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Abstract While optimizing model parameters with respect to evaluation metrics has recently proven to benefit end-

to-end neural machine translation (NMT), the evaluation metrics used in the training are restricted to be defined at the

sentence level to facilitate online learning algorithms. This is undesirable because the final evaluation metrics used in the

testing phase are usually non-decomposable (i.e., they are defined at the corpus level and cannot be expressed as the sum

of sentence-level metrics). To minimize the discrepancy between the training and the testing, we propose to extend the

minimum risk training (MRT) algorithm to take non-decomposable corpus-level evaluation metrics into consideration while

still keeping the advantages of online training. This can be done by calculating corpus-level evaluation metrics on a subset

of training data at each step in online training. Experiments on Chinese-English and English-French translation show that

our approach improves the correlation between training and testing and significantly outperforms the MRT algorithm using

decomposable evaluation metrics.
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1 Introduction

The past several years have witnessed the rapid

development of end-to-end neural machine translation

(NMT)[1-3]. Unlike conventional statistical machine

translation (SMT) models that rely on the linear com-

bination of hand-crafted features[4-5], NMT directly

learns distributed representations from data and trans-

lates between natural languages via non-linear trans-

formations using neural networks. Due to the recent

introduction of LSTMs (long short-term memory)[6],

GRUs (gated recurrent units)[7] and the attention

mechanism[3] to handle non-local dependencies, NMT

systems have begun to deliver translation performance

superior to SMT.

Recently, several researchers have endeavored to im-

prove NMT by introducing new training criteria that

take evaluation metrics into consideration[8-9]. [8] iden-

tifies two drawbacks of the standard maximum likeli-

hood criterion: 1) the models are not exposed to model

predictions during training and 2) loss functions are de-

fined only at the word level. It proposes the Mixed

Incremental Cross-Entropy Reinforce (MIXER) algo-

rithm to enable incremental learning and the combi-

nation of both REINFORCE[10] and cross-entropy loss

functions. [9] introduces minimum risk training[4,11-13]
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into NMT to optimize model parameters with respect to

evaluation metrics such as BLEU (bilingual evaluation

understudy)[14] and TER[15]. Their experiments show

that optimizing NMTmodels with respect to evaluation

metrics leads to significant improvements over maxi-

mum likelihood estimation.

Despite the advantages of introducing evaluation

metrics into training, existing work still faces a major

challenge: evaluation metrics are usually defined at the

corpus level and thus non-decomposable over sentences.

More specifically, for most evaluation metrics such as

BLEU, the loss on a corpus (i.e., a set of sentences)

cannot be calculated as the sum of losses on individual

sentences. This is problematic for training NMT mod-

els because online learning algorithms that are widely

used in NMT only consider single sentences rather than

the entire corpus. To alleviate this problem, a conven-

tional solution is to use sentence-level evaluation met-

rics instead[8-9]. Apparently, the downside is that op-

timizing with respect to sentence-level evaluation met-

rics in the training does not necessarily maximize the

corpus-level counterparts in the testing. Therefore, the

discrepancy between the training and the testing poten-

tially deteriorates the translation performance of NMT.

In this work, we propose to optimize NMT model

parameters with respect to non-decomposable evalua-

tion metrics. We extend the minimum risk training

algorithm[9] to include non-decomposable evaluation

metrics. Approximate non-decomposable loss functions

are used in this work to eliminate the discrepancy be-

tween training and testing. A major advantage of our

approach is that online training can still be used. Al-

though approximations of non-decomposable evalua-

tion metrics for online training have been widely used

in traditional SMT[16-19], to the best of our know-

ledge, this work is the first effort to introduce non-

decomposable evaluation metrics into end-to-end NMT

training. Experiments on Chinese-English, English-

French translation tasks show that our approach leads

to significant improvements over optimizing models

with respect to sentence-level evaluation metrics.

