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Abstract

Relation classification is a crucial ingredi-
ent in numerous information extraction sys-
tems seeking to mine structured facts from
text. We propose a novel convolutional
neural network architecture for this task,
relying on two levels of attention in order
to better discern patterns in heterogeneous
contexts. This architecture enables end-
to-end learning from task-specific labeled
data, forgoing the need for external knowl-
edge such as explicit dependency structures.
Experiments show that our model outper-
forms previous state-of-the-art methods, in-
cluding those relying on much richer forms
of prior knowledge.

1 Introduction

Relation classification is the task of identifying the
semantic relation holding between two nominal en-
tities in text. It is a crucial component in natural
language processing systems that need to mine ex-
plicit facts from text, e.g. for various information
extraction applications as well as for question an-
swering and knowledge base completion (Tandon
et al., 2011; Chen et al., 2015). For instance, given
the example input

“Fizzy [drinks] and meat cause heart disease and [diabetes].”

with annotated target entity mentions e1 = “drinks”
and e2 = “diabetes”, the goal would be to automati-
cally recognize that this sentence expresses a cause-
effect relationship between e1 and e2, for which
we use the notation Cause-Effect(e1,e2). Accurate
relation classification facilitates precise sentence
interpretations, discourse processing, and higher-
level NLP tasks (Hendrickx et al., 2010). Thus,
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relation classification has attracted considerable at-
tention from researchers over the course of the past
decades (Zhang, 2004; Qian et al., 2009; Rink and
Harabagiu, 2010).

In the example given above, the verb corre-
sponds quite closely to the desired target relation.
However, in the wild, we encounter a multitude
of different ways of expressing the same kind of
relationship. This challenging variability can be
lexical, syntactic, or even pragmatic in nature. An
effective solution needs to be able to account for
useful semantic and syntactic features not only for
the meanings of the target entities at the lexical
level, but also for their immediate context and for
the overall sentence structure.

Thus, it is not surprising that numerous feature-
and kernel-based approaches have been proposed,
many of which rely on a full-fledged NLP stack,
including POS tagging, morphological analysis, de-
pendency parsing, and occasionally semantic anal-
ysis, as well as on knowledge resources to capture
lexical and semantic features (Kambhatla, 2004;
Zhou et al., 2005; Suchanek et al., 2006; Qian et
al., 2008; Mooney and Bunescu, 2005; Bunescu
and Mooney, 2005). In recent years, we have seen a
move towards deep architectures that are capable of
learning relevant representations and features with-
out extensive manual feature engineering or use
of external resources. A number of convolutional
neural network (CNN), recurrent neural network
(RNN), and other neural architectures have been
proposed for relation classification (Zeng et al.,
2014; dos Santos et al., 2015; Xu et al., 2015b).
Still, these models often fail to identify critical
cues, and many of them still require an external
dependency parser.
We propose a novel CNN architecture that ad-
dresses some of the shortcomings of previous ap-
proaches. Our key contributions are as follows:

1. Our CNN architecture relies on a novel multi-



level attention mechanism to capture both
entity-specific attention (primary attention at
the input level, with respect to the target en-
tities) and relation-specific pooling attention
(secondary attention with respect to the target
relations). This allows it to detect more subtle
cues despite the heterogeneous structure of
the input sentences, enabling it to automati-
cally learn which parts are relevant for a given
classification.

2. We introduce a novel pair-wise margin-based
objective function that proves superior to stan-
dard loss functions.

3. We obtain the new state-of-the-art results for
relation classification with an F1 score of
88.0% on the SemEval 2010 Task 8 dataset,
outperforming methods relying on signifi-
cantly richer prior knowledge.

