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ABSTRACT
Image classification is a classical machine learning task and has been
widely used. Due to the high costs of annotation and data collection
in real scenarios, few-shot learning has become a vital technique to
improve image classification performances. However, most existing
few-shot image classification methods only focus on modeling the
global image feature or image local patches, which ignore the global-
local interactions. In this study, we propose a new method, named
GL-ViT, to integrate both global and local features to fully exploit
the few-shot samples for image classification. Firstly, we design a
feature extractor module to calculate the interactions between the
global representation and local patch embeddings, where ViT is
also adopted to achieve efficient and effective image representation.
Then, Earth Mover’s Distance is adopted to measure the similarity
between two images. Abundant Experimental results on several
widely-used open datasets show that GL-ViT outperforms state-of-
the-art algorithms significantly, and our ablation studies also verify
the effectiveness of both global-local features.
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1 INTRODUCTION
Recent years have witnessed rapid progress in deep learning, espe-
cially image classification.With an adequate amount of labeled data,
numerous impressive methods have been proposed and achieved
good performances [11, 22, 25]. However, in many practical scenar-
ios, it is too costly, and sometimes even impossible to collect enough
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annotated data for training. In contrast, humans can classify items
in a new class with only limited examples. Thus, many efforts have
been made to enhance image classification methods with such a
few-shot learning ability [1, 4, 5, 9, 15–17, 19, 24].

The main challenge in few-shot image classification is how to
measure the similarity between the candidate image and labeled
images. Most of the previous studies adopt a two-module strategy,
namely the feature extractor module and similarity calculation mod-
ule. And there are mainly two types of models: 1) Global-feature-
based. These models generate a global feature vector for each image
and then calculate similarities [4, 5, 16, 17]. 2) Local-feature-based.
Instead of using only one feature vector, these methods split each
image into several patches, and measure the similarity between
two images based on patch-level feature interactions [1, 19, 24].

However, we find that most of previous studies fail to fully ex-
ploit global and local features of images, and especially ignore
interactions between them. Global-feature-based methods focus
on modeling global information, but are weak at modeling the
fine-grained similarity between images. While local-feature-based
methods, instead, may pay too much attention to calculating local
features and fail to achieve optimal modeling of the whole image.
Moreover, current works rely on using convolutional neural net-
works (CNNs) as their feature extractors [11, 22], which are unable
to generate both global and local features at the same time.

To cope with these challenges, we propose a new algorithm,
named GL-ViT, to model the global and local feature interactions
for better few-shot classification performances. Firstly, vision trans-
former (ViT) [8], a pre-training model which can extract both global
features and local features for images simultaneously, is applied as
our backbone, and the ViT is fine-tuned in few-shot classification
tasks. Then, we use a simple yet effective strategy to model the in-
teractions between them, and adopt Earth Mover’s Distance (EMD)
to measure the similarity due to its outstanding performance in
previous studies [24]. Our main contributions are as follows:

• To the best of our knowledge, our study first uses global &
local feature interactions for few-shot image classifications;

• We design a new method, named GL-ViT, with the vision
transformer to achieve efficient global & local feature gener-
ation and adopt EMD for similarity calculation;

• Experimental results on two public datasets show impres-
sive improvements over the state-of-the-art methods. And
ablation studies also verify the effectiveness of each module.
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Figure 1: The left part shows the feature extractor module (generate the feature set of each image), and the right part shows the
similarity calculation module (how to calculate similarities between images).

2 RELATEDWORKS
2.1 Few-shot Image Classification
There are mainly two categories of few-shot image classification
methods, optimization-based and metric-based. Optimization-based
methods [9, 15] focus on efficient model training, i.e., rapidly adapt-
ing parameters to novel classes and avoiding over-fitting for clas-
sical image classification methods. While most recent studies are
metric-based methods [1, 4, 5, 16, 17, 19, 24], which aims at learn-
ing a class-agnostic feature extractor, and measuring similarities
between query images and support images using extracted features.

Metric-basedmethods can be further classified into global-feature-
based ones and local-feature-based ones. Global-feature-basedmeth-
ods extract only one feature vector from an image [4, 5]. Matching
Network [17] and Prototypical Network [16] propose an episodic
paradigm formetric learning, where support features of each episode
are averaged as a prototype for each class, and Euclidean distance
between each query feature vector and class prototypes is regarded
as logits for label prediction. Local-feature-based methods extract
a feature set from an image, each of which captures a patch of the
image [1, 19]. Zhang et al. [24] adopt the aforementioned episodic
learning, and take the image similarity calculation as an Optimal
Transport problem with EMD method [24].

