hence, the scoring func-
tion S(h, r, t) returns a higher score if (h, r, t) is
true, vice versa.

Some KE models formalize a margin-based loss
as training objective to learn the embeddings of the
entities and relations:

L =
∑
t∈T

∑
t′∈T ′

[
γ + S(t′)− S(t)

]
+
. (1)

Here [x]+ indicates keeping the positive part of x
and γ > 0 is a margin. T ′ denotes the set of non-
existing triples, which is constructed by corrupting
entities and relations in existing triples,

T ′ = E ×R× E − T. (2)

Some other KE models cast the training objec-
tive as a classification task. The embeddings of the
entities and relations can be learned by minimizing
the regularized logistic loss,

L =
∑
t∈T

log(1 + exp(−S(t))) +
∑
t′∈T ′

log(1 + exp(S(t′))).

(3)

As mentioned above, there are many different KE
models. The main difference among these mod-
els is their scoring functions. Hence, we briefly
introduce several typical models and their scoring
functions in Table 1. These models and their ex-
tensions are state-of-the-art and widely introduced
in many works. We systematically incorporate all
of them into our OpenKE.



3 Design Goals

Before introducing the concrete toolkit implemen-
tations, we report the design goals and features of
OpenKE, including system encapsulation, opera-
tional efficiency, and model extensibility.

3.1 Encapsulation

Developers tend to maximize the reuse of code
that others have built to avoid unnecessary redun-
dant development in practice. For KE, its task
is fixed, and its experimental settings and model
parameters are also similar. However, previous
model implementations are scattered and lack of
necessary interface encapsulation. Thus, develop-
ers have to spend extra time reading obscure open-
source code and writing glue code for data pro-
cessing when they construct models for their ap-
plications. In view of this issue, we build a unified
underlying platform in OpenKE and encapsulate
various data and memory processing which is in-
dependent of model implementations. As shown
in Figure 1, the system encapsulation makes it
easy to train and test KE models, and we just need
to set hyperparameters via interfaces of the plat-
form to construct KE models.

3.2 Efficiency

Previous model implementations focus on model
validation and enhancing experimental results
rather than improving time and space efficiency.
In fact, as real-world KGs can be very large, train-
ing efficiency is an important concern. Hence,
OpenKE integrates efficient computing power,
training methods, and various acceleration strate-
gies to support KE models. We adopt Tensor-
Flow and PyTorch to implement the model train-
ing and test modules based on the interfaces of
the underlying platform. These machine learn-
ing frameworks enable models to be run on GPU,
with just few minutes needed for training and test-
ing models on benchmark datasets. In order to
train existing large-scale KGs, we also implement
lightweight C/C++ versions for quick deployment
and multi-threading acceleration of KE models, in
which some models (e.g. TransE) can embed more
than 100M triples in the few hours on ordinary de-
vices.

3.3 Extensibility

In view that different KE models have different de-
sign solutions, we fully consider making OpenKE

 
import config, Models, os
os.environ['CUDA_VISIBLE_DEVICES']='0'
con = config.Config()
con.set_in_path('./FB15K/')

 

 
con.set_work_threads(8)
con.set_train_times(1000)
con.set_alpha(0.001)
con.set_margin(1.0)
con.set_dimension(100)
con.set_opt_method('SGD')

 

 
con.init()
con.set_model(models.TransE)
con.run()

 

 Datasets Memory 

Underlying Management

 
Model 

Parameters

Training 

Strategies

Model Settings

Training Evaluation

Traning and Evaluation

 

Code OpenKE

Figure 1: An example for training a KE model
(TransE) via OpenKE.

import numpy as np
import tensorflow as tf
from Model import *
class TransE(Model):

def _calc(self, h, t, r):
return abs(h + r - t)

def embedding_def(self):
config = self.get_config()
self.ent_embeddings = tf.get_variable('ent_embeddings', 

[config.entTotal, config.hidden_size])
self.rel_embeddings = tf.get_variable('rel_embeddings', 

[config.relTotal, config.hidden_size])
def loss_def(self):

config = self.get_config()
pos_h, pos_t, pos_r = self.get_positive_instance(in_batch = True)
neg_h, neg_t, neg_r = self.get_negative_instance(in_batch = True)
p_h = tf.nn.embedding_lookup(self.ent_embeddings, pos_h)
p_t = tf.nn.embedding_lookup(self.ent_embeddings, pos_t)
p_r = tf.nn.embedding_lookup(self.rel_embeddings, pos_r)
n_h = tf.nn.embedding_lookup(self.ent_embeddings, neg_h)
n_t = tf.nn.embedding_lookup(self.ent_embeddings, neg_t)
n_r = tf.nn.embedding_lookup(self.rel_embeddings, neg_r)
_p_score = self._calc(p_h, p_t, p_r)
_n_score = self._calc(n_h, n_t, n_r)
p_score =  tf.reduce_sum(tf.reduce_mean(_p_score, 1, keep_dims = False),

