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a b s t r a c t

Hard-constrained text generation is an important task that requires generating fluent sentences to
include several specific keywords. It has numerous real-world applications, such as advertisement
generation, keyword-based summary generation, and query rewriting. Although previous plug-and-
play approaches like enhanced beam search and stochastic search have been proven effective, they lack
time efficiency and may reduce the quality of generated sentences. While end-to-end methods based
on seq2seq models are superior in speed, they cannot guarantee that outputs satisfy all constraints.
In this work, we propose a novel end-to-end method for lexically constrained text generation via
incrementally predicting segments (IPS) between every two adjacent lexical constraints using seq2seq
models. Our approach guarantees that all constrained keywords will be included in the generated
sentence. The experimental results show that our method not only satisfies all lexical constraints but
also achieves state-of-the-art performance. Our code and data will be available at https://github.com/
blcuicall/IPS.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Recently, hard-constrained text generation [1–5] has attracted
ncreasing attention from the community. It aims to incorporate
ome specific keywords or phrases into generated sentences and
as many related scenarios in the real world. For example, it can
reate an advertisement [2] or a story by giving several specified
eywords [6–9]. Moreover, it can rewrite a search query as a
luent sentence [10–12].

As shown in Table 1, previous work for hard-constrained
eneration can be divided into three branches: enhanced beam
earch [13,14], stochastic search [2–5], and seq2seq based meth-
ds [15].
The enhanced beam search is not an end-to-end method, which

nforces to reserve those candidates containing keywords and
osts much time compared to beam search. It may result in poor
r even failed generation because of not being aware of the
onstraint words or phrases in training [4,15]. The mainstream
ethod of hard-constrained text generation is the stochastic

earch [2–5] which needs many iterations to modify the sentence.
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esearch Center for Print Media, Beijing Language and Culture University, China.

E-mail address: lineryang@gmail.com (L. Yang).
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950-7051/© 2023 Elsevier B.V. All rights reserved.
Though some attempts make the searching process more efficient
or faster [4,5], they are still too slow for real-world applications.

In contrast, seq2seq based methods have a faster text gener-
ation speed than those two kinds of methods mentioned above
because of the end-to-end manner. Quite simply, the seq2seq
based methods map keywords to a sentence directly [15] with the
challenge that it is hard to satisfy all the constraints. Wang et al.
[15] proposed to use mention flags incorporated in the decoder to
encourage the model to meet the constraints, but the satisfaction
still cannot achieve 100%.

Therefore, we can predict the segments between every two
keywords to realize 100% constraints satisfaction inspired by the
masked language model which masked sampled span like T5 [16]
or BART [17]. However, if all segments predicted at once with the
given keywords, there is much information need to be predicted.
As shown in Fig. 1, we propose a new manner in which segments
between every two keywords will be predicted incrementally
at inference time. The training objective of T5 is to predict all
segments at once, while our method is to predict segments one
by one. So, our method gives more information at the encoder
input and requires less information at the decoder output, which
is easier for predicting. Our method can guarantee that all the key-
words are incorporated in the final generated text by placing the
keywords beforehand then filling the segments between them. In
addition, we design a decoding algorithm for IPS to improve the
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Table 1
Comparisons with previous work.

Method End-to-End Constraint (100%)

Enhanced Beam Search ✗ ✓
Stochastic Search ✗ ✓
Seq2seq based ✓ ✗

IPS ✓ ✓

Fig. 1. An example of incrementally predicting segments. Given two keywords
‘‘like’’ and ‘‘basketball’’, the generating process includes three stages, in which
the three segments ‘‘Jack and Bob’’, ‘‘playing ’’, and ‘‘in the park.’’ will be generated
step by step. Then we get a complete sentence ‘‘Jack and Bob like playing
basketball in the park.’’ including the two keywords.

generation speed by dynamically updating the batch of decoding
inputs. Experimental results demonstrate that our method has
100% constraint satisfaction (the ratio of satisfied lexical con-
straints to given lexical constraints) and achieves state-of-the-art
performance on hard-constrained text generation.

