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Abstract

Fine-grained entity typing aims to identify the semantic type
of an entity in a particular plain text. It is an important task
which can be helpful for a lot of natural language process-
ing (NLP) applications. Most existing methods typically ex-
tract features separately from the entity mention and con-
text words for type classification. These methods inevitably
fail to model complex correlations between entity mentions
and context words. They also neglect rich background in-
formation about these entities in knowledge bases (KBs).
To address these issues, we take information from KBs into
consideration to bridge entity mentions and their context
together, and thereby propose Knowledge-Attention Neural
Fine-Grained Entity Typing. Experimental results and case
studies on real-world datasets demonstrate that our model
significantly outperforms other state-of-the-art methods, re-
vealing the effectiveness of incorporating KB information for
entity typing. Code and data for this paper can be found at
https://github.com/thunlp/KNET.

1 Introduction

Entity typing is the task of detecting semantic types of a
named entity in a plain text. It is an important task which
can narrow down the range of candidates for an entity men-
tion, and is therefore beneficial for a large number of natu-
ral language processing (NLP) tasks such as entity linking
(Chabchoub, Gagnon, and Zouaq 2016), relation extraction
(Liu et al. 2014), question answering (Yahya et al. 2013) and
knowledge base population (Carlson et al. 2010).

Fine-grained entity typing (FET), which classifies entities
into a large set of fine-grained types, is the more challenging
new trend of entity typing. Conventional FET methods usu-
ally derive features using NLP tools such as POS tagging
and parsing, and inevitably suffer from error propagation.
Dong et al. (2015) make the first attempt to explore deep
learning in entity typing by using only word embeddings
as features and discarding complicated feature engineering.
Shimaoka et al. (2016; 2017) further introduce attention into
neural models for FET.

Neural models have achieved the state-of-the-art perfor-
mance for FET. However, these models face the following
non-trivial challenges:
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Entity-Context Separation. Existing methods typically
encode entity mentions and context words as separate fea-
tures without considering correlations between them. How-
ever, it is intuitive that, the importance of each context word
is significantly influenced by the entity mention concerned.
For example, in the sentence “Gates and Allen co-founded
Microsoft, which became the largest software company”, the
context word company is important when we are determin-
ing types of the entity mention Microsoft, but less important
when determining types of Gates.

Text-Knowledge Separation. Knowledge bases (KBs,
also known as Knowledge Graphs), such as YAGO, Free-
base, provide rich information of relations between entities
in form of triples (h,r,t), where h, ¢t are head and tail en-
tities, and r is the relationship between them. Such infor-
mation describes relations and interactions between entities,
and is therefore helpful for entity typing. For example, given
atriple (USA, shares border_with, Canada), it can be
deduced that Canada in a certain sentence is likely to be
a country. However, relational information has never been
used in previous work yet to the best of our knowledge.

In order to address the issues of entity-context separation
and text-knowledge separation, we propose Knowledge-
Attention Neural Fine-Grained Entity Typing (KNET). As
illustrated in Figure 1, our model mainly consists of two
parts. Firstly, we build a neural network to generate context
and entity mention representations. Secondly, depending on
the entity mention, we use knowledge attention to focus on
important context words and improve the quality of context
representation. Knowledge attention is computed using en-
tity embeddings, which are learned from KB relational infor-
mation and reconstructed from the text. Considering we will
encounter both in-KB and out-of-KB entities in testing, we
propose a disambiguation procedure, which can provide not
only in-KB entities with precise KB information, but also
out-of-KB entities with useful knowledge.

We establish two datasets for experiments: one automat-
ically built from Wikipedia and Freebase, one manually la-
beled. Experiment results show that our model significantly
improves the performance of entity typing compared with
other state-of-the-art methods. Case studies demonstrate the
effectiveness of knowledge attention, both for incorporating
KB information into entity typing, and for capturing com-
plex correlations between entities and context.
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Figure 1: The framework of Neural Entity Typing with Knowledge Attention.

