# Tree-based and Forest-based Translation

#### Yang Liu

Institute of Computing Technology Chinese Academy of Sciences



#### Liang Huang

Information Sciences Institute University of Southern California



# Outline

- **n** Part 1: Tree-based Translation
  - q Overview and Motivation
  - **q** Tree-to-String Model and Decoding
  - **q** Tree-to-String Rule Extraction
  - **q** Language Model-Integrated Decoding: Cube Pruning
- n Part 2: Forest-based Translation
  - **Packed Forest**
  - **q** Forest-based Decoding
  - **Forest-based Rule Extraction**
- n Part 3: Extensions
  - **q** Tree-to-Tree Translation
  - **q** Tree Sequence-based Translation
  - **q** Joint Parsing and Translation
- n Part 4: Conclusion

# Natural Languages are Different



By Google Translate

## **Translation is Hard!**





#### connocting poopie

#### HELP ONESELF TERMINATING MACHINE

## **Machine Translation**

布什 与 沙龙 举行 了 会谈 bushi yu shalong juxing le huitan



#### Bush held a talk with Sharon

## **Word-based MT**



(Brown et al., 1993)

# **Phrase-based MT**



(Koehn et al., 2003; Och and Ney, 2004)

## **Hierarchical Phrase-based MT**



# Syntax-based MT



# Motivation

### **n** Human Translation

- **understand** the source sentence
- **Generate** the target sentence

### n Compiling

- **Parse** input program into a syntax tree
- **Generate** code in machine language

### **Syntax-Directed Translation for Compiling**

n Input: y:=3\*x+zn Parsing: id(y)(y)(z)(3) (x)

(Irons, 1961; Lewis and Stearns, 1968; Aho and Ullman., 1972)

# Motivation

### n Human Translation

- **Understand** the source sentence
- **Generate** the target sentence

### n Compiling

- **Parse** input program into a syntax tree
- **Generate** code in machine language
- **n** Machine Translation
  - **Parse** the source sentence into a tree
  - **Recursively transfer** the tree into the target language

### **Syntax-Directed Translation for MT**

### n Input: *bushi yu shalong juxing le huitan*

n Parsing:



# Outline

#### **n** Part 1: Tree-based Translation

- q Overview and Motivation
- q <u>Tree-to-String Model and Decoding</u>
- **q** Tree-to-String Rule Extraction
- **q** Language Model-Integrated Decoding: Cube Pruning
- n Part 2: Forest-based Translation
  - **Packed Forest**
  - **q** Forest-based Decoding
  - **Forest-based Rule Extraction**
- n Part 3: Extensions
  - **q** Tree-to-Tree Translation
  - **q** Tree Sequence-based Translation
  - **q** Joint Parsing and Translation
- n Part 4: Conclusion



(Liu et al., 2006; Huang et al., 2006)



<sup>(</sup>Liu et al., 2006; Huang et al., 2006)







## **Tree-to-String Translation Recursive rewrite by pattern-matching**



(Liu et al., 2006; Huang et al., 2006)

## **Tree-to-String Translation Recursive rewrite by pattern-matching**



→ Sharon



## **Tree-to-String Translation Recursive rewrite by pattern-matching**

Tree-to-string translation

Syntax-directed translation (e.g., Irons, 1961) Tree transducer (e.g., Knight and Graehl, 2005) Synchronous grammar (e.g., Eisner, 2003)

#### Bush held a talk with Sharon

## **Expressive Power**



# Outline

#### **n** Part 1: Tree-based Translation

- q Overview and Motivation
- **q** Tree-to-String Model and Decoding
- q Tree-to-String Rule Extraction
- **G** Language Model-Integrated Decoding: Cube Pruning
- **n** Part 2: Forest-based Translation
  - **Packed Forest**
  - **q** Forest-based Decoding
  - **Forest-based Rule Extraction**
- n Part 3: Extensions
  - **q** Tree-to-Tree Translation
  - **q** Tree Sequence-based Translation
  - **q** Joint Parsing and Translation
- n Part 4: Conclusion

#### n Compute target spans



#### n Find admissible nodes



#### n Extract minimal rules



#### n Extract minimal rules





<sup>(</sup>Galley et al., 2004)