2 Background

2.1 Maximum Likelihood Estimation

Given a source-language sentence x = x1, . . . ,

xm, . . . , xM that contains M words and a target-

language sentence y = y1, . . . , yn, . . . , yN that con-

tainsN words, end-to-end NMT[1-3] directly models the

translation probability with a single neural network:

P (y|x; θ) =

N
∏

n=1

P (yn|x,y<n; θ),

where θ is a set of model parameters and y<n =

y1, . . . , yn−1 is a partial translation.

Given a set of training examples {(x(s),y(s))}Ss=1,

the standard training objective is to find the model

parameters that maximize the log-likelihood of the

training data:

θ̂MLE = argmax
θ

{

L(θ)
}

,

where

L(θ) =

S
∑

s=1

logP (y(s)|x(s); θ)

=

S
∑

s=1

N(s)
∑

n=1

logP (y(s)n |x(s),y
(s)
<n; θ). (1)

We use N (s) to denote the length of the s-th target

sentence y(s).

[8] indicates that the maximum likelihood criterion

suffers from the exposure bias problem: the models are

only exposed to the ground-truth training data rather

than model predictions. Moreover, loss functions are

defined only at the word level instead of the sentence

level.

2.2 Minimum Risk Training with Decompos-

able Evaluation Metrics

As maximum likelihood estimation does not con-

sider evaluation metrics that quantify translation qua-

lity, [9] introduces minimum risk training to optimize

model parameters with respect to sentence-level evalua-

tion metrics:

θ̂sMRT = argmin
θ

{

R(θ)
}

,

where

R(θ)

=
S
∑

s=1

Eỹ(s)|x(s);θ(δ(ỹ
(s),y(s)))

=

S
∑

s=1

∑

ỹ(s)∈Y(x(s))

P (ỹ(s)|x(s); θ)× δ(ỹ(s),y(s))

≈

S
∑

s=1

∑

ỹ(s)∈S(x(s))

Q(ỹ(s)|x(s); θ, α)× δ(ỹ(s),y(s)), (2)
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where Y(x(s)) denotes the set of all translation candi-

dates for the s-th source sentence x(s) and δ(ỹ,y(s)) is

a sentence-level loss function that measures the discre-

pancy between model prediction ỹ(s) and ground truth

y(s). As the search space Y(x(s)) is exponential, [9]

approximates the posterior probability with a Q dis-

tribution defined over a subspace S(x(s)) and uses a

hyper-parameter α to control the smoothness of the Q

distribution:

Q(ỹ(s)|x(s); θ, α) =
P (ỹ(s)|x(s); θ)α

∑

ỹ∈S(x(s)) P (ỹ|x(s); θ)α
.

Although introducing evaluation metrics into the

training proves to significantly boost translation qua-

lity for NMT[9], there remains a major challenge: the

evaluation metrics used in the training and the test-

ing phases are different. While sentence-level metrics

are used in training, their corpus-level counterparts are

used in testing. These corpus-level evaluation metrics

are usually non-decomposable because they cannot be

calculated as the sum of sentence-level metrics. This

discrepancy might hinder translation performance. [9]

shows that optimizing models with respect to sentence-

level TER does not lead to the lowest corpus-level TER

on the validation set.

Therefore, it is important to include corpus-level

metrics in training to improve the correlation between

training and testing.

3 Minimum Risk Training with

Non-Decomposable Evaluation Metrics

3.1 Optimizing Non-Decomposable Metrics

Given a training set {(x(s),y(s))}Ss=1, we use X =

{x(s)}Ss=1 and Y = {y(s)}Ss=1 to denote the source

and the target parts, respectively. The new training

objective that includes non-decomposable corpus-level

evaluation metrics is defined as

θ̂cMRT = argmin
θ

{

R(θ)
}

,

where

R(θ) = EỸ |X;θ(∆(Ỹ ,Y ))

=
∑

Ỹ ∈Y(X)

P (Ỹ |X; θ)∆(Ỹ ,Y ). (3)

Note that Ỹ = {ỹ(s)}Ss=1 is a set of model predictions

for the training data and Y(X) is a set of all possible

model prediction sets. Also note that the loss func-

tion ∆(Ỹ ,Y ) is defined at the corpus level and usually

cannot be calculated as the sum of sentence-level losses

(i.e., ∆(Ỹ ,Y ) 6=
∑S

s=1 δ(ỹ
(s),y(s))).