1, keep_dims = True)
n_score =  tf.reduce_sum(tf.reduce_mean(_n_score, 1, keep_dims = False), 

1, keep_dims = True)
self.loss = tf.reduce_sum(tf.maximum(p_score - n_score + config.margin, 0))

Figure 2: An example for implementing a KE
model (TransE) via OpenKE.

extensible to future variants when designing and
implementing OpenKE. For the underlying plat-
form, we encapsulate data processing and memory
management, and then provide various data sam-
pling interfaces. For the training modules, we pro-
vide enough interfaces for possible training meth-
ods. For the construction of KE models, we unify
their mathematical forms and encapsulate them
into a base class. These framework designs can
greatly meet the needs of current and future mod-
els, and customized interfaces to meet individual
requirements are also available in OpenKE. As
shown in Figure 2, all specific models are imple-
mented by inheriting the base class with designing
their own scoring functions and loss functions. In
addition, models in OpenKE can be placed into the
framework of TensorFlow and PyTorch to interact
with other machine learning models.

4 Implementations

In this section, we mainly present the implemen-
tations of the acceleration modules and the special



Algorithm 1 Parallel Learning
Require: Entity and relation sets E and R, training triples
T = {(h, r, t)}.

1: Initialize all model embeddings and parameters.
2: for i← 1 to epoches do
3: In each thread:
4: for j ← 1 to batches/threads do
5: Sample a positive triple (h, r, t)
6: Sample a corrupted triple (h′, r′, t′)
7: Compute the loss function L
8: Update the gradient∇L
9: end for

10: end for
11: Return all embeddings and parameters

sampling algorithm in OpenKE. OpenKE has been
available to the public on GitHub 2 and is open-
source under the MIT license. Other Implemen-
tation details can be found in the technical docu-
mentation of OpenKE on the website.

4.1 GPU Learning

GPUs are widely used in machine learning tasks
to speed up model training in recent years. In or-
der to accelerate KE models, we integrate GPU
learning mechanisms into our toolkit. We build the
GPU learning platform based on TensorFlow and
PyTorch. Both TensorFlow and PyTorch are ma-
chine learning libraries, which provide effective
hardware optimizations and abundant arithmetic
operators for convenient model constructions, es-
pecially the stable environments for GPU learning.
The autograd packages in these libraries also bring
additional convenience. TensorFlow and PyTorch
enable us to coustruct models with no need for
manual back propagation implementations, which
further reduces the programming complexity for
GPU Learning. We develop necessary encapsula-
tion modules aligning to TensorFlow and PyTorch
so that the development and deployment of KE
models can be faster and further convenient. Mod-
els can be deployed easily on a variety of devices
without implementing complicated device setting
code, even for multiple GPUs.

4.2 Parallel Learning

Abundant computing resources (e.g Servers with
multiple GPUs) do not exist all the time. In fact,
we often rely on simple personal computers for
model validation. Hence, we enable OpenKE to
adapt KE models for parallel learning on CPU be-
sides employing GPU learning, which allow users

2http://github.com/thunlp/OpenKE

(h, r, t1)   (h, r, f -1[rand(0, |E| - 3)])

h

t1

t2

t3

r

r

r

 

 t1

 

 t 0 |E|

0 t1 |E|-3f [t] ×

t1-1 t1+1

t1-1

Figure 3: An example for the offset-based negative
sampling algorithm.

to make full use of all available computing re-
sources. The parallel learning method is shown in
Algorithm 1. The main idea of the parallel learn-
ing method is based on the data parallelism mech-
anism, which divides training triples into several
parts and train each part with a corresponding
thread. In parallel learning, there are two strate-
gies implemented to update gradients. One of the
methods is the lock-free strategy, which means
all threads share the unified embedding space and
update embeddings directly without synchronized
operations. We also implement a central synchro-
nized method. In the central synchronized setting,
each thread calculates its own gradient. After sum-
ming up the gradients from all threads, the results
will be updated to the embeddings and parameters
of models then.

4.3 Offset-based Negative Sampling

All KE models learn their parameters by minimiz-
ing the margin-based loss function Eq. (1) or the
regularized logistic loss Eq. (3). Both of these loss
functions need to construct non-existing triples as
negative samples. We have empirically found that
the corrupted triples have great influence on final
performance. Randomly replacing entities or rela-
tions with any other ones may make the negative
triple set T ′ contain some positive triples in T ,
which would weaken the performance of KE mod-
els. The original sampling algorithm will spend
much time checking whether generated triples are
in T and filtering them out. In OpenKE, we pro-
pose an offset-based negative sampling algorithm
to generate negative triples. As shown in Figure
3, we renumber all entities with new serial num-
bers. Each entity’s new number is obtained by
adding an offset to its original ID, and the offset
is the total number of positive entities which have
lower IDs. Our algorithm first randomly sample a
new number and then map the new number back

http://github.com/thunlp/OpenKE


to its corresponding entity. This algorithm can di-
rectly generate negative triples without any check-
ing. Because the relation set is very small, we still
directly replace positive relations for relation cor-
ruption.