### **n** Get composed rules



# Outline

#### **n** Part 1: Tree-based Translation

- q Overview and Motivation
- **G** Tree-to-String Model and Decoding
- q Tree-to-String Rule Extraction
- q Language Model-Integrated Decoding: Cube Pruning
- **n** Part 2: Forest-based Translation
  - **Packed Forest**
  - **q** Forest-based Decoding
  - **Forest-based Rule Extraction**
- n Part 3: Extensions
  - **q** Tree-to-Tree Translation
  - **q** Tree Sequence-based Translation
  - **q** Joint Parsing and Translation
- n Part 4: Conclusion





(Liu et al., 2006; Huang et al., 2006)

# **Bottom-up Decoding**





# **Bottom-up Decoding**




(Liu et al., 2006; Huang et al., 2006)

# **Bottom-up Decoding**



(Liu et al., 2006; Huang et al., 2006)



(Liu et al., 2006; Huang et al., 2006)

## **Exhaustive Search**



ACL 2010 Tutorial, Uppsala, Sweden

July 11, 2010

# **Update Bigram LM Probability**

p1 = p(``with'') \* p(``Sharon'' | '`with'') p2 = p(``held'') \* p(``a'' | '`held'') \* p(``talk'' | ''a'')

with Sharon

held a talk

Only boundary words are used to update LM probability!

with Sharon held a talk

p1\*p2\*p("held" | "Sharon")/p("held")

held a talk with Sharon

p1\*p2\*p("with" | "talk")/p("with")

#### **Exhaustive Search with a Bigram Language Model**



| Mon                      | <b>PP</b> <sub>1,3</sub> |     |       |           |                 |             |     |
|--------------------------|--------------------------|-----|-------|-----------|-----------------|-------------|-----|
| VP1,6<br>PP1,3<br>VPB3,6 |                          |     | with* | Sharon St | laron<br>Sharon | with Sharon | and |
| monot                    |                          | 1.0 | 3.0   | 4.0       | 6.5             |             |     |
| ĺ                        | held * talk              | 1.0 | 2.0   | 4.0       | 5.0             | 7.5         |     |
|                          | held * talks             | 1.1 | 2.1   | 4.1       | 5.1             | 7.6         |     |
| VPB <sub>3,6</sub>       | hold * talk              | 2.0 | 3.0   | 5.0       | 6.0             | 8.5         |     |
|                          | hold * talks             | 3.5 | 4.5   | 6.5       | 7.5             | 10.0        |     |



| <b>Cube Pruning</b> |              |     | PP <sub>1,3</sub> |           |              |             |        |
|---------------------|--------------|-----|-------------------|-----------|--------------|-------------|--------|
| queue               |              |     | 1                 | \$        | •            | tk.         | ر<br>۲ |
| 4-best              |              |     | with              | Sharor Sh | raron sharon | with Sharon | 3110   |
|                     |              |     | 1.0               | 3.0       | 4.0          | 6.5         |        |
| $\bigcap$           | held * talk  | 1.0 | 2.5               | 6.0       | 9.0          | 11.5        |        |
|                     | held * talks | 1.1 | 2.4               | 5.6       | 8.6          | 10.6        |        |
|                     | hold * talk  | 2.0 | 3.5               | 7.0       | 10.0         | 12.5        |        |
|                     | hold * talks | 3.5 | 4.8               | 8.0       | 11.0         | 13.5        |        |

| <b>Cube Pruning</b> |     |              | PP <sub>1,3</sub> |                  |           |              |                                         |      |
|---------------------|-----|--------------|-------------------|------------------|-----------|--------------|-----------------------------------------|------|
| queue               | 2.5 |              |                   | $\left( \right)$ | •         |              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |      |
| 4-best              |     |              |                   | with             | Sharon Sh | aron Sharon* | with Sharon*                            | 3114 |
|                     |     |              |                   | 1.0              | 3.0       | 4.0          | 6.5                                     |      |
| VPB <sub>3,6</sub>  |     | held * talk  | 1.0               | 2.5              | 6.0       | 9.0          | 11.5                                    |      |
|                     |     | held * talks | 1.1               | 2.4              | 5.6       | 8.6          | 10.6                                    |      |
|                     |     | hold * talk  | 2.0               | 3.5              | 7.0       | 10.0         | 12.5                                    |      |
|                     |     | hold * talks | 3.5               | 4.8              | 8.0       | 11.0         | 13.5                                    |      |