Assuming that translating an individual sentence is

independent, we re-write (3) as

R(θ) =
∑

Ỹ ∈Y(X)

S
∏

s=1

P (ỹ(s)|x(s); θ)∆(Ỹ ,Y ).

The partial derivative with respect to a model para-

meter θi is calculated as

∂R(θ)

∂θi

= EỸ |X;θ

{

∆(Ỹ ,Y )×

S
∑

s=1

∂P (ỹ(s)|x(s); θ)/∂θi

P (ỹ(s)|x(s); θ)

}

.(4)

Unfortunately, it is difficult to calculate partial

derivatives using (4) because of the exponential space of

Y(X). To make things worse, the non-decomposability

of ∆(Ỹ ,Y ) makes online training algorithms such as

Stochastic Gradient Descent (SGD) inapplicable.

3.2 Approximation

It is challenging to design an online learning

framework for large-scale batch problems using non-

decomposable loss functions. Besides approximat-

ing non-decomposable loss functions with decompos-

able variants[8-9], there also has been some recent

progress[20-21] towards developing stochastic optimiza-

tion methods for non-decomposable measures in the

machine learning community. [20] proposes optimiz-

ing SVMperf-style objectives which requires to main-

tain large buffers. [21] considers optimizing for the per-

formance measures that are concave or pseudo-linear in

the canonical confusion matrix of the predictor. How-

ever, as these approaches focus on classification tasks,

none of them can be readily applicable to NMT.

Another way to solve the problem is to use approx-

imate corpus-level loss functions with a pseudo corpus,

which has been widely used in SMT[16-19]. For exam-

ple, [16] builds a pseudo corpus by using previous ora-

cle translations, and k-best translations are generated

to update the model. We borrow the idea from SMT

and extend it to our NMT online training algorithm.

Our goal is to include corpus-level evaluation met-

rics in the training while retaining the benefits of online

training. To do so, we have to achieve a compromise be-

tween sentence-level MRT ((2)) and corpus-level MRT

((3)). Our idea is to approximate optimizing models



Shi-Qi Shen et al.: Optimizing Non-Decomposable Evaluation Metrics for Neural Machine Translation 799

with respect to corpus-level evaluation metrics by re-

placing the full training set with a subset:

R(θ) =
S
∑

s=1

EỸs|Xs;θ
(∆(Ỹs,Ys))

=

S
∑

s=1

∑

Ỹs∈Y(Xs)

P (Ỹs|Xs; θ)∆(Ỹs,Ys),

where Xs is a subset of the source part of the train-

ing set that contains the s-th source sentence (i.e.,

Xs ⊂ X ∧ x(s) ∈ Xs), Ys is a subset of the corre-

sponding target part of the training set that contains

the s-th target sentence (i.e., Ys ⊂ Y ∧ y(s) ∈ Ys), and

Ỹ is a set of corresponding model predictions.

To facilitate the SGD algorithm, we use the last K

sentences processed by SGD as the subset when dealing

with the s-th sentence:

Xs = {x(s−K+1),x(s−K+2), . . . ,x(s)},

Ys = {y(s−K+1),y(s−K+2), . . . ,y(s)},

Ỹs = {ỹ(s−K+1), ỹ(s−K+2), . . . , ỹ(s)}.

Therefore, the training objective can be written as

R(θ) =

S
∑

s=1

∑

Ỹs∈Y(Xs)

K
∏

k=1

P (Ỹ (s−k+1)
s |X(s−k+1)

s ; θ)∆(Ỹs,Ys).

Note that the search space Y(Xs) is exponential be-

cause it is the Cartesian product of the candidate trans-

lation sets of K source sentences:

Y(Xs) = Y(x(s−K+1))× · · · ×

Y(x(s−1))× Y(x(s)).