In global-feature-based methods, the global feature vector cap-
tures the semantic information of the whole image, but features
irrelevant to the classification task may be included. The feature
vector is biased away from the cluster center, which may catastroph-
ically impact the performance. While local-feature-based methods
models patch-level information that are short of interaction with
each other. Thus they may fail to capture the high-level features.

2.2 Backbone for Image Feature Extraction
The majority of few-shot learning studies adopts convolutional neu-
ral networks (CNNs) as their backbone for feature extractor [1, 4, 16,
17, 19, 20, 24]. Typically, backbones for common image classification
are widely used after some modification, e.g. ResNet [11] or WRN
[22]. Global-feature-basedmethods remove the fully-connected (FC)
layers from them, while local-feature-based methods replace the
FC layers with convolutional layers in the manner of fully convolu-
tional networks (FCN). Although they have achieved competitive

performance, CNN-based backbones fail to yield global features
and local features simultaneously, which limits the exploration of
the interaction between global and local features.

Recently studies show that self-supervised vision transformer
can resolve the aforementioned difficulty. Vision Transformer (ViT)
[8] adopts Transformer and achieve impressive performance in
many computer vision tasks. It first crops the image into patches of
fixed size, flattens them into an 1D sequence after linearly embed-
ded, and adds a preceding classification token ([𝐶𝐿𝑆]). Then the
sequence is fed into an encoder composed of self-attention blocks.
The final output of [𝐶𝐿𝑆] is regarded as the global feature vector,
typically used for downstream tasks. Simultaneously, the outputs
of other tokens are the local features. Various self-supervised pre-
train tasks have been proposed for ViT and applied in downstream
tasks [2, 6, 10]. Self-supervised ViT has been adopted in recent
works on few-shot learning and dramatically outperformed CNN-
based methods [5]. So we also adopt ViT as our backbone.

3 METHOD
In this section, we first introduce some preliminaries. Then, we
will describe how to extract global & local features from a single
image and conduct feature interactions. Further, we present how to
measure the similarity between two images and the loss function.
Our framework is shown in Fig. 1 1.

3.1 Preliminaries
Few-shot image classification follows the N-way K-shot settings,
namely classifying on N classes with K example images in each
class. Neural models are first trained on 𝐷𝑏𝑎𝑠𝑒 = {(𝑥𝑖 , 𝑦𝑖 ) |𝑦𝑖 ∈
𝐶𝑏𝑎𝑠𝑒 }, where 𝑥𝑖 is an image and 𝑦𝑖 is the corresponding label.
Then, in testing phase, it predicts the classes of unlabeled query set
𝑄𝑛𝑜𝑣𝑒𝑙 = {𝑥𝑖 } given a labeled support set 𝑆𝑛𝑜𝑣𝑒𝑙 = {(𝑥𝑖 , 𝑦𝑖 ) |𝑦𝑖 ∈
𝐶𝑛𝑜𝑣𝑒𝑙 ,𝐶𝑏𝑎𝑠𝑒 ∩ 𝐶𝑛𝑜𝑣𝑒𝑙 = ∅}, where 𝑆𝑛𝑜𝑣𝑒𝑙 has N classes and K
images per class and the classes of 𝑄𝑛𝑜𝑣𝑒𝑙 are identical to 𝑆𝑛𝑜𝑣𝑒𝑙 .

In training phase, following previous study [16, 17], we adopt a
meta-learning paradigm named episodic learning. Simulating the
testing phase, in each episode, we sample N classes from 𝐶𝑏𝑎𝑠𝑒 , K
images per class as support set 𝑆𝑏𝑎𝑠𝑒 , and multiple images as the

1Our code is available at: https://github.com/waltsun/GL-ViT.
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query set 𝑄𝑏𝑎𝑠𝑒 from 𝐷𝑏𝑎𝑠𝑒 , and then update the model using the
prediction on 𝑄𝑏𝑎𝑠𝑒 . In episodic learning, the pipelines in the train-
ing phase and testing phase are highly similar, which minimizes
task settings difference between the two phases.

