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Knowledge distillation (KD) is a widely used method for transferring knowledge from large teacher models to
computationally efficient student models. Unfortunately, the computational cost of KD becomes unaffordable
as pre-trained language models (PLMs) grow larger. Computing KD loss on only part of the training set is a
promising way to accelerate KD. However, existing works heuristically leverage only one static data selection
strategy during the KD process, demonstrating inconsistent improvements across different distillation scenarios.
In this work, we conduct a thorough study on various typical data selection strategies for KD, and show that
this problem is due to the fact that the best data selection strategy is specific to various factors, including task,
selected data size, and training stage. To automatically adapt to these factors, we propose a framework named
AdaDS to learn to choose the data selection strategy adaptively during the KD process. Experimental results
show that our proposed method is effective for various tasks and selected data sizes under both fine-tuning
and pre-training stages, achieving comparable performance to DistilBERT with only 10% amount of queries to
the teacher model.

1. Introduction as data selection, is a simple yet effective way for KD acceleration.

Compared with KD that uses all training data, Xu et al. (2023) achieve

Due to the promising results on various natural language processing
(NLP) tasks, pre-trained language models (PLMs) (Devlin et al., 2019;
Liu et al., 2019; Brown et al., 2020) have become a new paradigm for
NLP. Recent works show that the performance of PLMs grows non-
trivially with their parameter number (Radford et al., 2018, 2019;
Brown et al., 2020; Raffel et al., 2020), making it a popular trend
to explore even larger PLMs (Zhang et al., 2021; Chowdhery et al.,
2022). However, it is difficult to deploy such huge PLMs, especially
on mobile devices. Knowledge distillation (KD) (Hinton et al., 2015)
is a popular method to alleviate the problem by compressing large
teacher PLMs into small but effective student PLMs. Unfortunately, con-
ventional KD methods need to query the large teacher PLMs with each
training sample for at least one time, making KD itself computationally
expensive for large PLMs. Therefore, how to accelerate KD for PLMs
is an important problem with both significant research and practical
values.

As a majority part of the computational cost of KD comes from and
is roughly proportional to the number of times querying the teacher
PLMs, computing KD loss on only part of the training set, mentioned
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better results with 79% computational cost on image classification
tasks by combining data selection with mixup (Zhang et al., 2018).
Li et al. (2021) achieve comparable KD performance with only 19%
computational cost by selecting informative training data for PLMs.
Therefore, accelerating KD with data selection is a promising research
direction.

However, data selection for KD is still underexplored: (1) Data
selection strategies are underexplored. Existing works mainly inves-
tigate uncertainty-based strategies (Settles, 2009; Settles and Craven,
2008; Xu et al., 2023; Li et al., 2021). However, data selection strategies
based on other criteria have been widely studied in deep active learning
works, demonstrating promising results on a wide range of datasets and
tasks (Ren et al., 2022). Thus, more strategies need to be explored.
(2) Pre-training stage KD acceleration is underexplored. As PLMs
grow increasingly larger, building smaller PLMs by distillation at the
pre-training stage from larger PLMs has significant practical value.
However, KD acceleration for this scenario is uninvestigated in existing
work. (3) Dynamics of KD is underexplored. Li et al. (2021) find
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that the most suitable teacher model and objective function evolves
dynamically during the whole KD process. Our pilot study also shows
even a manually designed simple dynamic data selection strategy can
outperform existing single static strategies (Section 4.3). Therefore,
we believe the dynamics of KD also plays an important role in KD
acceleration and needs to be further explored.

To achieve a better understanding of data selection for KD, we
conduct an empirical study of a broader range of data selection strate-
gies for KD under both pre-training and fine-tuning stage KD settings.
We empirically justify that the best-performed data selection strategy
varies across (1) tasks, (2) selected data sizes, and (3) pre-training
and fine-tuning stages. Therefore, the currently most widely used single
static data selection strategy paradigm is sub-optimal. To the best of our
knowledge, this is the first thorough investigation of data selection for
PLM distillation acceleration.

Furthermore, to make the most use of all these data selection
strategies and the dynamics of KD under different scenarios, we propose
an adaptive data selection method named AdaDS to accelerate KD for
PLMs, which chooses data selection strategies dynamically during the
KD process. The appropriateness of a strategy is measured by its impact
on student performance. As achieving the accurate appropriateness
for each strategy is time-consuming, we calculate the student loss on
only part of the training data to estimate the appropriateness, and
propose a more efficient greedy reward design to make the student
loss decrease the fastest. To further reduce the extra computational
cost introduced by the data strategy selector, we leverage a parameter-
efficient yet effective tabular Q-learning method (Matiisen et al., 2020)
to optimize the selector. Experimental results show that our proposed
AdaDS method achieves promising results across a wide range of tasks
and selected data sizes under both pre-training and fine-tuning stage KD
settings. Especially, we recover 99.9% performance of DistilBERT (Sanh
et al., 2019) with only 10% queries to the teacher model.