For efficiency, we approximate Y(Xs) with subset

S(Xs) by restricting that the first K − 1 sets only con-

tain 1-best candidates:

S(Xs) =
{

ỹ
(s−K+1)
∗

}

× · · · ×
{

ỹ
(s−1)
∗

}

× S(x(s)), (5)

where S(x(s)) is a sampled subspace[9] and ỹ
(s−k+1)
∗ is

the 1-best candidate translation for the (s − k + 1)-th

source sentence:

ỹ
(s−k+1)
∗ = argmax

y∈Y(x(s−k+1))

{

P (y|x(s−k+1); θ)
}

.

Therefore, our final training objective is defined as

follows:

R(θ) ≈

S
∑

s=1

∑

Ỹs∈S(Xs)

K
∏

k=1

P (Ỹ (s−k+1)
s |X(s−k+1)

s ; θ)∆(Ỹs,Ys)

≈

S
∑

s=1

∑

Ỹs∈S(Xs)

K
∏

k=1

Q(Ỹ (s−k+1)
s |X(s−k+1)

s ; θ, α)∆(Ỹs,Ys)

=

S
∑

s=1

∑

Ỹs∈S(Xs)

Q(ỹ(s)|x(s); θ, α)∆(Ỹs,Ys). (6)

Note that Q(Ỹ
(s−k+1)
s |X

(s−k+1)
s ; θ, α) ≡ 1 for k ∈

[1,K − 1], because we restrict that the first K − 1 sets

only contain 1-best candidates (see (5)).

It is clear that (6) is a more general form of the

training objective in [9] because it can be reduced to

(2) by setting K = 1.

3.3 Training Algorithm

Algorithm 1 shows one pass that scans the randomly

shuffled full training set during online training. The al-

gorithm first initializes a queue q(0) to store the 1-best

candidates of last K − 1 source sentences from the pre-

vious pass (line 1). The model parameters are also in-

herited from the previous pass (line 2). Then, the algo-

rithm iteratively processes each sentence in the train-

ing set. It first computes the 1-best candidate trans-

lation ỹ
(s)
∗ for the s-th source sentence using current

model parameters θ(s−1) (line 5). Then, the algorithm

builds the sampled subspace x(s) using the procedure

described in [9] (line 6). After that, the subset S(Xs)

can be constructed using q(s−1) and x(s) according to

(5) (line 7). After computing the gradients of the ap-

proximate expectations of ∆(Ỹs,Ys), the algorithm up-

dates model parameters (line 9) and the queue of 1-best

candidates (line 10). Note that q only needs to retain

K − 1 latest 1-best candidates during training.

4 Experiments

4.1 Setup

We evaluated our approach on two translation tasks:

Chinese-English and English-French. The evaluation

metrics are BLEU[14] and TER[15], which are calculated

by the multi-bleu.pl and tercom.7.25.jar scripts,

respectively.
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Algorithm 1. One Pass During Online Training

Input a set of randomly shuffled training examples {(x(s),y(s))}S
s=1, a hyper-parameter K that determines the number of sentences

involved in calculating corpus-level metrics, a hyper-parameter α that controls the smoothness of the Q distribution
Output optimized model parameters θ(S)

1: Initialize a queue q(0) that contains 1-best candidates from the previous pass;
2: Initialize model parameters θ(0) from the previous pass;
3: s← 1;
4: while s 6 S do

5: ỹ
(s)
∗ = argmax

y∈Y(x(s))

{

P (y|x(s);θ(s−1))
}

;

6: Sample S(x(s));
7: Build S(Xs) using q(s−1) and S(x(s));
8: Compute the gradients of

∑

Ỹs∈S(Xs)
Q(ỹ(s)|x(s);θ(s−1), α)∆(Ỹs,Ys) w.r.t. parameters;

9: Update model parameters and get θ(s);

10: Get q(s) by appending ỹ
(s)
∗ to q(s−1) ;

11: end while

For Chinese-English translation tasks, to compare

with the results reported by previous work[9], we used

the same training data that consists of 2.56M pairs

of sentences from Linguistic Data Consortium (LDC),

which contains 67.5M Chinese words and 74.8M Eng-

lish words, respectively. The NIST 2006 dataset serves

as the validation set for optimizing hyper-parameters

and selecting models, and the NIST 2002, NIST 2003,

NIST 2004, NIST 2005, and NIST 2008 datasets as test

sets in our experiments 1○.