2 Related Work
2.1 Fine-Grained Entity Typing

Entity typing is conventionally a sub-task of named entity
recognition (Collins and Singer 1999; Tjong Kim Sang and
De Meulder 2003; Kozareva 2006; Jiang and Zhai 2006;
Ratinov and Roth 2009), which typically classifies entity
mentions into person, location, organization and
others. However, these types are too coarse-grained to be
helpful for other NLP applications. Recently, fine-grained
entity typing (Ling and Weld 2012; Yosef et al. 2012;
Gillick et al. 2014; Yogatama, Gillick, and Lazic 2015;
Del Corro et al. 2015; Ren et al. 2016a) has been proposed
to classify entities into a richer set of types, which typically
constitute a hierarchy. Ling and Weld (2012); Yosef et al.
(2012); Del Corro et al. (2015) all introduce their own fine-
grained taxonomies with the size ranging from 112 to over
16,000.

All methods mentioned above rely on hand-crafted fea-
tures. Dong et al. (2015) make the first attempt to explore
deep learning in entity typing using only word embeddings
as features. Further, Shimaoka et al. (2016) introduce an
attention-based Long Short-Term Memory (LSTM) for FET,
and Shimaoka et al. (2017) incorporate hand-crafted features
into the attention-based neural models. These neural models,
however, encounter the challenges of entity-context separa-
tion and text-knowledge separation. This paper seeks to ad-
dress these issues by incorporating rich information of KBs.

KBs have been considered in a number of previous works
(Del Corro et al. 2015; Ren et al. 2016a; Yaghoobzadeh
and Schiitze 2017). However, they only consider type infor-
mation of each entity inside the KB and neglect rich rela-
tional information (the relationship between different enti-
ties), which happens to be an important part of the KB. In
this paper, we incorporate relational information into entity
typing by using knowledge representation learning (see next
subsection for details).

Different from the works mentioned above, which can
be called sentence-level entity typing, Yaghoobzadeh and

Schiitze (2015; 2017) consider corpus-level neural entity
typing. Corpus-level entity typing aims to infer global types
of an entity from a large corpus, usually by aggregating
information from all sentences mentioning it. In contrast,
sentence-level entity typing seeks to detect local types of an
entity mention inside an individual sentence, and the same
entity could have different types in different sentences. Our
work focuses on sentence-level entity typing.

2.2 Knowledge Representation Learning

Knowledge Representation Learning (KRL) aims to encode
semantic information of entities and relations inside triples
into a low-dimensional semantic space. It can be further used
as supplements in many tasks such as link prediction (Bor-
des et al. 2011) and question answering (Bordes, Weston,
and Usunier 2014).

TransE (Bordes et al. 2013) is one of the most widely used
KRL methods. It embeds entities and relations in the same
space, and aims to ensure h + r ~ t when the triple (h, 7, t)
holds, where h, r and t are corresponding embeddings.

TransE performs well for 1-to-1 relations, but is weak
for other complicated relations. To address this issue, many
other KRL models have been proposed to deal with var-
ious characteristics of KBs, such as TransH (Wang et al.
2014), TransR (Lin et al. 2015), TransD (Ji et al. 2015),
TranSparse (Ji et al. 2016), KG2E (He et al. 2015), PTransE
(Lin, Liu, and Sun 2015) and HolE (Nickel, Rosasco, and
Poggio 2016). In this work we utilize TransE to examine the
effectiveness of incorporating relational information of KB
into entity typing.

3 Overall Framework of KNET

Given a sentence s which contains an entity mention and
its context, and a set of entity types (the taxonomy) 7, our
model aims to predict the probability of each type for this
entity mention.

We denote the entity mention and the left/right context
words in s as my, l;, r; respectively, and the sentence is



a sequence of words s = {...,l3,l1,m1, ma, ..., 71,72, ... }.
For each word, we use bold face to denote its correspond-
ing word vector. For each entity mention, our model builds
a feature vector x to infer the probability of each type by
computing an entity type vector y.

The framework of KNET consists of two parts: (1) Sen-
tence Encoder which encodes the sentence s into the fea-
ture vector x; (2) Type Predictor which infers entity types
by computing y from x.

3.1 Sentence Encoder

Our model transforms word vectors into representations for
entity mention and context with neural networks. The fea-
ture vector x is the concatenation of entity mention repre-
sentation m and context representations c:

x:[‘:]. (1)

Entity mention representation. Following (Shimaoka et
al. 2016), the representation m of entity mention is simply
computed by averaging the word vectors of entity mention
words {m1, ma, mg, ...}:

1 &
m= a;m )

where n,, is the length of entity mention. Simple averaging
is sufficient for entity mention representation, because an en-
tity mention typically consists of a small number of words
(in most cases 1 or 2), therefore complicated models (like
CNN or RNN) tend to overfit.