3.2 Feature Extractor Module
3.2.1 Feature Generation. To yield global and local features simul-
taneously, we use self-supervised vision transformers (ViT) [8], an
pretraining backbone in computer vision, as our feature extractor.
We use not only [𝐶𝐿𝑆] token output vector as a global feature cap-
turing the whole picture, but also patch-level outputs vectors as
local features. Extracted features are denoted as:

[𝑓 𝑔𝑙𝑜𝑏𝑎𝑙 ; 𝑓 𝑙𝑜𝑐𝑎𝑙1 ; 𝑓 𝑙𝑜𝑐𝑎𝑙2 ; · · · ; 𝑓 𝑙𝑜𝑐𝑎𝑙𝐻𝑊 ] = 𝑉𝑖𝑇 (·) (1)

where 𝐻𝑊 is the patch number.
Considering 𝐻𝑊 is typically large, we concentrate local features

to a smaller number. Local features are weighted average pooled
into (𝑃, 𝑃) numbers, the self-attention weights of [𝐶𝐿𝑆] token on
other ones in the last layer are used as average weight (the attention
weight on [𝐶𝐿𝑆] token itself is deprecated here). The attention
weights are also average pooled for subsequent use:

[𝛼𝑔𝑙𝑜𝑏𝑎𝑙 ;𝛼𝑙𝑜𝑐𝑎𝑙1 ;𝛼𝑙𝑜𝑐𝑎𝑙2 ; · · · ;𝛼𝑙𝑜𝑐𝑎𝑙𝐻𝑊 ] = 𝐿𝑎𝑠𝑡𝐴𝑡𝑡𝑛(·) (2)

𝑓 𝑙𝑜𝑐𝑎𝑙𝑖 = 𝛼𝑙𝑜𝑐𝑎𝑙𝑖 ∗ 𝑓 𝑙𝑜𝑐𝑎𝑙𝑖 , 𝑖 = 1, 2, · · · , 𝐻𝑊 (3)


𝑓 𝑙𝑜𝑐𝑎𝑙1 · · · 𝑓 𝑙𝑜𝑐𝑎𝑙

𝑃
.
.
.

. . .
.
.
.

𝑓 𝑙𝑜𝑐𝑎𝑙
𝑃2−𝑃+1 · · · 𝑓 𝑙𝑜𝑐𝑎𝑙

𝑃2

 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (

𝑓 𝑙𝑜𝑐𝑎𝑙1 · · · 𝑓 𝑙𝑜𝑐𝑎𝑙

𝑊
.
.
.

. . .
.
.
.

𝑓 𝑙𝑜𝑐𝑎𝑙
𝐻𝑊 −𝑊 +1 · · · 𝑓 𝑙𝑜𝑐𝑎𝑙

𝐻𝑊

)
(4)

𝛼1 · · · 𝛼𝑃
.
.
.

. . .
.
.
.

𝛼𝑃2−𝑃+1 · · · 𝛼𝑃2

 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (

𝛼𝑙𝑜𝑐𝑎𝑙1 · · · 𝛼𝑙𝑜𝑐𝑎𝑙

𝑊
.
.
.

. . .
.
.
.

𝛼𝑙𝑜𝑐𝑎𝑙
𝐻𝑊 −𝑊 +1 · · · 𝛼𝑙𝑜𝑐𝑎𝑙

𝐻𝑊

)
(5)

3.2.2 Feature Interactions. For a single image, we have a global
feature vector capturing the semantic information of the whole
image, and local feature vectors capturing the semantic information
of respective patches. We aim to make them interact and integrate
the information of two different grains. We choose a simple yet
effective method to achieve that:

𝑓𝑖 = 𝑓
𝑙𝑜𝑐𝑎𝑙
𝑖 − 𝛼𝑔𝑙𝑜𝑏𝑎𝑙 ∗ 𝑓 𝑔𝑙𝑜𝑏𝑎𝑙 , 𝑖 = 1, 2, · · · , 𝑃2 (6)

3.3 Similarity Calculating Module
With a feature set for each image, we need to calculate the similarity
between two feature sets of images. We adopt EMD due to its out-
standing performance in previous studies [24]. EMD is a algorithm
for the Optimal Transport problem, which assumes that 𝑛 source
depots need to transport goods to𝑚 target depots. Given the cost
of transportation per unit of goods 𝑐𝑖, 𝑗 between two depots of 𝑖 and
𝑗 , the amount of supplied goods from each source depot 𝑠𝑖 , and the
amount of needed goods from each target depot 𝑡 𝑗 , it can measure
the minimal cost of transporting all goods and the corresponding

goods flow. Mathematically, the problem can be described as:

�𝑓 𝑙𝑜𝑤 = arg min
𝑓 𝑙𝑜𝑤

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑖, 𝑗 · 𝑓 𝑙𝑜𝑤𝑖, 𝑗

s.t. 𝑓 𝑙𝑜𝑤𝑖, 𝑗 ≥ 0, 𝑖 = 1, · · · , 𝑛, 𝑗 = 1, · · · ,𝑚
𝑚∑︁
𝑗=1

𝑓 𝑙𝑜𝑤𝑖, 𝑗 = 𝑠𝑖 , 𝑖 = 1, · · · , 𝑛

𝑛∑︁
𝑖=1

𝑓 𝑙𝑜𝑤𝑖, 𝑗 = 𝑡 𝑗 , 𝑗 = 1, · · · ,𝑚

(7)