2 Related Work

Apart from a few unsupervised clustering meth-
ods (Hasegawa et al., 2004; Chen et al., 2005),
the majority of work on relation classification has
been supervised, typically cast as a standard multi-
class or multi-label classification task. Traditional
feature-based methods rely on a set of features
computed from the output of an explicit linguis-
tic preprocessing step (Kambhatla, 2004; Zhou et
al., 2005; Boschee et al., 2005; Suchanek et al.,
2006; Chan and Roth, 2010; Nguyen and Grish-
man, 2014), while kernel-based methods make use
of convolution tree kernels (Qian et al., 2008), sub-
sequence kernels (Mooney and Bunescu, 2005),
or dependency tree kernels (Bunescu and Mooney,
2005). These methods thus all depend either on
carefully handcrafted features, often chosen on a
trial-and-error basis, or on elaborately designed
kernels, which in turn are often derived from other
pre-trained NLP tools or lexical and semantic re-
sources. Although such approaches can benefit
from the external NLP tools to discover the dis-
crete structure of a sentence, syntactic parsing is
error-prone and relying on its success may also
impede performance (Bach and Badaskar, 2007).
Further downsides include their limited lexical gen-
eralization abilities for unseen words and their lack
of robustness when applied to new domains, genres,
or languages.

In recent years, deep neural networks have
shown promising results. The Recursive Matrix-
Vector Model (MV-RNN) by Socher et al. (2012)

sought to capture the compositional aspects of the
sentence semantics by exploiting syntactic trees.
Zeng et al. (2014) proposed a deep convolutional
neural network with softmax classification, extract-
ing lexical and sentence level features. However,
these approaches still depend on additional features
from lexical resources and NLP toolkits. Yu et al.
(2014) proposed the Factor-based Compositional
Embedding Model, which uses syntactic depen-
dency trees together with sentence-level embed-
dings. In addition to dos Santos et al. (2015), who
proposed the Ranking CNN (CR-CNN) model with
a class embedding matrix, Miwa and Bansal (2016)
similarly observed that LSTM-based RNNs are out-
performed by models using CNNs, due to limited
linguistic structure captured in the network archi-
tecture. Some more elaborate variants have been
proposed to address this, including bidirectional
LSTMs (Zhang et al., 2015), deep recurrent neural
networks (Xu et al., 2016), and bidirectional tree-
structured LSTM-RNNs (Miwa and Bansal, 2016).
Several recent works also reintroduce a dependency
tree-based design, e.g., RNNs operating on syntac-
tic trees (Hashimoto et al., 2013), shortest depen-
dency path-based CNNs (Xu et al., 2015a), and
the SDP-LSTM model (Xu et al., 2015b). Finally,
Nguyen and Grishman (2015) train both CNNs and
RNNs and variously aggregate their outputs using
voting, stacking, or log-linear modeling (Nguyen
and Grishman, 2015). Although these recent mod-
els achieve solid results, ideally, we would want a
simple yet effective architecture that does not re-
quire dependency parsing or training multiple mod-
els. Our experiments in Section 4 demonstrate that
we can indeed achieve this, while also obtaining
substantial improvements in terms of the obtained
F1 scores.

3 The Proposed Model

Given a sentence S with a labeled pair of entity
mentions e1 and e2 (as in our example from Sec-
tion 1), relation classification is the task of identify-
ing the semantic relation holding between e1 and e2
among a set of candidate relation types (Hendrickx
et al., 2010). Since the only input is a raw sen-
tence with two marked mentions, it is non-trivial to
obtain all the lexical, semantic and syntactic cues
necessary to make an accurate prediction.

To this end, we propose a novel multi-level
attention-based convolution neural network model.
A schematic overview of our architecture is given



Notation Definition Notation Definition

wM
i Final word emb. zi Context emb.

Wf Conv. weight Bf Conv. bias

wO Network output WL Relation emb.

Aj Input att. Ap Pooling att.

G Correlation matrix

Table 1: Overview of main notation.

in Figure 1. The input sentence is first encoded
using word vector representations, exploiting the
context and a positional encoding to better capture
the word order. A primary attention mechanism,
based on diagonal matrices is used to capture the
relevance of words with respect to the target en-
tities. To the resulting output matrix, one then
applies a convolution operation in order to capture
contextual information such as relevant n-grams,
followed by max-pooling. A secondary attention
pooling layer is used to determine the most useful
convolved features for relation classification from
the output based on an attention pooling matrix.
The remainder of this section will provide further
details about this architecture. Table 1 provides an
overview of the notation we will use for this. The
final output is given by a new objective function,
described below.