Our main contributions include:

• We propose a novel end-to-end method for lexically con-
strained text generation via incrementally predicting seg-
ments which can ensure the constrained keywords appear
in the output sentence.
• We design a decoding algorithm for incrementally segments

predicting through dynamically updating the batch of de-
coding inputs at different stages.
• Experimental results show that our method achieves state-

of-the-art performance on hard-constrained text generation.

2. Related work

There are three branches in previous work for hard-
constrained text generation: enhanced beam search [13,14,18],
stochastic search [2–5] and seq2seq based methods [15].

Enhanced beam search. In enhanced beam search methods, grid
beam search (GBS) algorithm [13] conducts beam search by
adding another dimension to search for the candidate sentences
that satisfy the given lexical constraints. Dynamic beam allocation
(DBA) [14,18] is the extension of GBS which aim to accelerate the
inference process. Although they work well in tasks with limited
search space such as machine translation because of the align-
ment information between source and target, it will cost a lot of
time on searching candidate sentences or even fail in general text
generation tasks when there is a much larger search space [4,5].
Therefore, more work focus on stochastic search methods. Unlike
the methods of enhanced beam search, our method does not
only consider lexical constraints in the prediction process but
takes constraints into account in both the training and prediction
process. As the input of our model, constraint words are encoded
and understood by the model encoder in the process of training
and prediction to help model generation. Therefore, our method
should theoretically have better generation quality.

Stochastic search. In stochastic search methods, early research
used Gibbs sampling to generate sentences from the sentence
space directly [19], which was extended to BERT [20]. Compared
with Gibbs sampling, CGMH [2] is more superior to generate sen-
tences through Metropolis–Hastings sampling. However, previous
2

MCMC-based models typically conduct many invalid and redun-
dant refinements because of the randomly chosen actions and
positions [5]. Several works [3–5] have focused on addressing this
issue. He and Li [5] proposed to use a pre-trained classifier [21]
to predict the position and operation. Moreover, Sha [4] utilized
the gradient to help determine which token in the sequence
should be changed. To accelerate the iteration speed, POINTER [3]
was proposed to insert new tokens between existing tokens in
a parallel manner. Though these methods can improve the iter-
ation precision and speed, insertion-based methods need many
iterations to find a fluent sentence which cost too much time
in real-world applications. Our method is an end-to-end method
which is completely different from the methods of stochastic
search. Instead of iteratively modifying sentences, our model
generates text end-to-end. Therefore, our model generation speed
is much faster than the stochastic search methods.

Seq2seq based. The end-to-end method for lexically constrained
text generation utilizes a seq2seq model by giving the constraints
as input and the target sentence as output for training. It is
superior in speed compared to enhance beam search methods
and stochastic search methods. But it is hard to satisfy all con-
strained lexical. Mention flag [15] was proposed to increase the
proportion of satisfaction for end-to-end lexically constrained
generation, which has been used in common sense generation
task [22–25]. However, it still cannot achieve 100% constrained
satisfaction. Therefore, our method aims to generate fluent text
by satisfying all given lexical constraints by seq2seq model, for
which the generation speed is significantly faster than previous
insertion-based methods. Different from the common end-to-
end generation approach, our model is divided into multi-stage
prediction segments. The goal is to ensure that the generated text
contains all constraint words. Our method of incremental predic-
tion segment can fully guarantee the inclusion of all constraint
words.

In summary, our method is a kind of seq2seq-based method,
which is different from stochastic search methods because there
is no iteration to modify the sentence step by step. Thus, our
method has an absolutely fast speed compared to the stochastic
search methods. The keywords constraints are considered both
in training and inference time in our method. But it does only
considered in inference time for enhanced beam search, which
will impair the quality of generation. In addition, our method
can achieve 100% constrained satisfaction compared to previous
seq2seq methods.