Context representation. Bidirectional LSTM and at-
tention mechanism are used to encode context represen-
tation. Word vectors of context words {...,1s,l2,l1} and
{r1,r2,73,...} are fed into the LSTM, and context repre-
sentation c is the weighted sum of the LSTM outputs:

L 1 =
l hi T h;
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where ﬁl and h<_z are the outputs of the bidirectional LSTM,
and arrows above them indicate the direction of the LSTM.
a; are the corresponding attention scores, which will be in-
troduced in details in the next section. The superscripts [ and
r indicate left or right context parts. L is the window size of
context words.

; 3

3.2 Type Predictor

The type vector y is computed from sentence vector x
through a two-layer Multi-Layer Perceptron (MLP). Each
entry of y indicates the predicted probability of the type for
given entity mention:

y = o(Wytanh (Wyox)), (€))
y? = ptW]s,0), )

where 6 indicates all parameters of our model, o is the sig-
moid function, W1, W 9 are MLP parameter matrices and
t(\) means the ith type is predicted for this entity. A type is
predicted as positive if its probability is greater than 0.5, and
if none of them is greater, the type with the largest probabil-
ity is regarded as positive.

The objective function is defined as element-wise cross
entropy over all entity mentions:

JO)=-> "y Plogy? + (1 -y ) log(1 —yi), (©)
i,

where y* indicates the ground truth types of the mention,

ygj ) is the jth entry of the vector y;. We learn to maximize
J by optimizing parameters 6.

4 Attention Mechanism for KNET

Attention mechanism plays an important role in our model.
In this section, we introduce the design of attention aé and
a; in context representation as shown in Eq. (3). Attention
is expected to take both entity-context and entity-KB cor-
relations into consideration. In this paper, we explore three
kinds of attention:

(1) Semantic Attention simply applies the context repre-
sentation itself as attention query, which is proposed by (Shi-
maoka et al. 2017) and will be considered as our baseline
method.

(2) Mention Attention applies the entity mention represen-
tation m as attention query, which is expected to capture the
semantic correlations between entities and context informa-
tion.

(3) Knowledge Attention applies entity representations
learned from external KBs as attention query, which is ex-
pected to capture the semantic correlations of entity-context
and entity-KB.

Details of attention are described as follows.

4.1 Semantic Attention (SA)

Shimaoka et al. (2017) apply an MLP to compute semantic
attention as follows:

%
ai* = o (Wi tanh (Wgo { % ]))v Q)

where W g1 and W g5 are MLP parameter matrices. Starting
from here we omit the superscripts [ and r since they are
computed identically.

We notice that all entities share the same MLP used for
computing SA. Therefore, the attention computed for con-
text words are independent of the entity concerned. Hence,
it is difficult for SA to focus on those context words that are
highly related to the corresponding entity.

4.2 Mention Attention (MA)

In order to take entity-context correlation into considera-
tion, it is straightforward to take entity mentions as attention
queries when computing attention.



Formally, given the entity mention representation m men-
tioned in Eq. (2), we compute attention as follows:

™
a¥A=f<mWMA { # D ®)

where Wy, is a bi-linear parameter matrix, and f() is a
non-linear function. We simply choose the quadratic func-
tion f(x) = x2, which is positive definite and easily differ-
entiable (the same setting applies to Eq. (9) as well).

4.3 Knowledge Attention (KA)

Knowledge bases provide rich relational information about
entities, which is important for entity typing. We use the
most widely-used KRL method TransE (Bordes et al. 2013)
to encode relational information into entity embeddings.
During the training process, the corresponding entity e for
a certain entity mention is known, and hence, similar to Eq.
(8), we can directly compute knowledge attention as follows:

h
afh = f (eWKA { }5 D ©

where e is the embedding for entity m, and Wy, is a bi-
linear parameter matrix.

Knowledge Attention in Testing. Different from train-
ing, in the testing process there is a new challenge: we do
not know in prior which entity in the KB is corresponding
to a certain entity mention (it may even be out-of-KB). A
straightforward solution is to perform entity linking, but en-
tity linking itself is non-trivial and will inevitably introduce
errors. Furthermore, entity linking does not work for out-of-
KB entities.