3.1 Classification Objective

We begin with top-down design considerations for
the relation classification architecture. For a given
sentence S, our network will ultimately output
some wO. For every output relation y ∈ Y , we
assume there is a corresponding output embedding
WL
y , which will automatically be learnt by the net-

work (dos Santos et al., 2015).
We propose a novel distance function δθ(S) that

measures the proximity of the predicted network
output wO to a candidate relation y as follows.

δθ(S, y) =

∥∥∥∥ wO

|wO|
−WL

y

∥∥∥∥ (1)

using the L2 norm (note that WL
y are already nor-

malized). Based on this distance function, we de-
sign a margin-based pairwise loss function L as

L =
[
δθ(S, y) + (1− δθ(S, ŷ−))

]
+ β‖θ‖2

=

[
1 +

∥∥∥∥ wO

|wO|
−WL

y

∥∥∥∥− ∥∥∥∥ wO

|wO|
−WL

ŷ−

∥∥∥∥]
+ β‖θ‖2, (2)

where 1 is the margin, β is a parameter, δθ(S, y)
is the distance between the predicted label embed-
dingWL and the ground truth label y and δθ(S, ŷ−)
refers to the distance between wO and a selected
incorrect relation label ŷ−. The latter is chosen
as the one with the highest score among all incor-
rect classes (Weston et al., 2011; dos Santos et al.,
2015), i.e.

ŷ− = argmax
y′∈Y,y′ 6=y

δ(S, y′). (3)

This margin-based objective has the advantage
of a strong interpretability and effectiveness com-
pared with empirical loss functions such as the
ranking loss function in the CR-CNN approach by
dos Santos et al. (2015). Based on a distance func-
tion motived by word analogies (Mikolov et al.,
2013b), we minimize the gap between predicted
outputs and ground-truth labels, while maximizing
the distance with the selected incorrect class. By
minimizing this pairwise loss function iteratively
(see Section 3.5), δθ(S, y) are encouraged to de-
crease, while δθ(S, ŷ−) increase.

3.2 Input Representation

Given a sentence S = (w1, w2, ..., wn) with
marked entity mentions e1(=wp) and e2(=wt),
(p, t ∈ [1, n], p 6= t), we first transform every
word into a real-valued vector to provide lexical-
semantic features. Given a word embedding matrix
WV of dimensionality dw × |V | , where V is the
input vocabulary and dw is the word vector dimen-
sionality (a hyper-parameter), we map every wi to
a column vector wd

i ∈ Rdw .
To additionally capture information about the

relationship to the target entities, we incorporate
word position embeddings (WPE) to reflect the rel-
ative distances between the i-th word to the two
marked entity mentions (Zeng et al., 2014; dos
Santos et al., 2015). For the given sentence in
Fig. 1, the relative distances of word “and” to en-
tity e1 “drinks” and e2 “diabetes” are −1 and 6,
respectively. Every relative distance is mapped
to a randomly initialized position vector in Rdp ,
where dp is a hyper-parameter. For a given word
i, we obtain two position vectors wp

i,1 and wp
i,2,

with regard to entities e1 and e2, respectively.
The overall word embedding for the i-th word is
wM
i = [(wd

i )
ᵀ, (wp

i,1)
ᵀ, (wp

i,2)
ᵀ]ᵀ.

Using a sliding window of size k centered
around the i-th word, we encode k successive
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Figure 1: Schematic overview of our Multi-Level Attention Convolutional Neural Networks

words into a vector zi ∈ R(dw+2dp)k to incorpo-
rate contextual information as

zi = [(wM
i−(k−1)/2)

ᵀ, ..., (wM
i+(k−1)/2)

ᵀ]ᵀ (4)

An extra padding token is repeated multiple times
for well-definedness at the beginning and end of
the input.