3. Method

3.1. Model overview

Hard-constrained text generation aims to incorporate the
given lexical constraints (we call them keywords) into the out-
put [3]. Given the n keywords k = {k1, k2, . . . , kn}, this task is
defined as follows:

S∗ = argmax
S

P
(
S|k1, k2, . . . , kn

)
(1)

where S is the sentence containing the given lexical constraints.
For the hard-constrained text generation task, the goal is to
generate a complete text sequence given a set of keywords as
constraints, where the keywords have to be exactly included in
the final generated sequence in the same order.

The seq2seq based method directly uses keywords as input
and complete sentences as model output [15]. This method has
two disadvantages. First, the output sentence does not be forced
to contain all keywords because the method samples each word
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rom the whole vocabulary. It is unable to guarantee 100% con-
trained satisfaction due to random sampling. Second, the model
eeds a lot of information to predict the complete sentences, but
he input keywords only provide limited information, making the
earning process more difficult.

The method that we proposed can not only suitably address
hese two issues but also incrementally predicts each segment
ne by one. First of all, we use the keywords-to-text generation
o fill in the segment between every two keywords. Hence the
odel predicts a segment in order at each stage, and fills the
rediction result in the next stage. Because the keywords are
ixed at the beginning of the generation process, the model does
ot need to predict keywords but only the segments between
eywords. Therefore, it can be guaranteed that the keywords are
ncluded in the generated sentences. Second, this method allows
he model to predict only one segment at one stage rather than
he entire sentence. Compared with the method that directly uses
eywords as input and complete sentences as output, our method
uses more information from the source. Furthermore, the target
nd needs less information to predict. Thus the model is easier to
earn from data.

We will give the formulaic description of our method below.
he denotation of S is given by

=

{
s1, k1, s2, k2, . . . , si, ki, . . . , sn, kn, sn+1

}
(2)

here ki denotes the ith keyword, n denotes the number of given
eywords, and si denotes the ith segment which is between ki−1
nd ki.
We divide the generation process into n+ 1 stages and every

tage predict one segment by the order. The formulation is:

(si|s<i, k) =
|si|∏
j=1

P(si,j|si,<j, s<i, k) (3)

where si denotes the ith segment, s<i denotes the segments
before the ith segment, |si| denotes the length of ith segment, si,j
denotes the jth token in the ith segment and si,<j denotes the
tokens before the jth token in the ith segment.

To implement the above modeling and prediction, we develop
a training and prediction process. First, the training data needs
to be designed elaborately with specific tags after extracting key-
words. Then, given the constructed paired data, a seq2seq model
is trained by the autoregressive pattern. In inference time, we
design a multi-stages prediction and decoding algorithm. We will
describe the details of these steps in the following subsections.

3.2. Specific tags

Given the tokens of si,<j, s<i, k alone, the model cannot distin-
guish between segments and keywords as well as which segment
needed to be predicted. Therefore, we adopt the method of adding
specific tags to explicitly promote the model to learn where the
segment needs to be predicted at the current stage and where the
segments are vacant and need to be predicted in the following
stages. As shown in Fig. 2, which will be described in detail
below, the specific token [pred] is placed at the position of
the segment that needs to be predicted at the current stage. The
vacant segments at the current stage (need to be predicted in the
following stages) are represented by [blank].

3.3. Training data preparation

To accomplish the above modeling process, we need to con-
struct the corresponding training data. First, we extract some
keywords from an unlabeled sentence. Then the unlabeled sen-
tence is divided into multiple segments according to the number
3

of keywords and their positions in the sentence. The segments
are the consecutive tokens before the first keyword, after the last
keyword, and between every two keywords. If the two keywords
are adjacent, the segment is replaced with a space while its
position is still reserved.