| <b>Cube Pruning</b> |        |              | PP <sub>1,3</sub> |                  |           |              |             |      |
|---------------------|--------|--------------|-------------------|------------------|-----------|--------------|-------------|------|
| queue               | 2.4    | 6.0          |                   | $\left( \right)$ | •         |              |             |      |
| 4-best              | 2.5    |              |                   | with             | Sharon Sh | aron sharon* | with Sharon | 3110 |
|                     |        |              |                   | 1.0              | 3.0       | 4.0          | 6.5         |      |
|                     | $\int$ | held * talk  | 1.0               | 2.5              | 6.0       | 9.0          | 11.5        |      |
| VPB <sub>3,6</sub>  |        | held * talks | 1.1               | 2.4              | 5.6       | 8.6          | 10.6        |      |
|                     |        | hold * talk  | 2.0               | 3.5              | 7.0       | 10.0         | 12.5        |      |
|                     |        | hold * talks | 3.5               | 4.8              | 8.0       | 11.0         | 13.5        |      |

| <b>Cube Pruning</b> |        |              | PP <sub>1,3</sub> |      |           |              |              |      |
|---------------------|--------|--------------|-------------------|------|-----------|--------------|--------------|------|
| queue               | 3.5    | 5.6 6.0      |                   | (    | •         |              | .20          |      |
| 4-best              | 2.4    | 2.5          |                   | with | Sharon Sh | aron Sharon* | with Sharon* | 3714 |
|                     |        |              |                   | 1.0  | 3.0       | 4.0          | 6.5          |      |
|                     | $\int$ | held * talk  | 1.0               | 2.5  | 6.0       | 9.0          | 11.5         |      |
| VPB <sub>3,6</sub>  |        | held * talks | 1.1               | 2.4  | 5.6       | 8.6          | 10.6         |      |
|                     |        | hold * talk  | 2.0               | 3.5  | 7.0       | 10.0         | 12.5         |      |
|                     |        | hold * talks | 3.5               | 4.8  | 8.0       | 11.0         | 13.5         |      |

| <b>Cube Pruning</b> |         |              |     |                  |           | PP <sub>1,3</sub> |              |      |
|---------------------|---------|--------------|-----|------------------|-----------|-------------------|--------------|------|
| queue               | 4.8 5.6 | 6.0 7.0      |     | $\left( \right)$ | •         |                   | .00          |      |
| 4-best              | 2.4 2.5 | 5 3.5        |     | with             | Sharon Sh | aron Sharon*      | will Sharon* | 3714 |
|                     |         |              |     | 1.0              | 3.0       | 4.0               | 6.5          |      |
|                     |         | neld * talk  | 1.0 | 2.5              | 6.0       | 9.0               | 11.5         |      |
| VPB <sub>3,6</sub>  |         | neld * talks | 1.1 | 2.4              | 5.6       | 8.6               | 10.6         |      |
|                     |         | nold * talk  | 2.0 | 3.5              | 7.0       | 10.0              | 12.5         |      |
|                     |         | nold * talks | 3.5 | 4.8              | 8.0       | 11.0              | 13.5         |      |

| <b>Cube Pruning</b> |        |              |     |      | PP <sub>1,3</sub> |              |              |      |
|---------------------|--------|--------------|-----|------|-------------------|--------------|--------------|------|
| queue               | 5.6    | 6.0 7.0      |     | (    | ~                 |              |              | >    |
| 4-best              | 2.4    | 2.5 3.5 4.8  |     | with | Sharon Sh         | Bron Sharon* | with Sharon* | 3114 |
|                     |        |              |     | 1.0  | 3.0               | 4.0          | 6.5          |      |
|                     | $\int$ | held * talk  | 1.0 | 2.5  | 6.0               | 9.0          | 11.5         |      |
| VPB <sub>3,6</sub>  |        | held * talks | 1.1 | 2.4  | 5.6               | 8.6          | 10.6         |      |
|                     |        | hold * talk  | 2.0 | 3.5  | 7.0               | 10.0         | 12.5         |      |
|                     |        | hold * talks | 3.5 | 4.8  | 8.0               | 11.0         | 13.5         |      |

