Log-linear Models for Word Alignment

Yang Liu, Qun Liu and Shouxun Lin

Institute of Computing Technology
Chinese Academy of Sciences
Categories of Alignment
Approaches

• Statistical approaches
 – based on well-founded probabilistic models
 – depend on unknown parameters that are learned from training data

• Heuristic approaches
 – use various similarity functions between the types of two languages
Previous Work

- Combination of association clues (Tiedemann, 2003)
- Model 6, a log-linear combination of IBM Model 4 and HMM model (Och and Ney, 2003)
- A probability model, allowing easy integration of context-specific features (Cherry and Lin, 2003)
Log-linear models, which are very suitable to incorporate additional dependencies, have been successfully applied to statistical machine translation (Och and Ney, 2002).

\[
\Pr(x \mid y) = \frac{\exp \left\{ \sum_{m=1}^{M} \lambda_m h_m(x, y) \right\}}{\sum_{x'} \exp \left\{ \sum_{m=1}^{M} \lambda_m h_m(x', y) \right\}}
\]
Log-linear Models for Word Alignment

\[P_r(a|e,f) = \frac{\exp \left\{ \sum_{m=1}^{M} \lambda_m h_m (a,e,f) \right\}}{\sum_{a'} \exp \left\{ \sum_{m=1}^{M} \lambda_m h_m (a',e,f) \right\}} \]

Log-linear models ARE statistical models.
Three Problems

• Feature selection
 – Which knowledge sources are useful and how to design feature functions to make use of them?

• Training
 – How to estimate the model scaling factors?

• Search
 – How to search the optimal alignment in an effective and efficient way?
Feature selection

• IBM translation model 3

\[h(a, e, f) = Pr(f_i^l, a_i^l | e_i^l) \]

\[= \left(\frac{m - \phi_0}{\phi_0} \right) p_0^{m-2\phi_0} p_1 \prod_{i=1}^{l} \phi_i! n(\phi_i | e_i) \times \]

\[\prod_{j=1}^{m} t(f_j | e_{a_j}) d(j | a_j, l, m) \]

• POS tags transition model

\[h(a, e, f, eT, fT) = \prod_a t(fT_a(j) | eT_a(i)) \]

• Bilingual dictionary coverage

\[h(a, e, f, D) = \sum_a \text{occur}(e_a(i), f_a(j), D) \]
Training

- We use YASMET, which implement GIS algorithm, to train model scaling factors.
- We select the model parameters that yield best alignments on the development corpus.
- POS tags transition probabilities are also estimated on development corpus.

\[p(fT|eT) = \frac{N_A(fT,eT)}{N(eT)} \]

Here, \(N_A(fT,eT) \) is the frequency that the POS tag \(fT \) is aligned to POS tag \(eT \) and \(N(eT) \) is the frequency of \(eT \) in the development corpus.
We use a greedy search algorithm to search the alignment with highest probability in the space of all possible alignments. A state in this space is a partial alignment. A transition is defined as the addition of a single link to the current state. A start state is the empty alignment. A terminal state is a state in which no more links can be added to increase the probability of current state.
An Example

我 是 一 个 学 生

I am a student
An Example

20 possible links!
An Example

I am a student

The partial alignment with the greatest probability

20 possible links!
An Example

我是一个学生
I am a student

我是一个学生
I am a student

19 possible links!
An Example

我是一个学生

I am a student

我是一个学生

I am a student

19 possible links!
An Example

I am a student

I am a student
An Example

Start state | Intermediate state | terminal state

我是一个学生 | 我是一个学生 | 我是一个学生

I am a student | I am a student | I am a student

No links can be added to increase the probability of terminal state!
We compute $gain$, which is a heuristic function, instead of probability for efficiency.
Search Algorithm

Input: e, f, eT, fT, and D

Output: a

1. Start with a = φ.
2. Do for each l = (i, j) and l ∉ a:
 - Compute gain(a, l)
3. Terminate if ∀l, gain(a, l) ≤ 1.
4. Add the link ĝ with the maximal gain(a, l) to a.
5. Goto 2.
Greedy Vs. Hill climbing