For English-French translation tasks, to compare

with the results reported by previous work on end-to-

end NMT[2-3,9,22-24], we used the same subset of the

WMT 2014 training corpus that contains 12M sentence

pairs, which contains 304M English words and 348M

French words, respectively. Following common prac-

tice, the concatenation of news-test 2012 and news-test

2013 serves as the validation set and news-test 2014 as

the test set.

On top of RNNsearch
[3], we compared the follow-

ing three training criteria:

1) MLE: maximum likelihood estimation ((1)),

2) sMRT: minimum risk training with decomposable

sentence-level evaluation metrics ((2)),

3) cMRT: minimum risk training with non-decom-

posable corpus-level evaluation metrics ((6)).

The three variants share the same setting of hyper-

parameters: the vocabulary size is set to 30k for both

source and target languages, the beam size for decoding

is set to 10, α is set to 0.005 for two MRT variants, and

K is set to 100 for cMRT which is tuned on the valida-

tion set. For each source sentence, 100 samples are sam-

pled randomly to build the sampled subspace S(x(s)),

which is suggested by [9]. We removed duplicate candi-

dates and added the gold reference when building the

subspace. All the samples in the subspace and the cor-

responding source sentence compose one mini-batch to

calculate the gradient according to (4) 2○.

4.2 Effect of Evaluation Metrics

Table 1 shows the effect of evaluation metrics on

the Chinese-English validation set. As MLE aims to

maximize the likelihood of training data and does not

consider any evaluation metric, it achieves significantly

lower translation performance in terms of cBLEU and

cTER than two MRT variants.

Table 1. Effect of Evaluation Metrics on Translation

Quality on the Validation Set

Criterion Metric cBLEU cTER

MLE N/A 30.48 60.85

sMRT -sBLEU 36.71 53.48

sTER 30.14 53.83

cMRT -cBLEU 38.26 54.76

cTER 35.41 52.84

Note: “-sBLEU” denotes negative sentence-level BLEU, “-
cBLEU” denotes negative corpus-level BLEU, “sTER” denotes
sentence-level TER, and “cTER” denotes corpus-level TER.

By using decomposable evaluation metrics —

sBLEU (i.e., negative sentence-level BLEU) and sTER

(sentence-level TER) as loss functions, sMRT dramati-

cally outperforms MLE in terms of both metrics. How-

ever, due to the discrepancy between training and test-

ing (i.e., -sBLEU is used in training but -cBLEU is used

1○LDC2002E18, LDC2003E07, LDC2003E14, LDC2004T07, LDC2004T08, LDC2005T06, LDC2005T10, LDC2007T23,
LDC2008T06, LDC2008T08, LDC2008T18, LDC2009T02, LDC2009T06, LDC2009T15, LDC2010T03.

2○We find that a pseudo corpus size larger than 100 (e.g., K = 1000) does not lead to significant improvements and increases
memory requirement.
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in testing), optimizing model parameters with respect

to sTER during training fails to result in the lowest

cTER in testing.

In contrast, our approach directly optimizes model

parameters with respect to corpus-level metrics and en-

ables training to correlate well with testing: optimizing

model parameters with respect to cTER during training

does result in the lowest cTER in testing.

4.3 Comparison of Training Time

We trained our NMT system on a cluster with 16

Tesla M40 GPUs. For sMRT, it takes the cluster about

one hour to train 21 000 mini-batches. The training

speed for cMRT is slightly slower than that for sMRT:

20 000 mini-batches can be processed in one hour on

the same cluster. Note that each mini-batch only con-

tains one source sentence and its corresponding tar-

get samples, thereby calculating pseudo corpus evalua-

tion metrics on one mini-batch is difficult. Previous

model predictions are needed to approximate the non-

decomposable evaluation metrics.