## **Cube Pruning within Rule Group**



# **Cube Pruning within Node**



process all rules simultaneously!

significant savings of computation

## Outline

- n Part 1: Tree-based Translation
  - **9** Overview and Motivation
  - **q** Tree-to-String Model and Decoding
  - q Tree-to-String Rule Extraction
  - **Hanguage Model-Integrated Decoding: Cube Pruning**
- Part 2: Forest-based Translation
  - q Packed Forest
  - **q** Forest-based Decoding
  - **Forest-based Rule Extraction**
- n Part 3: Extensions
  - **q** Tree-to-Tree Translation
  - **q** Tree Sequence-based Translation
  - **q** Joint Parsing and Translation
- n Part 4: Conclusion

# Syntactic Ambiguity

It is important to choose a correct tree for producing a good translation!



## **Parsing Mistake Propagation**



#### parsing mistakes potentially introduce translation mistakes!

(Quirk and Corston-Oliver, 2006)

#### 1-best Trees => *n*-best Trees?



#### Very few variations among the *n*-best trees!

## **Packed Forest**



(Billot and Lang, 1989; Klein and Manning, 2001; Huang and Chiang, 2005)

## Outline

- n Part 1: Tree-based Translation
  - **9** Overview and Motivation
  - **q** Tree-to-String Model and Decoding
  - q Tree-to-String Rule Extraction
  - **A** Language Model-Integrated Decoding: Cube Pruning
- n Part 2: Forest-based Translation
  - q Packed Forest
  - q Forest-based Decoding
  - **G** Forest-based Rule Extraction
- n Part 3: Extensions
  - **q** Tree-to-Tree Translation
  - **q** Tree Sequence-based Translation
  - **q** Joint Parsing and Translation
- n Part 4: Conclusion







(Mi et al., 2008)















#### **N-best Trees Vs. Forest**



<sup>(</sup>Mi et al., 2008)

## **Forest as Virtual** ∞-**best list**

**n** How often is the *i*th-best tree picked by the decoder?



<sup>(</sup>Mi et al., 2008)

## Outline

- n Part 1: Tree-based Translation
  - q Overview and Motivation
  - **q** Tree-to-String Model and Decoding
  - q Tree-to-String Rule Extraction
  - **G** Language Model-Integrated Decoding: Cube Pruning
- n Part 2: Forest-based Translation
  - q Packed Forest
  - q Forest-based Decoding
  - **Forest-based Rule Extraction**
- n Part 3: Extensions
  - **q** Tree-to-Tree Translation
  - **q** Tree Sequence-based Translation
  - **q** Joint Parsing and Translation
- n Part 4: Conclusion

#### **n** Compute target spans



#### **n** Compute admissible nodes



#### **n** Extract minimal rules



#### **n** Extract minimal rules



#### n Extract minimal rules




## **Forest-based Rule Extraction**





IP

### **Rule Probabilities and Rule Count**



## **Fractional Count**

**Q**: What 's the count of this rule on this training example?





## Results

#### decoding

| rule   |             | 1-best tree | forest |
|--------|-------------|-------------|--------|
| extrac | 1-best tree | 0.2560      | 0.2674 |
| tion   | forest      | 0.2679      | 0.2816 |

(Mi and Huang, 2008)

## Outline

- n Part 1: Tree-based Translation
  - q Overview and Motivation
  - **q** Tree-to-String Model and Decoding
  - q Tree-to-String Rule Extraction
  - **A** Language Model-Integrated Decoding: Cube Pruning
- n Part 2: Forest-based Translation
  - q Packed Forest
  - q Forest-based Decoding
  - GForest-based Rule Extraction
- n Part 3: Extensions
  - q <u>Tree-to-Tree Translation</u>
  - **q** Tree Sequence-based Translation
  - **q** Joint Parsing and Translation
- n Part 4: Conclusion