Keywords extraction. We use the keywords extracting tool
YAKE1 [26] to get keywords from a sentence. This tool will try its
best to extract more keywords from one sentence, but following
previous work [5], we only preserve 1 ∼ 4 keywords. To limit
the number of keywords, we set a rule that is proportional to the
length of the sentence, and the maximum count is 4. More details
are in Section 4.

Paired data construction. According to the position of the seg-
ments in the sentence, we replace each segment with [pred] in
turn and replace segments behind them with [blank]. In detail,
we replace the first segment with [pred] and replace all the
segments after it with [blank] to get the source of the first
paired data. And the target is the first segment concatenated with
[bos] before it and [eos] after it. Hence, we will get the first
paired data.

Then, to construct the second paired data, we replace the
second segment with [pred] and the segments after it with
[blank] but keep the original tokens of the first segment with-
out any changes. Similarly, the target of the second paired data
consists of [bos], the second segment, and [eos]. If there are n
keywords, we process them in a similar way to construct n + 1
paired data.

Fig. 2 is an example. From the sentence ‘‘Jack and Bob like
playing basketball in the park ’’. we get two keywords: ‘‘like’’
and ‘‘basketball’’. Then we divide the sentence into three seg-
ments ‘‘Jack and Bob’’, ‘‘playing’’, and ‘‘in the park ’’. according
to the position of two keywords. First, we replace the first seg-
ment ‘‘Jack and Bob’’ with [pred], the second and third seg-
ments with [blank]. And we get the first pair: {X1: [pred] like
[blank] basketball [blank], Y 1: [bos] Jack and Bob [eos]
. Then we replace the second segment ‘‘playing’’ with [pred],
he segment after it (i.e., ‘‘in the park ’’.) with [blank], and
he segment before it (i.e., ‘‘Jack and Bob’’) remain unchanged.
nd we get the second pair {X2: Jack and Bob like [pred]

basketball [blank], Y 2: [bos] playing [eos] }. Finally, we
replace the third segment ‘‘in the park ’’. with [pred] and the
segments before it (i.e., ‘‘Jack and Bob’’ and ‘‘playing’’) remains
unchanged. Then we get third paired data {X3: ‘‘Jack and Bob
like playing basketball [pred]’’, Y 3: [bos] in the park [eos]
}. Therefore, for one sentence with n keywords, we will get n+ 1
pairs {⟨X1, Y 1

⟩, ⟨X2, Y 2
⟩, . . . , ⟨Xn+1, Y n+1

⟩} for training. Through
the process mentioned above, we construct training data from all
unlabeled text in the corpus.

It is worth noting that since the replaced segment may be
empty (when the two keywords are adjacent in the sentence), the
target segment is added with [bos] at the beginning and [eos]
at the end, while the [bos] and [eos] tags are removed from
the output result during generation.

3.4. Model training and inference

For each unlabeled sentence, we construct several paired data
as described in Section 3.3. Then, we mix all paired data and
shuffle it to obtain a final training set Dd. We optimize the
transformer model [27] using the following objective:

θ̂ = argmax
θ

⎧⎨⎩ ∑
⟨X,Y ⟩∈Dd

log P(Y |X, θ)

⎫⎬⎭ (4)

1 https://github.com/LIAAD/yake

https://github.com/LIAAD/yake
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Fig. 2. Training data preparation. Given one sentence which contains two keywords ‘‘like’’ and ‘‘basketball’’, we will construct three pairs of data, one for each
segment.
Fig. 3. Illustration of generation. Given two keywords ‘‘like’’ and ‘‘basketball’’, there are three stages to predict three segments incrementally. In each stage, the tag
pred] in the source will be replaced with the output segment and the first [blank] in the input will be replaced with [pred] to build the input of the next stage.
inally, a complete sentence ‘‘Jack and Bob like playing basketball in the park’’. will be generated.
1

here θ denotes the model parameters, ⟨X, Y ⟩ denotes one train-
ng instance. During training, we apply teacher-forcing to train
he model to learn predicting segments conditioned on partial
entences. As the inference procedure illustrated in Fig. 3, we fill
he generated segment into the [pred] of the previous stage.
hen, we continue to predict the next segment, and incrementally
ppend the segment until all the segments are filled, thereby
enerating a complete sentence.