As shown in Fig.1, we give the learning curves of

sMRT and cMRT on the validation set to compare

the model complexity and the real training time. Ini-

tializing with an MLE model, both sMRT and cMRT

increase BLEU scores dramatically within about 20

hours. Afterwards, the BLEU score keeps improving

gradually but there are slight oscillations. cMRT al-

most always achieves higher BLEU scores compared

with sMRT with the same training time. Both sMRT

and cMRT need about more than 270 hours to achieve

the best results.

4.4 Comparison of BLEU Scores on Chinese-

English Translation

Table 2 shows the case-insensitive BLEU scores on

Chinese-English datasets. Statistical significance test-

ing is performed with paired bootstrap resampling[25].

We follow [23] to handle rare words. We find that in-

troducing both MRT variants into NMT leads to sur-

prisingly substantial improvements over MLE (up to

7.20 and 8.53 BLEU points) across all test sets. On top

of sMRT, our approach (cMRT) achieves consistent and

statistically significant improvements (up to 1.88 BLEU

points) across all test sets. On the concatenation of all

test sets (i.e., “All”), our approach improves over MLE

and sMRT by +7.89 and +1.44 BLEU points, respec-

tively.

 28
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c
o
re

Training Time (h)

cMRT
sMRT

Fig.1. Comparison of training time on the Chinese-English val-
idation set.

Fig.2 shows the BLEU scores on the Chinese-

English test sets over various input sentences. While

both MRT variants consistently improve over MLE for

all lengths, cMRT outperforms sMRT for sentences

longer than 40. One possible reason is that transla-

tions for long sentences have a more important effect on

corpus-level BLEU score, especially on brevity penalty.

Also, cMRT tends to produce longer translations com-

pared with sMRT for long input sentences, as shown in

Fig.3.

4.5 Comparison of TER Scores on Chinese-

English Translation

Table 3 shows the case-insensitive TER scores on

Chinese-English datasets. As optimizing with respect

to -sBLEU leads to lower cTER than sTER (see Ta-

ble 1), we used -sBLEU instead of sTER for sMRT.

Table 2. Case-Insensitive BLEU Scores on the Test Sets

Criterion Metric MT06 MT02 MT03 MT04 MT05 MT08 All

MLE N/A 30.70 35.13 33.73 34.58 31.76 23.57 31.63

sMRT -sBLEU 37.34∗∗ 40.36∗∗ 40.93∗∗ 41.37∗∗ 38.81∗∗ 29.23∗∗ 38.08∗∗

cMRT -cBLEU 38.95∗∗†† 41.65∗∗†† 41.99∗∗†† 42.64∗∗†† 40.29∗∗†† 31.11∗∗†† 39.52∗∗††

Note: We use “∗∗” to denote that the difference is statistically significant at p < 0.01 level compared with MLE, and “††” compared
with sMRT. “All” denotes the concatenation of all test sets.
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Our approach also significantly outperforms MLE and

sMRT across all test sets. On the concatenation of all

test sets, our approach improves over MLE and sMRT

by −8.38 and −0.93 TER points, respectively.
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Fig.2. BLEU scores on the Chinese-English test sets over vari-
ous input sentence lengths.
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Fig.3. Comparison of output sentence lengths on the Chinese-
English test sets.

Fig.4 shows the TER scores on the Chinese-English

test sets over various input sentences. We find that

cMRT systematically outperforms both sMRT and

MLE for almost all lengths.

Table 3. Case-Insensitive TER Scores on the Test Sets

Criterion Metric MT06 MT02 MT03 MT04 MT05 MT08 All

MLE N/A 60.74 58.94 60.10 58.91 61.74 64.52 60.90

sMRT -sBLEU 52.86 52.87 52.17 51.49 53.42 57.21 53.45

cMRT cTER 51.86 51.12 50.42 50.63 51.66 56.54 52.52
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Fig.4. TER scores on the test sets over various input sentence
lengths.