5 Evaluations

In order to evaluate OpenKE, we implement dif-
ferent KE models with OpenKE, and compare
their performance with the results reported in their
papers on the link prediction task. Link prediction
has been widely used for evaluating KE models,
which needs to predict the tail entity when given
a triple (h, r, ?) or predict the head entity when
given a triple (?, r, t).

Some datasets are usually used as benchmarks
for link prediction, such as FB15K and WN18.
WN18 is the subset of WordNet; FB15K is the rel-
atively dense subgraph of Freebase. These public
datasets are available online 3. Following previous
works, We adopt them in our experiments. We list
the statistics of FB15K and WN18 in Table 2, in-
cluding the number of entities, relations, and facts.

Dataset Rel Ent Train Valid Test

FB15K 1,345 14,951 483,142 50,000 59,071
WN18 18 40,943 141,442 5,000 5,000

Table 2: Statistics of FB15K and WN18.

As mentioned above, OpenKE supports mod-
els with efficient learning on both CPU and GPU.
For CPU, the benchmarks are run on an Intel(R)
Core(TM) i7-6700K @ 3.70GHz, with 4 cores
and 8 threads. For GPU, the models in both
TensorFlow and PyTorch versions are trained by
GeForce GTX 1070 (Pascal), with CUDA v.8.0
(driver 384.111) and cuDNN v.6.5. To compare
with the previous works and the results reported in
their papers, we simply follow the parameter set-
tings used before and traverse all training triples
for 1000 rounds. Other detailed parameters and
training strategies are shown in our source code.
We show these results in Table 3 and Table 4. For
further demonstrating the efficiency of OpenKE,
we select TransE as a representative and imple-
ment it with both OpenKE and KB2E 4, and then
compare their training time. KB2E is a widely-
used toolkit for KE models on GitHub. These re-
sults can be found in Table 5.

3https://everest.hds.utc.fr/doku.php?
id=en:transe

4https://github.com/thunlp/KB2E

Datasets FB15K
Models TF PT MT

TransE 75.6(+28.5) 75.4(+28.3) 74.3(+27.2)
TransH 72.8(+14.3) 72.7(+14.2) 74.8(+16.3)
TransR 74.9(+6.2) 75.7(+7.0) 75.6(+6.9)
TransD 74.3(+0.1) 74.2(+0.0) 75.2(+1.0)
RESCAL 49.1(+5.0) 57.2(+13.1) -
DistMult 73.4(+15.7) 75.4(+17.4) -
HolE 70.4(−3.5) - -
ComplEx 72.3(−11.7) 80.5(−3.5) -

Table 3: Experimental results of link prediction on
FB15K (%).

Datasets WN18
Models TF PT MT

TransE 90.5(+1.3) 90.0(+0.8) 83.3(−5.9)
TransH 94.6(+7.9) 94.4(+7.7) 92.5(+5.8)
TransR 93.8(+1.8) 94.4(+2.4) 94.6(+2.9)
TransD 94.2(+1.7) 94.3(+1.8) 91.9(−0.3)
RESCAL 80.2(+27.4) 80.2(+27.4) -
DistMult 93.6(−0.6) 93.6(−0.6) -
HolE 94.4(−0.5) - -
ComplEx 94.0(−0.7) 94.0(−0.7) -

Table 4: Experimental results of link prediction on
WN18 (%).

From the results in Table 3, Table 4 and Table
5, we observe that: (1) Models implemented with
OpenKE have the comparable accuracies com-
pared to the values reported in the original pa-
pers. These results are compatible with our ex-
pectations. For some models, their accuracies are
slightly higher due to OpenKE. These results in-
dicate our toolkit is effecive. (2) OpenKE signifi-
cantly accelerates the training process of the mod-
els trained both on CPU and GPU. As compared to
the model implemented with KB2E, all models in
OpenKE achieve more than 10× speedup. These
results show that our toolkit is efficient.