ecoding algorithm. We design a parallel decoding algorithm to
romote inference speed for IPS. The challenge of batched infer-
nce is that the number of given keywords of each sentence in
ne batch is different, leading to early finish of some sentences
hen the efficiency will be reduced. Hence we utilize a dynamic
atching strategy to maintain the batch size. The details are
escribed in Algorithm 1. Given t groups of keywords in the test
et, each group has several keywords which will be incorporated
n the generated sentence, and it will generate t sentences by
ini-batch. First, we initialize the model and get the input data
of the first stage by adding [pred] and [blank] tags, from
hich we get the initialized mini-batch input B. Then, we get the
egments φ from the model. Before the next stage, we need to
ind which samples have been finished in the mini-batch input
nd add the same number of samples into the mini-batch. Next,
e will replace the [pred] with the generated segment and
eplace the next [blank] with [pred]. Then, continue the next
tage of segments generation in the loop. Finally, return all the
inished samples when the loop end.
4

4. Experiments

4.1. Experimental setup

Algorithm 1 IPS batched decoding.
1: input: The t groups of keywords K in test set
2: output: Generated t sentences S
3: Initialize parameters of model→ MODEL;
4: Add [pred] and [blank] to K→ Inp
5: B← Get batch data from I
6: while I is not None do
7: φ← MODEL(B)
8: for si, b in φ, B do
9: si ← remove [bos] and [eos] from si
10: si ← replace [pred] in b with si
11: if [blank] in si then
12: si ← replace next [blank] with [pred]
13: else
14: S.append(si)
15: B.append(pop(Inp))
6: end if

17: end for
18: end while
19: return S
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Table 2
Automatic evaluation results on One-billion-word dataset.

Method Avg. Len. Constraint (%) Entropy
NIST (%) BLEU (%)

METEOR (%) PPL
N-2 N-4 B-2 B-4

Ground Truth 27.14 100.00 12.24 – – – – – 76.53

X-MCMC-C 16.86 100.00 11.69 1.94 1.96 11.10 3.39 13.69 163.57
Trans+DBA 22.60 100.00 11.04 2.88 3.02 18.12 7.80 15.41 196.65
Trans-K2S 19.01 98.91 11.13 2.32 3.03 19.33 9.26 16.01 95.84

T5 22.22 100.00 11.43 4.13 4.25 21.36 9.76 16.62 81.94

IPS 24.71 100.00 11.59 4.35 4.49 22.35 10.21 16.72 58.89
Table 3
Automatic evaluation results on News dataset.

Method Avg. Len. Constraint (%) Entropy
NIST (%) BLEU (%)

METEOR (%) PPL
N-2 N-4 B-2 B-4

Ground Truth 29.86 100.00 11.77 – – – – – 37.45

X-MCMC-C 16.49 100.00 11.07 1.09 1.09 8.01 2.07 11.94 160.38
Trans+DBA 26.95 100.00 10.08 3.86 3.93 18.80 7.09 15.23 65.28
Trans-K2S 24.96 99.02 10.67 3.77 3.85 18.59 7.43 15.24 37.90