To address this challenge, we try to reconstruct entity em-
beddings using text information. These embeddings are also
learned during training. Concretely, for an entity e and its
context sentence s, we encode its left / right context into c;
and c, using a single-directional LSTM, and further learn
the text-based representation € as follows:

m
€ = tanh (W[ c 1), (10)
Cr

where W is the parameter matrix, and m is the mention rep-
resentation in Eq. (2). Note that, LSTM used here is different
to those in Eq. (3) in order to prevent interference. In order
to bridge text-reconstructed and KB-based representations,
in the training process we simultaneously learn € by putting
an additional component in the objective function J in Eq.
(6):

Jew(0) == _le e[, (11)

where the summation is over all entities in the training set.
In this way, in the testing process, we can directly use Eq.
(10) to obtain the approximate entity embedding and com-
pute knowledge attention using Eq. (9).

Knowledge Attention with Disambiguation (KA+D). It
is straightforward that, if we can narrow down the range
of candidate entities by using the surface name of the en-
tity mention, we can obtain more accurate information.

Such information can be used as a complement to the text-
reconstructed embedding built from Eq. (10). We conduct
entity disambiguation as follows: (1) We build a list of can-
didate entities by matching the surface names of entities in
KBs and entity mentions. (2) We compute the L2 distance
between the text-reconstructed embedding € and candidate
entity representations in KBs, and select the candidate with
the smallest distance. An example is shown in Figure 2.

"... Miami and Virginia Tech to make a move ..."
N

r—[ Probable Entities } @\
Virginia Polytechnic Institute and State University 0.499
Senate of Virginia 0.659
Rochester Institute of Technology 0.662
Virginia 0.759
West Virginia 0.796

Figure 2: An example of how an entity mention is disam-
biguated to the correct entity.

To alleviate the harm caused by inevitable disambigua-
tion errors, we set a threshold « for the L2 distance. For the
chosen entity e and its L2 distance d, if d is smaller than «,
which means we can be confident with the disambiguation
result, we select e to compute knowledge attention. If d is
greater than «, which means the disambiguation process is
probably erroneous, or this is an out-of-KB entity without
anything similar in the KB, we directly use €.

5 Experiments
5.1 Dataset Construction

FIGER is a widely used dataset for entity typing proposed in
(Ling and Weld 2012). However, the training set of FIGER
does not include the linked entities of mentions required
by KNET. Moreover, the test set is not fine-grained enough
(e.g., over 38% entities are only annotated with person and
no more fine-grained labels).

Therefore, we build our own dataset, which consists of an
automatically labeled part and a manually labeled part:

e Automatically labeled dataset WIKI-AUTO. Similar to
(Ling and Weld 2012), we employ Wikipedia and Free-
base to generate train, validation and test datasets us-
ing distant supervision (Mintz et al. 2009). Concretely,
we search Wikipedia text for sentences with an anchor
link which links to another Wikipedia page. The page
can be further connected to a Freebase entity, whose type
labels are shown in Freebase. Without loss of general-
ity, we choose entities in FB15K when searching through
Wikipedia. FB15K is a subset of Freebase containing
common entities introduced in (Bordes et al. 2013). To
better simulate practical application, entities in the test set



are unseen in the train set. Also, they do not necessarily
need to be inside the KB.

Freebase contains thousands of types, which are typi-
cally noisy and confusing. For example, the entity New
York City has as many as 85 types, including citytown,
city_with_dogs and award_winner. To avoid such
confusion, we only keep types that have at least 50 in-
stances in FB15K, and then manually map them into a
two-layer hierarchical taxonomy with 74 types.

e Manually labeled dataset WIKI-MAN. Distant supervi-
sion inevitably introduces noise into WIKI-AUTO (Ren et
al. 2016b; Yaghoobzadeh, Adel, and Schiitze 2017). As
a result, we randomly pick 100 entity mentions and their
sentences from Wikipedia, and manually label them using
the same taxonomy as WIKI-AUTO. This dataset, WIKI-
MAN, is only used for testing.