<table>
<thead>
<tr>
<th></th>
<th>Greedy</th>
<th>Hill climbing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operators</td>
<td>Add (a special case of Move)</td>
<td>Move</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Swap</td>
</tr>
<tr>
<td>Initial alignment</td>
<td>empty alignment</td>
<td>Viterbi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alignment of a simple model</td>
</tr>
<tr>
<td>Applicability</td>
<td>log-linear models</td>
<td>fertility-based models</td>
</tr>
<tr>
<td>Algorithm type</td>
<td>greedy</td>
<td>greedy</td>
</tr>
</tbody>
</table>
Problems with the Search Algorithm

$$h(a, e, f) = Pr(f_1^J, a_1^J|e_1^I)$$

$$= \left(m - \phi_0 \right) p_0^{m-2\phi_0} p_1^{\phi_0} \prod_{i=1}^{l} \phi_i! n(\phi_i|e_i) \times$$

$$\prod_{j=1}^{m} t(f_j|e_{a_j}) d(j|a_j, l, m)$$

However, the search algorithm, which is general enough for any log-linear models, is not efficient for our models. It is time-consuming for each feature to figure out a probability when adding a new link, especially when the sentences are very long.
We restrict that $h_m(a,e,f) \geq 0$ for all feature functions. Note that we still call the new heuristic function $gain$ to reduce notational overhead. As a result, the termination condition will change to:

$$
\sum_{m=1}^{M} \lambda_m \log \left(\frac{h_m(a \cup l, e, f)}{h_m(a,e,f)} \right) \leq t
$$

$$
t = \sum_{m=1}^{M} \lambda_m \left\{ \log \left(\frac{h_m(a \cup l, e, f)}{h_m(a,e,f)} \right) - \left[h_m(a \cup l, e, f) - h_m(a,e,f) \right] \right\}
$$

We call t the gain threshold. It depends on the added link. But we remove this dependency for simplicity when using it in search algorithm by treating it as a fixed real-valued number.
Why we develop a new Gain?

• In the old gain, every feature has to figure out a probability; in the new gain, many terms will be cancelled out. For example, if a new link \(l=(i, j) \) is added, for IBM model 3 alone the new gain will only compute:

\[
\frac{p_0 \times p_0}{p_1} \times \frac{\phi_0 \times (m - \phi_0 + 1)}{(m - 2\phi_0 + 1) \times (m - 2\phi_0 + 2)} \times (\phi_i + 1) \times \\
\frac{n(\phi_i + 1 | e_i)}{n(\phi_i | e_i)} \times \frac{t(f_j | e_i)}{t(f_j | e_0)} \times d(j | i, l, m)
\]

The reason why we develop a new way to compute gain is that we try to reduce the computation.
New Search Algorithm

Input: e, f, eT, fT, D and t

Output: a

1. Start with $a = \phi$.
2. Do for each $l = (i, j)$ and $l \notin a$:

 Compute $gain(a, l)$

3. Terminate if $\forall l, gain(a, l) \leq t$.
4. Add the link \hat{l} with the maximal $gain(a, l)$ to a.
5. Goto 2.
How to get a n-best list?

• As shown above, we use a greedy search algorithm to search the optimal alignment. When we use GIS algorithm to train model scaling parameters, we need a n-best list. Therefore, we use a breadth-first search algorithm with pruning. During the search, every link will be added to every alignment in the n-best list and then update the n-best list.

• During the search, states those are indistinguish will be recombined
An illustration

N=2
- Start state
- Intermediate state
- Terminal state
- Discarded state
Experimental Results

Statistics of training corpus (Train), bilingual dictionary (Dict), development corpus (Dev) and test corpus (Test)