T5 25.22 100.00 10.82 3.89 3.97 19.32 7.90 15.58 35.34

IPS 28.14 100.00 11.10 4.01 4.09 20.25 8.13 15.89 29.80
Datasets and pre-processing. Following the previous work [3,5],
e evaluate our model on two datasets: One-Billion-Word and
ews. The first one contains 10M sentences as the training set,
0 K sentences as the validation set, and 10 K sentences as the test
et, which are randomly picked from One-Billion-Word Corpus.
econd, we use the monolingual English News (2018) dataset
rom ACL 2019 WMT, which contains 18M sentences. We pick
ur data from those sentences of which the length is limited from
0 to 100 words. We get 5M sentences as the training set, 50 K
entences as the validation set, and 5k sentences as the test set.
Then we use the keywords extracting tool to get the

eywords-sentence pair from the two datasets above. To over-
ome the weakness of the tool, we set a rule to constrain the
umber of keywords depending on the length of the sentence.
he longer the sentence, the more keywords. We set the number
f keywords as 15% of the sentence length, and the max number
f keywords is 4. Thus the number of keywords varies from 1 to 4.
ecause the length of most sentences is long, most sentences have
keywords. Finally, we constructed our training and test data on

he keywords-sentence pair above by the method described in
ection 3.3.

aselines. We compare our approach (IPS) with three state-of-
he-art methods from the three branches in hard-constrained text
eneration mentioned in Section 1: (1) X-MCMC-C [5] which is
relatively new method in the category of stochastic search, (2)
BA [14] which is a constraint decoding method, and we set it on
ransformer model (Trans+DBA), (3) the transformer model which
ut the keywords as input and sentence as output (Trans-K2S),
nd (4) We use the pre-training objective of T5 [16] but do not use
t for initialization. As far as we know, we are the first to utilize
5 in this way in hard-constrained text generation to satisfy all
onstraints. Then we apply our method to the transformer model
o compare with these three methods. The input and output
f our method are different from the input and output in T5.
ur method will provide more information in the source and
redict one segment in the target, while T5 model will predict
ll segments at once. So, our method gives more information at
he encoder input and requires less information to predict at the
ecoder output.

valuation metrics. Our automatic evaluation has four aspects:
onsistency with the ground truth, fluency, diversity, and con-
traint satisfaction. Following the previous work [3,5], we per-
orm automatic evaluations using commonly adopted text
5

generation metrics, including BLEU [28], METEOR [29], and NIST
[30] to measure the differences from the references. Follow-
ing Zhang et al. [3],He and Li [5], to assess the fluency of gen-
erated sentences, we also report the perplexity (PPL) over the
test set using the pre-trained GPT-2 [31] large model.2 We use
4-gram Entropy [32] to evaluate lexical diversity. And we set the
ratio of keywords contained in the output sentence as a metric
to evaluate the constraint satisfaction. Following previous stud-
ies [3], our human evaluation will perform from three aspects:
the consistency between keywords and generated sentence, the
fluency, and the informativeness of generated sentences.

Model setup. We employ the model architecture from the typ-
ical Transformer [27]. We use a learning rate of 3e-4 and set
a warming-up schedule with 4000 steps for the training proce-
dures. The optimization algorithm is Adam [33]. We train our
model on One-billion-word and News for around 20 epochs. At
inference time, we utilized a beam search algorithm and set the
beam size as 5. By the way, we also set the length penalty as
2 in beam search by fairseq.3 We set the maximum number of
input tokens as 8192, which is the same with transformer-based
baselines (Trans+DBA and Trans-K2S).

4.2. Experimental results

Results on one-billion-word dataset. Quantitative results by auto-
matic metrics are summarized in Table 2. The automatic eval-
uation results show that our method outperforms baselines in
several metrics (NIST, BLEU, METEOR, Entropy-4, and PPL). The
NIST, BLEU, and METEOR evaluate the similarity between the gen-
erated sentence and human references. A higher score indicates a
model can generate sentences more similar to human references.
Another essential evaluation metric is PPL which indicates the
fluency of the generated sentences. One of the most critical points
of the hard-constrained text generation task is the fluency of the
generated sentences. As shown in Table 2, our method gets the
best PPL score compared to all baseline even is better than hu-
man references. Because the X-MCMC-C is a stochastic searching
method, its diversity (Entropy score) is the best. In fact, when
decoding by beam search, our method gets the highest score on
Entropy-4. Using the beam search algorithm and giving length

2 https://huggingface.co/transformers
3 https://github.com/pytorch/fairseq

https://huggingface.co/transformers
https://github.com/pytorch/fairseq
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Table 4
Human Evaluation on two datasets for semantics, fluency and informativeness.