Automatic and manual datasets have their own weakness.
The weakness of manual datasets is the inevitably limited
size, which is not a problem for automatic labeling. The
weakness of automatic datasets is the distant supervision as-
sumption that all labels from KBs are correct for any con-
text. From the observation of manually labeled dataset, how-
ever, this weakness of automatic datasets is not severe: only
a small proportion of entities would have different labels in
different contexts (e.g., only 3.9% in the test set of FIGER).
These two kinds of datasets are complementary for each
other’s weakness. Consequently, we conduct experiments
and report results on both datasets, and the results are gen-
erally consistent. We compare the test sets of FIGER, WIKI-
AUTO and WIKI-MAN in Table 1.

Dataset WIKI-AUTO WIKI-MAN FIGER
Total Entities 100,000 100 562
Labels per Entity 3.07 2.32 1.38
Person 22.47% 16.00% 43.42%
Organization 14.76% 11.00% 28.11%
Location 39.90% 52.00% 18.15%

Others 22.87% 21.00% 12.81%

Table 1: Comparison of various test sets.

Note that, in our experiments Freebase plays two roles: (1)
providing triples for KRL with TransE; (2) providing type
information for annotating datasets. These two roles do not
necessarily need to be done by one KB; rather, they can be
accomplished by two independent KBs. And in our experi-
ments, we also make sure triples in (1) and entity type infor-
mation in (2) do not interfere with each other, which ensures
the model can be generalized to using different KBs'.

5.2 Experiment Settings

Following (Ling and Weld 2012), we use macro-F1, micro-
F1, and accuracy to evaluate the performance of models. In

'In some cases such as specific academic area or non-English
language, KBs are limited both in size and content. These two kinds
of information may be separated in different KBs.

general, we consider micro-F1 to be the metric that can best
represent the performance of fine-grained entity typing be-
cause entities with more fine-grained labels will have greater
proportion. Further details can be found in their paper.

Following (Shimaoka et al. 2017), we use pre-trained
word embeddings from (Pennington, Socher, and Manning
2014). We use Adam Optimizer (Kingma and Ba 2014) and
mini-batch of size B for parameter optimization. We also
use implementation of TransE from (Lin et al. 2015) to ob-
tain entity embeddings.

To avoid overfitting, we employ Dropout (Srivastava et al.
2014) on entity mention representation. The reason for only
applying Dropout to entity mention is that entities of test set
are probably unseen in training, while context words are not
so different.

We explore different sets of hyperparameter settings and
determine Adam optimizer learning rate A among {0.01,
0.005, 0.001}, hidden-size of LSTM among {100, 150,
200}, word vector size among {50, 100, 300}, window size
L among {5, 10, 15} and batch size B among {100, 500,
1,000}, based on performance on the validation set. The hy-
perparameter settings are shown in Table 3.

Hyperparameter  Value

Learning rate 0.005
LSTM hidden-size 100
‘Word vector size 300
Window size 15
Batch size 1,000

Table 3: Hyperparameter settings.

5.3 Evaluation Results

Recent neural models have been shown to outperform most
feature-based models like (Ling and Weld 2012; Yosef et al.
2012; Yogatama, Gillick, and Lazic 2015). Hence we con-
sider the following two neural models as our baseline:

(1) Neural Model with Semantic Attention (SA). To the
best of our knowledge, (Shimaoka et al. 2017) achieves the
state-of-the-art performance. Since their codes are not yet
publicly available, we implement their model by ourselves
and achieves comparable results as reported by the authors.
This model is described in the Semantic Attention (SA) part.

(2) Hybrid Neural Model (HNM). We also implement
the model HNM (Dong et al. 2015), which is also a neural
model with fully-connected layers and recurrent layers, but
without the attention mechanism.

We also consider a recent feature-based baseline:

(3) AFET (Ren et al. 2016a), which also uses auxiliary
information from the KB, but does not consider relational
knowledge.

Considering the external relational knowledge injected by
KB embedding, we further introduce a baseline:

(4) KB-ONLY, which only uses KB embedding for entity
typing (replacing x in Eq. 4 with e or &, controled by the
threshold o).