#### **n** Recursive rewrite by pattern-matching



(Eisner 2003, Zhang, 2007)

#### n Find admissible node pairs



#### n Extract minimal rules



#### **n** Extract minimal rules



#### **n** Extract minimal rules



#### n Get composed rules



# Challenges

**n** Tree-to-tree translation is over-constrained

- **Poorest rule coverage**
- Suffers from parsing mistake propagation on both sides
- n Recent advances
  - **q** Use tree sequence (Zhang et al., 2008)
  - **q** Use packed forest (Liu et al., 2009a)
  - **q** Fuzzy extraction and decoding (Chiang, 2010)

## Outline

- n Part 1: Tree-based Translation
  - q Overview and Motivation
  - **q** Tree-to-String Model and Decoding
  - q Tree-to-String Rule Extraction
  - **A** Language Model-Integrated Decoding: Cube Pruning
- n Part 2: Forest-based Translation
  - q Packed Forest
  - q Forest-based Decoding
  - GForest-based Rule Extraction
- n Part 3: Extensions
  - q Tree-to-Tree Translation
  - q Tree Sequence-based Translation
  - **q** Joint Parsing and Translation
- n Part 4: Conclusion

## **Non-Constituent Phrase Pairs**



(Marcu et al., 2006)

## **Non-Constituent Phrase Pairs**



## **Non-Constituent Phrase Pairs**



(Marcu et al., 2006)

# **Rule Coverage**



| phrase pair                 | s2s          | t2s          | s2t          | t2t          |
|-----------------------------|--------------|--------------|--------------|--------------|
| (bushi, Bush)               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| (yu, with)                  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| (shalong, Sharon)           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| (huitan, talk)              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| (yu shalong, with Sharon)   | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| (juxing le, held)           | $\checkmark$ | ×            | $\checkmark$ | ×            |
| (juxing huitan, held talk)  | $\checkmark$ | $\checkmark$ | ×            | ×            |
| (yu huitan, held Sharon)    | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| (bushi huitan, Bush Sharon) | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
|                             | 100%         | <b>89</b> %  | <b>89</b> %  | <b>78</b> %  |

# **Rule Coverage**

| model            | human       | automatic |
|------------------|-------------|-----------|
| string-to-string | 100%        | 100%      |
| tree-to-string   | <b>78</b> % | 75%       |
| string-to-tree   | 76%         | 72%       |
| tree-to-tree     | <b>68</b> % | 60%       |

#### **Results from (Chiang, 2010)**

## **Solutions**

#### **n** Extend to larger rules







## **Tree-Sequence + Forest**

| system         | input  | rule                    | BLEU |
|----------------|--------|-------------------------|------|
| Moses          | string | string-to-string        | 25.7 |
|                | troo   | tree-to-string          | 26.1 |
| trac to string | tree   | tree-sequence-to-string | 27.0 |
| tree-to-string | forest | tree-to-string          | 27.7 |
|                |        | tree-sequence-to-string | 28.8 |

#### **Results from (Zhang et al., 2009)**

## **Other Solutions**

- n Re-structure syntax-trees (Wang et al., 2007)
- n Offer more trees (Mi and Huang, 2008)
- n Re-align syntax trees and strings (May and Knight, 2007)
- n Well-formed dependency structures (Shen et al., 2008)
- n Gibbs sampling (Cohn and Blunsom, 2009)
- n Joint decoding (Liu et al., 2009b)

## Outline

- n Part 1: Tree-based Translation
  - q Overview and Motivation
  - **q** Tree-to-String Model and Decoding
  - q Tree-to-String Rule Extraction
  - **A** Language Model-Integrated Decoding: Cube Pruning
- n Part 2: Forest-based Translation
  - q Packed Forest
  - q Forest-based Decoding
  - GForest-based Rule Extraction
- n Part 3: Extensions
  - q Tree-to-Tree Translation
  - **G** Tree Sequence-based Translation
  - Joint Parsing and Translation
- n Part 4: Conclusion

# **Separate Parsing and Translation**



- **J** Separate grammar for parsing and translation
- **J** decoding is fast!