Semantics: A and B, which is more semantically meaningful and consistent?

One-Billion-Word dataset News dataset

System A Neutral System B System A Neutral System B

IPS 71.3% 11.0% 17.7% X-MCMC-C IPS 57.5% 5.5% 37.0% X-MCMC-C
IPS 37.7% 37.3% 28.0% Trans+DBA IPS 48.3% 13.7% 38.0% Trans+DBA
IPS 47.2% 32.0% 20.8% T5 IPS 40.2% 18.2% 41.6% T5

Fluency: A and B, which is more grammatical and fluent?

One-Billion-Words dataset News dataset

System A Neutral System B System A Neutral System B

IPS 46.3% 35.4% 18.3% X-MCMC-C IPS 56.8% 12.7% 30.5% X-MCMC-C
IPS 36.3% 44.4% 19.3% Trans+DBA IPS 50.2% 15.3% 34.5% Trans+DBA
IPS 48.8% 29.5% 21.7% T5 IPS 42.0% 14.8% 43.2% T5

Informativeness: A and B, which is more informative?

One-Billion-Words dataset News dataset

System A Neutral System B System A Neutral System B

IPS 22.7% 9.3% 68.0% X-MCMC-C IPS 56.0% 10.1% 33.9% X-MCMC-C
IPS 48.0% 23.3% 30.4% Trans+DBA IPS 54.5% 14.3% 32.7% Trans+DBA
IPS 34.5% 22.2% 43.3% T5 IPS 48.3% 18.7% 33.0% T5
Table 5
Speed comparisons. Inference time is computed on 5K test
examples in News dataset.

Method Inference time

X-MCMC-C 21 h
Trans+DBA 3.6 h
Trans-K2S 126 s

T5 126 s
IPS 228 s

penalty in decoding can further improve most automatic metrics
we evaluated. We choose the comprehensive results to show in
Table 2 considering all evaluation metrics.

Results on news dataset. We further evaluate our method on the
ews dataset. On the News dataset, our method outperforms all
aselines on all automatic metrics. From Table 3, the generated
entences from our model are more coherent with references
see NIST, BLEU, and METEOR) and more fluent (see PPL) com-
ared with the baseline methods. For diversity, we also achieve
he highest Entropy score. And stochastic search method (X-
CMC-C) has better diversity than the Trans+DBA, Trans-K2S,
nd T5. The result is similar to what is in the last dataset, in
hich the beam search decoding and length penalty still can help
o promote the performance of our method, and we only give
omprehensive results.

uman evaluation results. We conducted a human evaluation of
300 randomly sampled outputs (out of test set) of X-MCMC-
C, Trans+DBA, T5 and our baseline method with greedy de-
coding. Note that we remove all tricks like beam search and
length penalty to compare with baselines. Following the previous
work [3], our human evaluation is performed from three aspects:
semantics, fluency, and informativeness. Three experts vote for
which system is better from the three aspects, and the final
results are averaged percentages of the total ‘‘vote’’ of the three
experts. As shown in Table 4, compared to the three baselines
(X-MCMC-C, Trans+DBA and T5) which can satisfy all constraints,
our method has a greater percentage of sentences with higher
fluency and semantic scores on the One-billion-word dataset.
And our method outperforms the two baselines (X-MCMC-C and
Trans+DBA) in the News dataset. And on the News dataset, we
have better diversity than T5, while the semantics and fluency

are similar.
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Analysis. From automatic and human evaluation results, the
method we adopt has better performance not only on fluency and
consistency than the baselines on both datasets but also shows
better diversity on the News dataset. Our method only needs to
predict a segment at each stage rather than predict the whole
sentence at once. It is easier for the model to predict a segment
conditioned on the partial sentence than predict a complete
sentence conditioned on keywords only because the information
gap between source and target is smaller for the former one. In
addition, the roles of two tags ([pred] and [blank]) are very
important. The [pred] and [blank] tags tell the model which
segment needs to be predicted and which segments are unknown
in the current stage, respectively.