We compare these four baselines with our neural entity
typing models with Mention Attention (MA), Knowledge



Dateset WIKI-AUTO WIKI-MAN
. Strict Macro Micro Strict Macro Micro
Metrics
Acc Pre Rec F1 Pre Rec F1 Acc Pre Rec F1 Pre Rec F1

AFET 20.32 67.00 4582 5475 69.29 4240 52.61 18.00 64.50 50.00 56.33 64.29 5043 56.52
KB-ONLY 35.12 69.65 7135 7049 5485 7499 63.36 17.00 5550 72.83 63.00 27.81 7457 40.52
HNM 3488 68.09 61.03 6437 72.80 64,48 68.39 15.00 61.80 68.00 64.75 6235 6853 65.30
SA 42777 7533 69.69 7240 7735 72.63 7491 18.00 66.67 73.67 69.44 6554 7543 70.14
MA 41.58 73.64 7171 72.66 7594 7552 7572 26.00 65.13 7850 71.19 64.09 82.33 72.08
KA 4549 7482 7246 73.62 7696 7549 7622 23.00 64.69 7892 71.10 6325 82.68 71.67
KA+D 4720 7572 74.03 7487 7796 77.87 77.92 34.00 6841 82.83 7494 66.12 87.50 75.32

Table 2: Performance of entity typing, evaluated by strict accuracy, micro and macro precison, recall and F1 score. (%)

Attention (KA), Knowledge Attention with Disambiguation
(KA+D). The results are shown in Table 2. From the table
we observe that:

(1) All neural models perform better than AFET, demon-
strating their power in making use of the large-scale training
dataset.

(2) MA performs slightly better compared to SA by mak-
ing a primitive attempt at entity-discriminated attention.
This indicates the benefits of entity-related attention.

(3) KA and KA+D achieve the best results among all
methods. The reason is that both KA and KA+D introduce
rich entity information from KBs, and produce more accu-
rate attention over context words as compared to other meth-
ods. It indicates the significance of adding the entity infor-
mation from KBs into entity typing.

(4) KA+D has better performance than KA under all eval-
uation metrics. It demonstrates that, by conducting entity
disambiguation based on surface name matching and em-
bedding similarity between entity mention and candidate en-
tity, the model can utilize more precise information from
KBs.

(5) The performance of KB-ONLY is considerably worse
than KA and KA+D. It indicates that, although KB informa-
tion can be beneficial for entity typing, it cannot work alone.
Instead, it has to be considered jointly with text information
in a more sophisticated way.

5.4 Effectiveness on Different Entities

To study the details of our models, we further compare them
with baselines on different subsets of the test set. The divi-
sion is based on entity coarse types or disambiguation diffi-
culty.

Entity Coarse Types We explore the performance of vari-
ous methods for three coarse-grained entity types, person,
organization and location. For better illustration,
we also compare them with a naive baseline, M-ONLY,
which only uses entity mention representations m for en-
tity typing (replacing x with m in Eq. 4). The results are
shown in Table 4.

From the table, we can observe that: KA and KA+D
achieve larger improvements on coarse types which are less
“easy”, such as person and organization. The rea-
son is that, it is easier to determine fine-grained types of

Type Person Organization Location
Dataset WIKI-AUTO

M-ONLY 58.64 63.95 87.65
HNM 63.79 66.85 86.26
SA 68.47 71.85 90.74
KA 70.77 74.18 91.23
KA+D 74.87 75.16 91.75
Type Person Organization Location
Dataset WIKI-MAN

M-ONLY 52.63 71.19 75.54
HNM 54.00 50.00 76.69
SA 55.77 81.36 79.26
KA 67.72 75.41 79.29
KA+D 67.14 90.32 81.62

Table 4: Comparison on entities of different coarse-grained
types, evaluated by micro-F1 (%).

a location entity simply according to entity mentions,
which often contain informative words like River or Road.
But for person and organization, we have to rely
more on context information. In this case, KA and KA+D
show their superiority for modeling context information.
The performance of M-ONLY shows the degree of “easy”
for each coarse type.

Disambiguation Difficulty In KA+D, disambiguation of
in-KB entities mention depends on different context envi-
ronments. The context either provides rich and helpful in-
formation about the attributes of the entity, or hardly con-
tains any useful hint. Disambiguation of out-of-KB entities,
on the other hand, will no doubt be erroneous. We divide the
test set into two subsets named Correct and Erroneous, ac-
cording to whether the disambiguation process is correct or
not, and explore the performance of various methods. The
results are shown in Table 5.

From the table we can observe that:

(1) All methods perform better in the Correct subset than
in the Erroneous subset. The results are reasonable, since the
contexts of in-KB entity mentions in the Correct subset pro-
vide more accurate information than those in the Erroneous
subset.