<table>
<thead>
<tr>
<th></th>
<th>Chinese</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentences</td>
<td></td>
<td>108 925</td>
</tr>
<tr>
<td>Words</td>
<td>3 784 106</td>
<td>3 862 637</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>49 962</td>
<td>55 698</td>
</tr>
<tr>
<td>Dict</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entries</td>
<td></td>
<td>415 753</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>206 616</td>
<td>203 497</td>
</tr>
<tr>
<td>Dev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentences</td>
<td></td>
<td>435</td>
</tr>
<tr>
<td>Words</td>
<td>11 462</td>
<td>14 252</td>
</tr>
<tr>
<td>Ave. SentLen</td>
<td>26.35</td>
<td>32.76</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentences</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>Words</td>
<td>13 891</td>
<td>15 291</td>
</tr>
<tr>
<td>Ave. SentLen</td>
<td>27.78</td>
<td>30.58</td>
</tr>
</tbody>
</table>
Comparison of AER for results of using IBM Model 3 (GIZA++) and log-linear models

<table>
<thead>
<tr>
<th></th>
<th>Size of Training Corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1K</td>
</tr>
<tr>
<td>Model 3 E → C</td>
<td>0.4497</td>
</tr>
<tr>
<td>Model 3 C → E</td>
<td>0.4688</td>
</tr>
<tr>
<td>Intersection</td>
<td>0.4588</td>
</tr>
<tr>
<td>Union</td>
<td>0.4596</td>
</tr>
<tr>
<td>Refined Method</td>
<td>0.4154</td>
</tr>
<tr>
<td>Model 3 E → C</td>
<td>0.4490</td>
</tr>
<tr>
<td>+ Model 3 C → E</td>
<td>0.3970</td>
</tr>
<tr>
<td>+ POS E → C</td>
<td>0.3828</td>
</tr>
<tr>
<td>+ POS C → E</td>
<td>0.3795</td>
</tr>
<tr>
<td>+ Dict</td>
<td>0.3650</td>
</tr>
</tbody>
</table>
Comparison of AER for results of using IBM Model 5 (GIZA++) and log-linear models

<table>
<thead>
<tr>
<th></th>
<th>Size of Training Corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1K</td>
</tr>
<tr>
<td>Model 5 E → C</td>
<td>0.4384</td>
</tr>
<tr>
<td>Model 5 C → E</td>
<td>0.4564</td>
</tr>
<tr>
<td>Intersection</td>
<td>0.4432</td>
</tr>
<tr>
<td>Union</td>
<td>0.4499</td>
</tr>
<tr>
<td>Refined Method</td>
<td>0.4106</td>
</tr>
<tr>
<td>Model 3 E → C</td>
<td>0.4372</td>
</tr>
<tr>
<td>+ Model 3 C → E</td>
<td>0.3920</td>
</tr>
<tr>
<td>+ POS E → C</td>
<td>0.3807</td>
</tr>
<tr>
<td>+ POS C → E</td>
<td>0.3731</td>
</tr>
<tr>
<td>+ Dict</td>
<td>0.3612</td>
</tr>
</tbody>
</table>
Experimental Results (cont.)

Comparison on AER for various symmetrization methods: intersection, union, refined method and log-linear combination (i.e. M3 C->E + M3 E->C)
Experimental Results (cont.)

Effect of number of features and size of training corpus on search efficiency
Experimental Results (cont.)

Resulting model scaling factors

<table>
<thead>
<tr>
<th>λ_i</th>
<th>MEC</th>
<th>+MCE</th>
<th>+PEC</th>
<th>+PCE</th>
<th>+Dict</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1</td>
<td>1.000</td>
<td>0.466</td>
<td>0.291</td>
<td>0.202</td>
<td>0.151</td>
</tr>
<tr>
<td>λ_2</td>
<td>-</td>
<td>0.534</td>
<td>0.312</td>
<td>0.212</td>
<td>0.167</td>
</tr>
<tr>
<td>λ_3</td>
<td>-</td>
<td>-</td>
<td>0.397</td>
<td>0.270</td>
<td>0.257</td>
</tr>
<tr>
<td>λ_4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.316</td>
<td>0.306</td>
</tr>
<tr>
<td>λ_5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.119</td>
</tr>
</tbody>
</table>
Experimental Results (cont.)

Precision, recall and AER over different gain thresholds with the same model scaling factors
Future Work

• Exploit more knowledge sources ranging from syntax-based models to various linguistic resources
• Optimize the model parameters directly with respect to AER
• Improve the efficiency of search algorithm
• Try on other language pairs
Thanks!