3.3 Input Attention Mechanism

While position-based encodings are useful, we con-
jecture that they do not suffice to fully capture the
relationships of specific words with the target en-
tities and the influence that they may bear on the
target relations of interest. We design our model so
as to automatically identify the parts of the input
sentence that are relevant for relation classification.

Attention mechanisms have successfully been
applied to sequence-to-sequence learning tasks
such as machine translation (Bahdanau et al., 2015;
Meng et al., 2015) and abstractive sentence sum-
marization (Rush et al., 2015), as well as to tasks
such as modeling sentence pairs (Yin et al., 2015)
and question answering (Santos et al., 2016). To
date, these mechanisms have generally been used
to allow for an alignment of the input and output
sequence, e.g. the source and target sentence in ma-
chine translation, or for an alignment between two
input sentences as in sentence similarity scoring
and question answering.

fizzy drinks      and  meat cause heart  disease  and  diabetes 
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Figure 2: Input and Primary Attention

In our work, we apply the idea of modeling atten-
tion to a rather different kind of scenario involving
heterogeneous objects, namely a sentence and two
entities. With this, we seek to give our model the
capability to determine which parts of the sentence
are most influential with respect to the two enti-
ties of interest. Consider that in a long sentence
with multiple clauses, perhaps only a single verb
or noun might stand in a relevant relationship with
a given target entity.

As depicted in Fig. 2, the input representation
layer is used in conjunction with diagonal attention
matrices and convolutional input composition.

Contextual Relevance Matrices. Consider the
example in Fig. 1, where the non-entity word
“cause” is of particular significance in determining
the relation. Fortunately, we can exploit the fact



that there is a salient connection between the words
“cause” and “diabetes” also in terms of corpus cooc-
currences. We introduce two diagonal attention
matrices Aj with values Aji,i = f(ej , wi) to char-
acterize the strength of contextual correlations and
connections between entity mention ej and word
wi. The scoring function f is computed as the in-
ner product between the respective embeddings of
word wi and entity ej , and is parametrized into the
network and updated during the training process.
Given the Aj matrices, we define

αji =
exp(Aji,i)∑n

i′=1 exp(A
j
i′,i′)

, (5)

to quantify the relative degree of relevance of the i-
th word with respect to the j-th entity (j ∈ {1, 2}).

Input Attention Composition. Next, we take
the two relevance factors α1

i and α2
i and model

their joint impact for recognizing the relation via
simple averaging as

ri = zi
α1
i + α2

i

2
. (6)

Apart from this default choice, we also evaluate
two additional variants. The first (Variant-1) con-
catenates the word vectors as

ri = [(zi α1
i )

ᵀ, (zi α2
i )

ᵀ]ᵀ, (7)

to obtain an information-enriched input attention
component for this specific word, which contains
the relation relevance to both entity 1 and entity 2.

The second variant (Variant-2) interprets rela-
tions as mappings between two entities, and com-
bines the two entity-specific weights as

ri = zi
α1
i − α2

i

2
, (8)

to capture the relation between them.
Based on these ri, the final output of the

input attention component is the matrix R =
[r1, r2, . . . , rn], where n is the sentence length.

3.4 Convolutional Max-Pooling with
Secondary Attention

After this operation, we apply convolutional max-
pooling with another secondary attention model to
extract more abstract higher-level features from the
previous layer’s output matrix R.

Convolution Layer. A convolutional layer may,
for instance, learn to recognize short phrases such
as trigrams. Given our newly generated input
attention-based representation R, we accordingly
apply a filter of size dc as a weight matrix Wf of
size dc × k(dw + 2dp). Then we add a linear bias
Bf , followed by a non-linear hyperbolic tangent
transformation to represent features as follows:

R∗ = tanh(WfR+Bf). (9)

Attention-Based Pooling. Instead of regular
pooling, we rely on an attention-based pooling
strategy to determine the importance of individual
windows in R∗, as encoded by the convolutional
kernel. Some of these windows could represent
meaningful n-grams in the input. The goal here is
to select those parts of R∗ that are relevant with
respect to our objective from Section 3.1, which
essentially calls for a relation encoding process,
while neglecting sentence parts that are irrelevant
for this process.