Subset Correct Erroneous
Metrics strict  micro-F1  strict  micro-F1
Wiki-auto 80.53% 19.47%
HNM 37.60 68.39 23.60 52.15
SA 46.66 78.63 26.64 57.61
MA 44.32 79.29 28.26 59.05
KA 49.24 79.83 29.99 59.42
KA+D 51.77 82.33 28.27 57.56
Subset Correct Erroneous
Metrics strict  micro-F1  strict  micro-F1
Wiki-man 83.00% 17.00%
HNM 15.66 67.80 11.76 51.95
SA 20.48 75.05 5.88 47.37
MA 28.92 75.22 11.76 53.85
KA 24.10 75.23 17.65 53.93

KA+D 34.94 78.32 12.50 54.77

Table 5: Performance on correct/erroneous subsets, with per-
centages indicating the ratios among all entity mentions.

(2) KA consistently outperforms all baselines in both sub-
sets. It indicates that employing KB information can ro-
bustly achieve improvements on entity typing.

(3) In the Correct subset, KA+D can obtain precise en-
tity information from KBs via disambiguation, and thus sig-
nificantly outperforms all other methods. The superiority of
KA+D is smaller in the Erroneous subset due to unsuccess-
ful disambiguation, but it still outperforms the baselines.
The reason is that, controlled by the threshold «, an entity
mention in this subset will either be disambiguated to a simi-
lar entity (whose embedding will also be useful), or keep the
original text constructed embedding, and therefore alleviate
the error.

We further demonstrate the impact of the threshold « on
KA+D in Figure 3. It is shown that, as « increases (i.e., more
confident with disambiguation results), the performance of
KA+D is improved in the Correct subset, but decays in
the Erroneous subset. Hence, in real-world applications, we
have to tune « to achieve the trade-off according to the ratio
of Correct/Erroneous subsets (i.e., disambiguation difficulty
of the dataset). Considering the sharp decreasing in Erro-
neous and the relatively slow increasing in Correct when «
goes from 0.55 to 0.7, we set « to be 0.55 in Table 3.

5.5 Case Analysis

In Figure 4, we visualize and compare attention computed
by SA and KA+D in an example.

From the example we can see that: SA fails to concen-
trate on useful words for entity typing. KA+D, by disam-
biguating to the correct entity in KB, is able to focus on
those informative words, such as starred, the film, Omar
Sharif and Geraldine Chaplin®. Types predicted by KA+D
are person, artist and actor, which are identical with

2Julie Christie, Omar Sharif and Geraldine Chaplin are actors
and actresses. They acted together in a film Doctor Zhivago.

Overall

MicroF1(%)

MicroF1(%)

MicroF1(%)

«

Figure 3: Evaluating the effect of disambiguation threshold
o on KA+D in the validation set. oo indicates KA+D with-
out using a.

Model ‘ Sentence and Attention

...tradition starred Omar Sharif, Geraldine
SA Chaplin and Julie Christie. Concentrating on
the love triangle aspects of the novel, the film

...tradition Starred Omar Sharif, Geraldine
KA+D | €haplin and Julie Christie. Concentrating on
the love triangle aspects of the novel, the film

Figure 4: Case analysis for the entity Julie Christie. Deeper
background color indicates higher attention.

annotated labels. Besides these three types, SA also predicts
three more superfluous types.

6 Conclusion and Future Work

In this paper, we propose a novel attention mechanism which
leverages information from KBs and joint bring text and KB
into consideration. We introduce a new dataset, experiments
based on which clearly demonstrate the effectiveness and
significance of the proposed knowledge attention. Among
several methods compared, our new model KA+D achieves
the state-of-the-art performance of Micro-F1 score 77.92 in
the WIKI-AUTO dataset.

We will explore the following directions as future work:
(1) Our KNET framework can incorporate any kinds of
KRL methods with no difficulty, and we will explore the ef-
fectiveness of other KRL methods besides TransE. (2) We



will examine the effectiveness of our KNET methods on
a more complicated taxonomy of entity types, with either
more classes or deeper hierarchy. (3) Directly using exist-
ing entity linking tools will inevitably introduce noise. Al-
leviating such noise and incorporating entity linking in our
model will be interesting to explore in the future. (4) Ex-
isting works about FET have used a number of different
datasets and taxonomies (Shimaoka et al. 2017), and we will
also further explore our model on various datasets.
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