Motivation and Background

- Queries and documents often match based on knowledge
 - **Query:** “Meituxiuxiu web version”
 - **Document:** “Meituxiuxiu web version: An online picture processing tool”
- **Meituxiuxiu web version:** Meituxiuxiu is the most popular Chinese image processing software, launched by the Meitu company
- **Our motivation is to study the effectiveness of knowledge graph semantics in state-of-the-art neural ranking models**

Entity-Duet Neural Ranking Model (EDRM)

- **Enriched-entity Embedding**
 - Integration of knowledge graph semantics
- **Neural Entity-Duet Framework**
 - Multi-level soft matches in the embedding space
- **Integration with Kernel based Neural Ranking (K-NRM)**
 - K-NRM and Conv-KNRM are state-of-the-arts, which calculate n-gram and entity cross matches with Gaussian Kernels
 - K-NRM → EDRM-KNRM
 - Conv-KNRM → EDRM-CKNRM

Experimental Methodology

- **Dataset:**
 - Sogou query log
 - About 100K training queries and 1K testing queries
- **Knowledge Graph:**
 - CN-DPedia, a Chinese knowledge graph
 - Entities in both queries and documents are linked with CMNS
- **End-to-end Training:**
 - Train on relevance labels estimated by a click model (DCTR), about 8500K training pairs
 - Test on two click model labels (DCTR→Testing-SAME and TACM→Testing-DIFF) and raw user clicks (Testing-RAW)

Conclusion

- **Knowledge based Neural Ranking Model:**
 - Integrate knowledge graph semantics in state-of-the-art neural ranking models
 - Entity types and descriptions are external embeddings to match entities and n-grams
- **End-to-end Training with User Clicks:**
 - A data-driven combination of entity-oriented search and neural information retrieval
- **Effectiveness and Generalization ability:**
 - Show greater advantage on hard and short queries
 - Improve performances on more difficult testing scenarios

Experimental Results

Overall Performance

<table>
<thead>
<tr>
<th>Method</th>
<th>Testing-SAME</th>
<th>Testing-DIFF</th>
<th>Testing-RAW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NDCG@1</td>
<td>NDCG@10</td>
<td>NDCG@10</td>
</tr>
<tr>
<td>BM25</td>
<td>0.142</td>
<td>0.287</td>
<td>0.325</td>
</tr>
<tr>
<td>RankSVM</td>
<td>0.146</td>
<td>0.309</td>
<td>0.352</td>
</tr>
<tr>
<td>Coor-Ascent</td>
<td>0.159</td>
<td>0.355</td>
<td>0.378</td>
</tr>
<tr>
<td>DCRM</td>
<td>0.117</td>
<td>0.231</td>
<td>0.239</td>
</tr>
<tr>
<td>CDSSM</td>
<td>0.144</td>
<td>0.333</td>
<td>0.353</td>
</tr>
<tr>
<td>MP</td>
<td>0.281</td>
<td>0.379</td>
<td>0.345</td>
</tr>
<tr>
<td>K-NRM</td>
<td>0.265</td>
<td>0.420</td>
<td>0.423</td>
</tr>
<tr>
<td>Conv-KNRM</td>
<td>0.336</td>
<td>0.481</td>
<td>0.432</td>
</tr>
<tr>
<td>EDRM-KNRM</td>
<td>0.310</td>
<td>0.455</td>
<td>0.434</td>
</tr>
<tr>
<td>EDRM-CKNRM</td>
<td>0.340</td>
<td>0.482</td>
<td>0.451</td>
</tr>
</tbody>
</table>

On Testing-SAME

- Significant improvement compared to K-NRM
- Little improvement compared to Conv-KNRM
- Conv-KNRM is able to learn phrases matches (entity) from data

On Testing-DIFF and Testing-RAW

- Significant improvement compared to K-NRM and Conv-KNRM
- EDRM shows generalization ability

Ranking contribution for EDRM-CKNRM

- Overall kernel weight
 - Most of the weight goes to soft match
 - Entity related matches play an important role
 - Cross-space matches are more important

- Individual kernel weight
 - N-grams and entities are important components which share almost uniformly distributed weight

Performance on Different Scenarios

- **Query Difficulty Scenario**
 - Greatest improvement on short and hard queries
 - Knowledge are more crucial for the limited query text

References

Zhenghao Liu, Chenyan Xiong, Maosong Sun, Zhiyuan Liu

1. Tsinghua University
2. Carnegie Mellon University

ACL 2018

Contact: liu_zh16@mails.tsinghua.edu.cn