We proceed by first creating a correlation mod-
eling matrix G that captures pertinent connections
between the convolved context windows from the
sentence and the relation class embedding WL in-
troduced earlier in Section 3.1:

G = R∗ᵀ U WL, (10)

where U is a weighting matrix learnt by the net-
work.

Then we adopt a softmax function to deal with
this correlation modeling matrix G to obtain an
attention pooling matrix Ap as

Ap
i,j =

exp(Gi,j)∑n
i′=1 exp(Gi′,j)

, (11)

where Gi,j is the (i, j)-th entry of G and Ap
i,j is the

(i, j)-th entry of Ap.
Finally, we multiply this attention pooling matrix

with the convolved output R∗ to highlight impor-
tant individual phrase-level components, and apply
a max operation to select the most salient one (Yin
et al., 2015; Santos et al., 2016) for a given dimen-
sion of the output. More precisely, we obtain the
output representation wO as follows in Eq. (12):

wO
i = max

j
(R∗Ap)i,j , (12)

where wO
i is the i-th entry of wO and (R∗Ap)i,j is

the (i, j)-th entry of R∗Ap.



3.5 Training Procedure
We rely on stochastic gradient descent (SGD) to up-
date the parameters with respect to the loss function
in Eq. (2) as follows:

θ
′
= θ + λ

d(
∑|S|

i=1 [δθ(Si, y) + (1− δθ(Si, ŷ−i ))])
dθ

+ λ1
d(β||θ||2)

dθ
(13)

where λ and λ1 are learning rates, and incorporat-
ing the β parameter from Eq. (2).

4 Experiments

4.1 Experimental Setup
Dataset and Metric. We conduct our exper-
iments on the commonly used SemEval-2010
Task 8 dataset (Hendrickx et al., 2010), which
contains 10,717 sentences for nine types of an-
notated relations, together with an additional
“Other” type. The nine types are: Cause-Effect,
Component-Whole, Content-Container, Entity-
Destination, Entity-Origin, Instrument-Agency,
Member-Collection, Message-Topic, and Product-
Producer, while the relation type “Other” indicates
that the relation expressed in the sentence is not
among the nine types. However, for each of the
aforementioned relation types, the two entities can
also appear in inverse order, which implies that
the sentence needs to be regarded as expressing
a different relation, namely the respective inverse
one. For example, Cause-Effect(e1,e2) and Cause-
Effect(e2,e1) can be considered two distinct rela-
tions, so the total number |Y| of relation types is
19. The SemEval-2010 Task 8 dataset consists of a
training set of 8,000 examples, and a test set with
the remaining examples. We evaluate the models
using the official scorer in terms of the Macro-F1
score over the nine relation pairs (excluding Other).

Settings. We use the word2vec skip-gram model
(Mikolov et al., 2013a) to learn initial word rep-
resentations on Wikipedia. Other matrices are ini-
tialized with random values following a Gaussian
distribution. We apply a cross-validation procedure
on the training data to select suitable hyperparam-
eters. The choices generated by this process are
given in Table 2.

4.2 Experimental Results
Table 3 provides a detailed comparison of our
Multi-Level Attention CNN model with previous

Parameter Parameter Name Value
dp Word Pos. Emb. Size 25
dc Conv. Size 1000
k Word Window Size 3
λ Learning rate 0.03
λ1 Learning rate 0.0001

Table 2: Hyperparameters.

approaches. We observe that our novel attention-
based architecture achieves new state-of-the-art re-
sults on this relation classification dataset. Att-
Input-CNN relies only on the primal attention at
the input level, performing standard max-pooling
after the convolution layer to generate the network
output wO, in which the new objective function
is utilized. With Att-Input-CNN, we achieve an
F1-score of 87.5%, thus already outperforming not
only the original winner of the SemEval task, an
SVM-based approach (82.2%), but also the well-
known CR-CNN model (84.1%) with a relative
improvement of 4.04%, and the newly released
DRNNs (85.8%) with a relative improvement of
2.0%, although the latter approach depends on the
Stanford parser to obtain dependency parse infor-
mation. Our full dual attention model Att-Pooling-
CNN achieves an even more favorable F1-score of
88%.