The evaluation results indicate that our toolkit
significantly handles the time-consuming problem
and can support existing models to learn large-
scale KGs. In fact, TransE based on OpenKE only
spends about 18 hours training the whole Wiki-
data for 10000 rounds and gets stable embeddings.
There are more than 40M entities and 100M facts
in Wikidata. We also evaluate the embeddings
learned on the whole Wikidata on the link pre-
diction task. Because the whole Wikidata is quite
huge, we emphasize link prediction of Wikidata
more on ranking a set of candidate entities rather
than requiring one best answer. Hence, we re-
port the proportion of correct entities in top-N
ranked entities (Hits@10, Hits@20, Hits@50 and
Hits@100) in Table 6. To our best knowledge, this
is the first time that adopting KE models to embed
an existing large-scale KG. The results shown in
Table 6 indicate that OpenKE enables models to

https://everest.hds.utc.fr/doku.php?id=en:transe
https://everest.hds.utc.fr/doku.php?id=en:transe
https://github.com/thunlp/KB2E


Models Time (s)

TransE (KB2E, CPU) 7124
TransE (OpenKE, CPU, 1-Thread) 386
TransE (OpenKE, CPU, 2-Thread ) 206
TransE (OpenKE, CPU, 4-Thread) 118
TransE (OpenKE, CPU, 8-Thread) 76
TransE (OpenKE, GPU, TensorFlow) 178
TransE (OpenKE, GPU, PyTorch) 266

Table 5: Training time of different implementa-
tions of TransE on FB15K.

Metric Hits@10 Hits@20 Hits@50 Hits@100

Head 29.6 36.2 46.7 56.3
Tail 66.8 75.2 84.9 90.6

Table 6: Experimental results of link prediction on
the whole Wikidata.

effectively and efficiently embed large-scale KGs.

6 Conclusion

We propose an efficient open-source toolkit
OpenKE for knowledge embedding. OpenKE
builds a unified underlying platform to organize
data and memory. OpenKE also applies GPU
learning and parallel learning to speed up train-
ing. We also unify mathematical forms for specific
models and encapsulate them to maintain enough
modularity and extensibility. The experimental
results demonstrate that the models implemented
by OpenKE are efficient and effective. In the fu-
ture, we will incorporate more knwoledge embed-
ding models and maintain the stable embeddings
of some large-scale knowledge graphs.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. 2016. Ten-
sorflow: A system for large-scale machine learning. In
Proceedings of OSDI.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge,
and Jamie Taylor. 2008. Freebase: a collaboratively cre-
ated graph database for structuring human knowledge. In
Proceedings of KDD.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua
Bengio. 2012. Joint learning of words and meaning repre-
sentations for open-text semantic parsing. In Proceedings
of AISTATS.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua
Bengio. 2014. A semantic matching energy function for
learning with multi-relational data. Proceedings of ML.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Ja-
son Weston, and Oksana Yakhnenko. 2013. Translating
embeddings for modeling multi-relational data. In Pro-
ceedings of NIPS.

Antoine Bordes, Jason Weston, Ronan Collobert, Yoshua
Bengio, et al. 2011. Learning structured embeddings of
knowledge bases. In Proceedings of AAAI.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn,
Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun,
and Wei Zhang. 2014. Knowledge vault: A web-scale ap-
proach to probabilistic knowledge fusion. In Proceedings
of KDD.

Rodolphe Jenatton, Nicolas L Roux, Antoine Bordes, and
Guillaume R Obozinski. 2012. A latent factor model for
highly multi-relational data. In Proceedings of NIPS.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao.
2015. Knowledge graph embedding via dynamic mapping
matrix. In Proceedings of ACL.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan
Zhu. 2015. Learning entity and relation embeddings for
knowledge graph completion. In Proceedings of AAAI.

Hanxiao Liu, Yuexin Wu, and Yiming Yang. 2017. Analog-
ical inference for multi-relational embeddings. In Pro-
ceedings of ICML.

George A Miller. 1995. Wordnet: a lexical database for en-
glish. Communications of the ACM.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio.
2016. Holographic embeddings of knowledge graphs. In
Proceedings of AAAI.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel.
2011. A three-way model for collective learning on multi-
relational data. In Proceedings of ICML.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel.
2012. Factorizing yago: scalable machine learning for
linked data. In Proceedings of WWW.

Adam Paszke, Soumith Chintala, Ronan Collobert, Ko-
ray Kavukcuoglu, Clement Farabet, Samy Bengio, Iain
Melvin, Jason Weston, and Johnny Mariethoz. 2017. Py-
torch: Tensors and dynamic neural networks in python
with strong gpu acceleration.

Richard Socher, Danqi Chen, Christopher D Manning, and
Andrew Ng. 2013. Reasoning with neural tensor networks
for knowledge base completion. In Proceedings of NIPS.

Ilya Sutskever, Joshua B Tenenbaum, and Ruslan Salakhutdi-
nov. 2009. Modelling relational data using bayesian clus-
tered tensor factorization. In Proceedings of NIPS.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex em-
beddings for simple link prediction. In Proceedings of
ICML.

Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a
free collaborative knowledgebase. Communications of the
ACM.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen.
2014. Knowledge graph embedding by translating on hy-
perplanes. In Proceedings of AAAI.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations for
learning and inference in knowledge bases. In Proceed-
ings of ICLR.