Costly depot pairs are always assigned with no or few good flow,
which in this context, avoids irrelevant visual patches disturbing
similarity calculation and focuses on semantic information relevant
to the class labels. Thus, we adopt EMD as our feature set matching
function. In our settings, cosine similarity is used to measure unit
cost and the attention weight for the transported amount from or
to a depot. Using Equation 7, the similarity between two images
𝑥1, 𝑥2 can be determined (here 𝑛 =𝑚 = 𝑃2):

𝑆𝑖, 𝑗 = 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑓 𝑥1𝑖 , 𝑓
𝑥2
𝑗
), 𝑖 = 1, · · · , 𝑛, 𝑗 = 1, · · · ,𝑚 (8)

𝑐𝑖, 𝑗 = 1 − 𝑆𝑖, 𝑗 , 𝑖 = 1, · · · , 𝑛, 𝑗 = 1, · · · ,𝑚 (9)

𝑠𝑖 = 𝛼
𝑥1
𝑖
, 𝑖 = 1, · · · , 𝑛 (10)

𝑡 𝑗 = 𝛼
𝑥2
𝑗
, 𝑗 = 1, · · · ,𝑚 (11)

𝑠𝑖𝑚𝑖 (·, ·) =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑆𝑖, 𝑗 · �𝑓 𝑙𝑜𝑤𝑖, 𝑗 , 𝑖 = 1, · · · , 𝑛, 𝑗 = 1, · · · ,𝑚 (12)

3.4 Loss Function
After introducing how to measure the similarity between two im-
ages, and we need to update our model with such metric. Fuse
Score [19] is adopted to calculate probability distribution over N
classes. Similarity scores with the support images are averaged after
softmax for each class. Negative log-likelihood loss is used.

𝑝
𝑥𝑞
𝑖

=

∑𝐾
𝑗=1 exp(𝑠𝑖𝑚𝑖 (𝑥𝑞, 𝑥

𝑐𝑖
𝑠,𝑗
))/𝐾∑𝑁

𝑙=1
∑𝐾
𝑗=1 exp(𝑠𝑖𝑚𝑖 (𝑥𝑞, 𝑥

𝑐𝑙
𝑠,𝑗
))

, 𝑖 = 1, 2, · · · , 𝑁
(13)

𝑙𝑜𝑠𝑠 =
∑︁
𝑥𝑞

𝑁∑︁
𝑖=1
I(𝑦𝑞 = 𝑐𝑖 ) · log(𝑝

𝑥𝑞
𝑖
) (14)

In the case of 𝐾 = 1, the procedure described above is the same
with cross entropy loss.

4 EXPERIMENTS
4.1 Experimental Settings
Experiments are conducted on two few-shot image classification
datasets, mini-ImageNet [17] and Caltech-UCSD Birds-200-2011
(CUB) [18]. Mini-ImageNet is a subset of ImageNet [14], which is a
popular benchmark in few-shot image classification and has 100
classes with 600 images in each class. CUB, a bird classification
dataset, contains 11,788 images from 200 classes.

We adopt vision transformer with patch resolution of 16× 16 [8]
as our backbone, and the parameters are self-supervised pre-trained
inDINO framework [6]. The implement details and hyper-parameters
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Methods Backbone Feature Type Self-supervised mini-ImageNet CUB
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