Table 4 provides the experimental results for the
two variants of the model given by Eqs. (7) and (8)
in Section 3.3. Our main model outperforms the
other variants on this dataset, although the variants
may still prove useful when applied to other tasks.
To better quantify the contribution of the different
components of our model, we also conduct an ab-
lation study evaluating several simplified models.
The first simplification is to use our model without
the input attention mechanism but with the pooling
attention layer. The second removes both atten-
tion mechanisms. The third removes both forms
of attention and additionally uses a regular objec-
tive function based on the inner product s = r · w
for a sentence representation r and relation class
embedding w. We observe that all three of our
components lead to noticeable improvements over
these baselines.

4.3 Detailed Analysis

Primary Attention. To inspect the inner work-
ings of our model, we considered the primary at-
tention matrices of our multi-level attention model



Classifier F1

Manually Engineered Methods
SVM (Rink and Harabagiu, 2010) 82.2

Dependency Methods
RNN (Socher et al., 2012) 77.6
MVRNN (Socher et al., 2012) 82.4
FCM (Yu et al., 2014) 83.0
Hybrid FCM (Yu et al., 2014) 83.4
SDP-LSTM (Xu et al., 2015b) 83.7
DRNNs (Xu et al., 2016) 85.8
SPTree (Miwa and Bansal, 2016) 84.5

End-To-End Methods
CNN+ Softmax (Zeng et al., 2014) 82.7
CR-CNN (dos Santos et al., 2015) 84.1
DepNN (Liu et al., 2015) 83.6
depLCNN+NS (Xu et al., 2015a) 85.6
STACK-FORWARD∗ 83.4
VOTE-BIDIRECT∗ 84.1
VOTE-BACKWARD∗ 84.1

Our Architectures
Att-Input-CNN 87.5
Att-Pooling-CNN 88.0

Table 3: Comparison with results published in the
literature, where ‘∗’ refers to models from Nguyen
and Grishman (2015).

for the following randomly selected sentence from
the test set:

The disgusting scene was retaliation against
her brother Philip who rents the [room]e1 inside
this apartment [house]e2 on Lombard street.

Fig. 3 plots the word-level attention values for
the input attention layer to act as an example, us-
ing the calculated attention values for every indi-
vidual word in the sentence. We find the word
“inside” was assigned the highest attention value,
while words such as “room” and “house” also
are deemed important. This appears sensible in
light of the ground-truth labeling as a Component-
Whole(e1,e2) relationship. Additionally, we ob-
serve that words such as “this”, which are rather
irrelevant with respect to the target relationship,
indeed have significantly lower attention scores.

Most Significant Features for Relations. Ta-
ble 5 lists the top-ranked trigrams for each relation
class y in terms of their contribution to the score
for determining the relation classification. Recall
the definition of δθ(x, y) in Eq. (1). In the network,
we trace back the trigram that contributed most to

Classifier F1

Att-Input-CNN (Main) 87.5
Att-Input-CNN (Variant-1) 87.2
Att-Input-CNN (Variant-2) 87.3

Att-Pooling-CNN (regular) 88.0
– w/o input attention 86.6
– w/o any attention 86.1
– w/o any attention, w/o δ-objective 84.1

Table 4: Comparison between the main model and
variants as well as simplified models.
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Figure 3: Input Attention Visualization. The value
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t
i), where Ati stands for the overall

attention weight assigned to the word i.

the correct classification in terms of δθ(Si, y) for
each sentence Si. We then rank all such trigrams in
the sentences in the test set according to their total
contribution and list the top-ranked trigrams.∗ In
Table 5, we see that these are indeed very informa-
tive for deducing the relation. For example, the top
trigram for Cause-Effect(e2,e1) is “are caused by”,
which strongly implies that the first entity is an ef-
fect caused by the latter. Similarly, the top trigram
for Entity-Origin(e1,e2) is “from the e2”, which
suggests that e2 could be an original location, at
which entity e1 may have been located.