Inference running-time comparison. Compared to stochastic
search or enhanced beam search methods, end-to-end methods
has a huge advantage in decoding speed. We compare the infer-
ence time for X-MCMC-C [5], Trans+DBA [14] and IPS on the News
dataset, and summarize the results in Table 5. The experiment
is performed on a single Nvidia TITAN-XP GPU. Note that our
method in Table 5 uses our parallel decoding algorithm. Our
method (IPS) is much faster than baselines because of the seq2seq
manner. The stochastic search method, X-MCMC-C, needs several
iterations to find a fluent sentence for a group of keywords.
Hence it costs much time in the generation. And enhanced beam
search method Trans+DBA needs to expand beam size. Thus it is
computationally expensive.

Case study. Some examples for all baselines and ours are pro-
vided in Tables 6 and 7. We find that compared with baseline gen-
erations, the sentences generated by our method contain more
details (e.g., ‘‘WTO’’) and are more vivid with some metaphors
(e.g., ‘‘in good faith’’ and ‘‘very happy’’) while ensureing language
fluency simultaneously. According to these examples, the sen-
tences that our method generated are slightly longer than the
baselines and are more diverse.

5. Conclusion and future work

We have proposed a novel end-to-end method for hard-
constrained text generation by incrementally predicting segments
using the seq2seq model. Through automatic and manual eval-
uation, it is able to not only generate sentences including all
the given keywords but also achieve state-of-the-art performance
compared with previous methods. In addition, compared with
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Table 6
Generated examples from the One-Billion-Word dataset.

Method Keywords: World; Health; Organisation; Uganda

X-MCMC-C The World Health Organisation said Uganda did not
yet have any new swine flu cases.

Trans+DBA According to the World Health Organisation, Uganda
has the highest number of confirmed cases of swine flu
in the world.

Trans-K2S According to the World Health Organisation, Uganda
has the highest number of confirmed cases of swine flu
in the world.

T5 The World Health Organisation said the virus was
spreading to Uganda, where it was confirmed that it
was spreading to the UK.

IPS The World Health Organisation (WHO) said last week
that Uganda, the world’s largest producer of swine flu
vaccine, had become the first country in the world to
report cases of swine flu.

Table 7
Generated examples from the News dataset.

Method Keywords: Thursday; morning; Trump; Singapore

X-MCMC-C On Thursday morning US President Donald Trump
visited Singapore

Trans+DBA Thursday morning Trump Singapore said he would
not be able to meet with the US president again.

Trans-K2S On Thursday morning, Trump said he would meet
with Kim in Singapore ‘‘to discuss the denuclearization
of the Korean peninsula.’’

T5 On Thursday morning , Mr. Trump said he was ‘‘very
happy ’’ to meet with Mr. Xi in Singapore.

IPS On Thursday morning, Trump said he would be
leaving Singapore ‘‘in good faith’’ and that he would be
‘‘very happy’’ with the outcome.

the methods of enhanced beam search and stochastic search, our
method has superior generation speed. Our method consists of
novel training and inference approach that can be generalized
to different models, including seq2seq models and pre-trained
language models. In the future, we will try to perform it on pre-
trained models through fine-tuning. The proposed method can
also be used as a learning objective of the pre-trained model, that
is, to predict fragments given constraints. This is a challenging
training objective that is not yet taken into account by exist-
ing pre-trained models. In the future, we will try to apply our
method to the pre-trained large-scale language models, which
may achieve better performance on different tasks. This will
contribute to the development of pre-trained language models.
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