SM-112 [19] ResNet-12 Local No 69.48 ± 0.46 84.51 ± 0.30 84.11 ± 0.39 93.62 ± 0.19
DeepEMD [24] ResNet-12 Local No 65.91 ± 0.82 82.41 ± 0.56 75.65 ± 0.83 88.69 ± 0.50
Sum-min [1] SF-12 Local No 68.32 ± 0.62 82.71 ± 0.46 79.60 ± 0.80 90.48 ± 0.44
DeepEMD v2 [23] ResNet-12 Local Yes 68.77 ± 0.29 84.13 ± 0.53 79.27 ± 0.29 89.80 ± 0.51
Prototypical Net [16] Conv-4 Global No 49.42 ± 0.78 68.20 ± 0.66 - -
Prototypical Net [16] ResNet-12 Global No 60.37 ± 0.83 78.02 ± 0.57 66.09 ± 0.92 82.50 ± 0.58
Distribution Calibration [21] WRN-28-10 Global No 68.57 ± 0.55 82.88 ± 0.42 79.56 ± 0.87 90.67 ± 0.35
EASY [4] 3 × ResNet-12 Global Yes 71.75 ± 0.19 87.15 ± 0.12 78.56 ± 0.19 91.93 ± 0.10
Image900-SSL [7] AmdimNet Global Yes 76.82 ± 0.19 90.98 ± 0.10 77.09 ± 0.21 89.18 ± 0.13
Simple CNAPS [3] ResNet-18 Global Yes 82.16 89.80 - -
HCTransformer [12] ViT-S/8 Global Yes 74.62 ± 0.20 89.19 ± 0.13 - -
SSL-ViT-16 [5] ViT-S/16 Global Yes 86.50 ± 0.17 96.22 ± 0.06 89.94 ± 0.15 96.98 ± 0.05
GL-ViT(Ours) ViT-S/16 Global+Local Yes 88.04 ± 0.59 96.45 ± 0.20 92.81 ± 0.53 97.80 ± 0.23

Table 1: 5-way 1-shot and 5-way 5-shot classification accuracy (%) with 95% confidence intervals on mini-ImageNet and CUB.
Due to the experimental settings are the same as SSL-ViT-16 [5], some reported experimental results are adopted.

No. Patch Accuracy
2 × 2 86.31 ± 0.64
3 × 3 87.40 ± 0.68
4 × 4 88.04 ± 0.59
5 × 5 87.32 ± 0.61
6 × 6 86.47 ± 0.67

Table 2: 5-way 1-shot accu-
racy on mini-ImageNet in
different patch number.

Model Accuracy
Local-Only 81.21 ± 0.69
Global-Only 86.15 ± 0.61
Global-Local (+) 87.87 ± 0.62
Global-Local (-) 88.04 ± 0.59

Table 3: 5-way 1-shot accuracy
on mini-ImageNet with differ-
ent grained feature.

(a) Global Only (b) Local Only (c) Global&Local

Figure 2: Visualizing feature vectors using t-SNE. 800 images
are sampled from 8 classes in mini-ImageNet. Points are
colored according to different classes.

of vision transformer follow ViT-small from [5]. Output local fea-
tures are pooled into the number of 4 × 4 (𝑃 = 4). Besides, we use
accuracy as the evaluation metric as previous studies [16, 19, 20, 24].

4.2 Analysis of Experimental Results
Main Result. The overall performances are reported in Table 1.

Firstly, our method GL-ViT outperforms all baseline methods, espe-
cially in the 5-way 1-shot scenario. The results verify the effective-
ness of GL-ViT. Secondly, we can see methods with ViT backbone
perform better than models with CNN-based backbones, which
showing the usefulness of the pre-training strategy. Thirdly, most
global-feature based methods are stronger than local-feature based,
and global+local feature based method GL-ViT achieves the best.

Hyper-parameter study on patch number. To find the best patch
number for GL-ViT, we conduct experiments on 5-way 1-shot mini-
ImageNet with patch number from 2 × 2 to 6 × 6. Due to the limit
of space, we only show the 5-way 1-shot accuracy results on mini-
ImageNet in Table 2. Results show that too fewer or too many
patches result in worse performances, and 4 × 4 is the best.

Ablation Studies. To verify the effectiveness of the multi-grained
feature interaction module, we compare our method with local-
feature-only variant and global-feature-only variant. Moreover,
we change our interaction approach from subtraction to addition.
Experimental results are shown in Table 3, which demonstrate
multi-grained feature interaction consistently outperform local-
only and global-only variants.

Visualization on feature vectors. To intuitively illustrate the ef-
fectiveness of our method, we visualize the feature vectors by t-
SNE [13]. We sample 800 images on 8 different classes from mini-
ImageNet, and get respective outputs in global&local, global-only,
and local-only settings. The feature set in global&local or local-only
is averaged to a single vector. The vectors are visualized in Fig. 2,
with different classes marked with different colors. The distribution
of our Global&Local method is more reasonable than the other two.

5 CONCLUSIONS
In this work, we point out the weaknesses of methods that use
only global-feature or local-feature. We propose a few-shot image
classification method, named GL-ViT, with multi-grained feature in-
teraction and visual transformer backbone. The feature interaction
part of our method is simple and effective. Experimental results
on several datasets shows that GL-VIT outperforms all SOTA base-
line methods, and further analysis verified the effectiveness of our
method. In the future, we plan to further explore more effectiveness
feature interaction modules for few-shot image classification.
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