4.6 Results on English-French Translation

Table 4 shows the results on English-French transla-

tion. We list existing end-to-end NMT systems that are

comparable to our system. All these systems use the

same subset of the WMT 2014 parallel training cor-

pus. They differ in network architectures, vocabulary

sizes and training criterion. Note that [24] uses another

monolingual dataset to train a language model, which

is not used in other systems. RNNsearch-cMRT

achieves the highest BLEU score in this setting even

with a vocabulary size smaller than [23] and less data

than [24]. Our approach does not assume specific ar-

chitectures and can in principle be applied to any NMT

systems 3○.

5 Related Work

Our work is closely related to minimum risk train-

ing widely used in statistical machine translation. The

minimum error rate training (MERT) algorithm[4] is a

special form of MRT. Although MERT is capable of

optimizing models with respect to non-decomposable

evaluation metrics, it is restricted to optimizing linear

models with tens of features on a small development

set. [12] proposes an approach to maximizing expected

BLEU for training phrase and lexicon translation mod-

els. It uses the extended Baum-Welch algorithm to ef-

ficiently update model parameters. These approaches

cannot be directly applied to neural machine transla-

3○Some results are from the arxiv version.
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Table 4. Comparison with Previous Work on English-French Translation

System Training Vocabulary (×103) BLEU

Existing end-to-end NMT systems RNNSearch[3] MLE 30 28.45

LSTM with 4 layers[2] MLE 80 30.59

RNNSearch + PosUnk[22] MLE 30 33.08

LSTM with 6 layers + PosUnk[23] MLE 40 32.70

RNNSearch + PosUnk[9] sMRT 30 34.23

RNNSearch + monolingual data + PosUnk[24] Dual learning 30 34.83

Our end-to-end NMT system RNNSearch + PosUnk cMRT 30 34.93

Note: The BLEU scores are case-sensitive. “PosUnk” denotes the technique of handling rare words in [23].

tion because of the non-linearity in neural networks.

Neural machine translation needs efficient online

learning algorithms because the training dataset is al-

ways very large. As it is difficult to directly optimize

models with respect to non-decomposable evaluation

metrics in online learning frameworks, one possible so-

lution is to maintain a large buffer to compute online

gradient estimates that can be prohibitive[20]. [21] con-

siders optimizing for the performance measures that

are concave or pseudo-linear in the canonical confusion

matrix of the predictor. A key limitation of these ap-

proaches is that they only focus on classification tasks.

It is non-trivial to adapt these approaches to optimize

non-decomposable evaluation metrics for neural ma-

chine translation.

Another possible solution is to optimize mod-

els parameters with respect to an approximation of

non-decomposable evaluation metrics in online train-

ing framework, which is widely used in conventional

SMT[16-19]. The basic idea is to build a pseudo cor-

pus by using previous oracle translations, and k-best

translations are generated to update the model[16]. An

exponential decay is used in [18] to reduce depen-

dence on the distant past. We borrow the idea from

SMT and extend it to our NMT online training algo-

rithm. In fact, different methods for the approxima-

tion of non-decomposable corpus-level evaluation met-

rics can also be used in our approach (e.g., using oracle

translations[16] and exponential decay[18]).

Our work extends the approach in [9] by incorporat-

ing corpus-level evaluation metrics. We still maintain

the online learning framework to minimize GPU mem-

ory requirements and build a subset of the training cor-

pus on the fly. This can be seen as a balance between

calculating metrics on individual sentences and that on

the full training corpus. We show that this strategy ef-

fectively improves the correlation between training and

testing and thus leads to better translation results.

6 Conclusions

In this work, we proposed an approach to train-

ing neural machine translation models with non-

decomposable evaluation metrics. The basic idea is to

calculate the expectations of corpus-level metrics on a

subset of the training data to allow online training al-

gorithms. Experiments showed that our approach is

capable of improving the correlation between training

and testing and significantly outperforms minimum risk

training with decomposable evaluation metrics.

In the future, we plan to explore more methods for

building subsets Xs and S(Xs), which seem to have

an important effect on translation performance. As

our approach is transparent to network architectures

and evaluation metrics, it can potentially benefit more

natural language processing tasks.
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