## Joint Parsing and Translation



- Its search space is larger than tree/forest
- It is a translator as well as a parser
- Parsing interacts with translation

(Liu and Liu, 2010)

## **Tree-to-String Translation as Parsing**

NPB │ bushi → Bush



## **Tree-to-String Translation as Parsing**






















# **Translation Evaluation**

| algorithm | input  | parsing<br>model | rules | BLEU | time  |
|-----------|--------|------------------|-------|------|-------|
| matching  | tree   | none             | 1.2M  | 29.8 | 0.56  |
|           | forest | PCFG             | 1.9M  | 31.6 | 9.49  |
| parsing   | string | none             | 7.7M  | 32.0 | 51.41 |
|           |        | PCFG             |       | 32.4 | 55.52 |
|           |        | Lex              |       | 32.6 | 89.35 |
|           |        | PCFG+Lex         |       | 32.7 | 91.72 |

(Liu and Liu, 2010)

# **Parsing Evaluation**

| parsing model | F1   | time |
|---------------|------|------|
| none          | 62.7 | 23.9 |
| PCFG          | 65.4 | 24.7 |
| Lex           | 79.8 | 48.8 |
| PCFG + Lex    | 80.6 | 50.4 |

(Liu and Liu, 2010)

# **Results on Tree-to-Tree**

| task    | extraction       | rules       | features | BLEU |
|---------|------------------|-------------|----------|------|
| Chinese | string-to-string | <b>440M</b> | 1K       | 23.7 |
|         | tree-to-tree     | 50M         | 5K       | 23.9 |
| Arabic  | string-to-string | 790M        | 1K       | 48.9 |
|         | tree-to-tree     | 38M         | 5K       | 47.5 |

**Results from (Chiang, 2010)** 

# Outline

- n Part 1: Tree-based Translation
  - q Overview and Motivation
  - **q** Tree-to-String Model and Decoding
  - q Tree-to-String Rule Extraction
  - **A** Language Model-Integrated Decoding: Cube Pruning
- n Part 2: Forest-based Translation
  - q Packed Forest
  - q Forest-based Decoding
  - GForest-based Rule Extraction
- n Part 3: Extensions
  - q Tree-to-Tree Translation
  - q Tree Sequence-based Translation
  - **Joint Parsing and Translation**
- n Part 4: Conclusion

# Conclusion

#### **n** Statistical machine translation

- ч Word-based
- q Phrase-based
- **q** Syntax-based
  - n String-to-String
  - n String-to-Tree
  - n Tree-to-String
  - n Tree-to-Tree

*flat* 



**hierarchical** 

## Conclusion

#### **n** Tree-based translation

- **Pros**: simplicity, faster decoding, expressive grammar, no need for binarization
- **Cons:** commits to 1-best tree
- **n** Forest-based translation
  - G Compromise between tree-based and string-based, combining the advantages of both
    - **n** Fast decoding, but does not commit to 1-best trees
    - Significant improvement of translation performance over tree-based



- Alfred V. Aho and Jeffrey D. Ullman. 1972. The Theory of Parsing, Translation, and Compiling, volume I: parsing. Prentice Hall, Englewood Cliffs, New Jersey.
- Peter F. Brown, Stephan A. Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer. 1993. The mathematics of statistical machine translation: Parameter estimation. *Computational Linguistics*, 19(2): 263-311.
- n Sylvie Billot and Bernard Lang. 1989. The structure of shared forests in ambiguous parsing. In Proceedings of ACL 1989.
- n David Chiang, 2005. A hierarchical phrase-based model for statistical machine translation. In *Proceedings of ACL 2005*.
- n David Chiang, 2007. Hierarchical phrase-based translation. *Computational Linguistics*, 33(2): 201-228.
- n David Chiang, 2010. Learning to translate with source and target syntax. In *Proceedings of ACL 2010*.
- n Trevor Cohn and Phil Blunsom. 2009. A bayesian model for syntax-directed tree to string grammar induction. In *Proceedings of EMNLP 2009*.
- n Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. 2004. What's in a translation rule? In *Proceedings of HLT-NAACL 2004*.
- n Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang, and Ignacio Thayer. 2006. Scalable inference and training of contextrich syntactic translation models. In *Proceedings of COLING-ACL 2006*.