Error Analysis. Further, we examined some of
the misclassifications produced by our model. The
following is a typical example of a wrongly classi-
fied sentence:

∗For Entity-Destination(e2,e1), there was only one occur-
rence in the test set.



Relation (e1, e2) (e2, e1)
e1 caused a, caused a e2, e2 caused by, e2 from e1,

Cause-Effect e1 resulted in, the cause of, is caused by, are caused by,
had caused the, poverty cause e2 was caused by, been caused by

Component-Whole e1 of the, of a e2, of the e2, with its e2, e1 consists of,
in the e2, part of the e1 has a, e1 comprises e2

Content-Container in a e2, was hidden in, e1 with e2, filled with e2,
inside a e2, was contained in e1 contained a, full of e2,

Entity-Destination e1 into the, e1 into a, had thrown into
was put inside, in a e2

Entity-Origin from this e2, is derived from, e1 e2 is, the e1 e2,
from the e2, away from the for e1 e2, the source of

Instrument-Agency for the e2, is used by, by a e2, e1 use e2, with a e2,
with the e2, a e1 e2 by using e2

Member-Collection of the e2, in the e2, a e1 of, e1 of various,
a member of, from the e2 e1 of e2, the e1 of

Message-Topic on the e2, e1 asserts the, the e1 of, described in the,
e1 points out, e1 is the the topic for, in the e2

Product-Producer e1 made by, made by e2, has constructed a, came up with,
from the e2, by the e2 has drawn up, e1 who created

Table 5: Most representative trigrams for different relations.

A [film]e1 revolves around a [cadaver]e2 who
seems to bring misfortune on those who come
in contact with it.

This sentence is wrongly classified as belonging
to the “Other” category, while the ground-truth la-
bel is Message-Topic(e1,e2). The phrase “revolves
around” does not appear in the training data, and
moreover is used metaphorically, rather than in its
original sense of turning around, making it difficult
for the model to recognize the semantic connection.

Another common issue stems from sentences of
the form “. . . e1 e2 . . . ”, such as the following ones:

The size of a [tree]e1 [crown]e2 is strongly . . .
Organic [sesame]e1 [oil]e2 has an . . .
Before heading down the [phone]e1 [operator]e2
career . . .

These belong to three different relation classes,
Component-Whole(e2,e1), Entity-Origin(e2,e1),
and Instrument-Agency(e1,e2), respectively, which
are only implicit in the text, and the context is not
particularly helpful. More informative word em-
beddings could conceivably help in such cases.

Convergence. Finally, we examine the conver-
gence behavior of our two main methods. We plot
the performance of each iteration in the Att-Input-
CNN and Att-Pooling-CNN models in Fig. 4. It
can be seen that Att-Input-CNN quite smoothly
converges to its final F1 score, while for the Att-
Pooling-CNN model, which includes an additional
attention layer, the joint effect of these two atten-
tion layer induces stronger back-propagation ef-
fects. On the one hand, this leads to a seesaw
phenomenon in the result curve, but on the other

hand it enables us to obtain better-suited models
with slightly higher F1 scores.
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Figure 4: Training Progress of Att-Input-CNN and
Att-Pooling-CNN across iterations.

5 Conclusion

We have presented a CNN architecture with a novel
objective and a new form of attention mechanism
that is applied at two different levels. Our results
show that this simple but effective model is able to
outperform previous work relying on substantially
richer prior knowledge in the form of structured
models and NLP resources. We expect this sort
of architecture to be of interest also beyond the
specific task of relation classification, which we
intend to explore in future work.
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