- Liang Huang and David Chiang. 2005. Better k-best parsing. In Proceedings of IWPT 2005.
- Liang Huang and David Chiang. 2007. Forest rescoring: Faster decoding with integrated language models. In *Proceedings of ACL 2007*.
- n Liang Huang, Kevin Knight, and Aravind Joshi. 2006. Statistical syntax-directed translation with extended domain of locality. In *Proceedings of AMTA 2006*.
- n Liang Huang. 2008. Forest reranking: Discriminative parsing with non-local features. In *Proceedings. of ACL-HLT 2008*.
- E. T. Irons. 1961. A syntax-directed compiler for ALGOL 60. *Comm. ACM*, 4(1): 51-55.
- n Kevin Knight and Jonathan Graehl. 2005. An overview of probabilistic tree transducers for natural language processing. In *Proceedings of CICLing 2005*.
- n Dan Klein and Christopher D. Manning. 2001. Parsing and hypergraphs. In *Proceedings of IWPT 2001*.
- Philipp Koehn, Franz Och, and Daniel Marcu. 2003. Statistical phrase-based translation In *Proceedings of HLT-NAACL 2003*.
- P. M. Lewis and R. E. Stearns. 1968. Syntax-directed transduction. *Journal of the ACM*, 15(3): 465-488.
- N Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-string alignment template for statistical machine translation. In *Proceedings of COLING-ACL 2006*.

- Nang Liu, Yun Huang, Qun Liu, and Shouxun Lin. 2007. Forest-to-string statistical translation rules. In *Proceedings of ACL 2007*.
- Nang Liu, Yajuan Lu, and Qun Liu. 2009a. Improving tree-to-tree translation with packed forests. In *Proceedings of ACL-IJCNLP 2009*.
- P Yang Liu, Haitao Mi, Yang Feng, and Qun Liu. 2009b. Joint decoding with multiple translation models. In *Proceeding of ACL-IJCNLP 2009*.
- Yang Liu and Qun Liu. 2010. Joint parsing and translation. Submitted to COLING 2010.
- n Daniel Marcu, Wei Wang, Abdessamad Echihabi, and Kevin Knight. 2006. SPMT: Statistical machine translation with syntactified target language phrases. In *Proceedings of EMNLP 2006*.
- n Jonathan May and Kevin Knight. 2007. Syntax re-alignment models for machine translation. In *Proceedings of EMNLP 2007*.
- n Haitao Mi and Liang Huang. 2008. Forest-based translation rule extraction. In Proceedings of EMNLP 2008.
- n Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-based translation. In Proceedings of ACL-HLT 2008.
- Franz Och and Hermann Ney. 2004. The alignment template approach to statistical machine translation. *Computational Linguistics*, 30(4): 417-449.

- Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A new string-to-dependency machine translation algorithm with a target dependency language model. In Proceedings of ACL-HLT 2008.
- n Ashish Venugopal, Andreas Zollmann, Noah Smith, and Stephan Vogel. 2008. Wider pipelines: *n*-best alignments and parses in mt training. In *Proceedings of AMTA 2008*.
- N Wei Wang, Kevin Knight, and Daniel Marcu. 2007. Binarizing syntax trees to improve syntax-based machine translation accuracy. In *Proceedings of EMNLP* 2007.
- n Kenji Yamada and Kevin Knight. 2001. A syntax-based statistical machine translation model. In *Proceedings of ACL 2001*.
- n Hui Zhang, Min Zhang, Haizhou Li, Aiti Aw, and Chew Lin Tan. 2009. Forestbased tree sequence to string translation model. In *Proceedings of ACL-IJCNLP* 2009.
- Min Zhang, Hongfei Jiang, Aiti Aw, Jun Sun, Sheng Li, and Chew Lin Tan. 2007. A tree-to-tree alignment-based model for statistical machine translation. *In Proceedings of MT Summit 2007*.
- Min Zhang, Hongfei Jiang, Aiti Aw, Haizhou Li, Chew Lin Tan, and Sheng Li. 2008. A tree sequence alignment-based tree-to-tree translation model. In *Proceedings of ACL-HLT 2008*.