2. Related work

Knowledge distillation (KD) (Hinton et al., 2015) aims to transfer
knowledge from a cubersome teacher model to a lightweight student
model, and has been shown effective for compressing pre-trained lan-
guage models (PLMs) (Sanh et al., 2019; Jiao et al., 2020; Sun et al.,
2020). The efficiency issue of KD is first highlighted in computer
vision (Wang et al., 2020a). The existing KD acceleration works either
use uncertainty-based data selection to reduce the number of times
querying the teacher (Wang et al., 2020a; Xu et al., 2023; Li et al.,
2021), or reduce the cost of each query (Lin et al.,, 2022). In this
paper, we choose the promising and easy-to-implement data selection
method to accelerate KD. Wang et al. (2020a) first proposed to select
samples with high uncertainty for KD to reduce computational cost, and
achieved this by active mixup (Zhang et al., 2018) and search the mixup
coefficient with the highest uncertainty. Based on this approach, Xu
et al. (2023) achieved further acceleration by reducing the number of
queries to student models. In natural language processing (NLP), Wang
et al. (2021) analyzed the data selection problem for KD, but its word-
level selection strategy is unable to reduce the computational cost of
KD. To accelerate KD in NLP, Li et al. (2021) selected samples with the
highest uncertainties during training and found this strategy effective.

Different from these existing KD acceleration works, our method
is not limited to uncertainty-based data selection strategy. Instead, we
explore several popular data selection strategies from active learning,
which aims to reduce the amount of data required to train by allowing
models to choose the data (Settles, 2009). In active learning, although
uncertainty-based strategy (Lewis and Gale, 1994) is the simplest and
most commonly used, there is no universal dominant strategy. Some
works also focus on other strategies such as information density strat-
egy (Settles and Craven, 2008), cluster-based strategy (Xu et al., 2003),
query-by-committee strategy (Seung et al., 1992), and expected model
change strategy (Settles and Craven, 2008). In this paper, we take
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the advantages of these strategies and dynamically select the most
appropriate strategy during the distillation process.

Few-shot KD (Pan et al., 2021; Zhou et al., 2022; Sauer et al., 2022)
is another related topic to this paper. These works emphasize data
efficiency, aiming to achieve better performance with limited training
data, without strict constraints on computational costs. In contrast, our
focus lies in computational efficiency during KD, targeting at achieving
better performance while keeping the computational costs limited.

3. Data selection for KD acceleration
3.1. Problem formulation

Knowledge distillation is generally performed by minimizing the
Kullback-Leibler (KL) divergences of certain statistics between the
student and teacher models on a training dataset D = {(x;, y;)}, where x;
and y; are the input and desired output respectively. Given a mini-batch
B C D, data selection-based KD acceleration methods select a subset of
samples B C B and conduct KD only on 5 to reduce computational cost.
Generally, the samples are ranked by a scoring function S(x;, y;, B3, Sog)s
where f,  is a student model, and those meet certain criteria are se-
lected. For example, the widely used threshold-based selection methods
can be formulated as

B = {(9)ISCi 3 B fog) < 6} o)

where § is the threshold. We will abbreviate S(x;, y;, B, fy,) to S(x;) for
brevity.

KD for PLMs can be roughly divided into two types: (1) pre-training
stage KD (Sanh et al., 2019; Jiao et al., 2020; Liu et al., 2020; Wang
et al.,, 2020b), which distills knowledge from a raw teacher PLM to
a student PLM, and (2) fine-tuning stage KD (Tang et al., 2019; Sun
et al., 2019), which distills knowledge from a fine-tuned teacher PLM
to a downstream student model. The first type is usually conducted
on unlabeled pre-training corpus and more computationally costly than
the second, which is performed on labeled downstream task datasets.
In the following sections, we will show that these two scenarios have
distinct KD-related properties, which lead to different preferences on
data selection.

3.2. Computational cost

For each sample, the major KD computational cost consists of three
parts: (1) the student forward cost Fg, (2) the student backward cost
Bg, and (3) the teacher forward cost F;. Following Li et al. (2021), we
formulate the total computational cost C for an epoch as:

C ~|D|- (Fg + By + Fy). )

Suppose there are r - |D| samples are actually selected for KD, where
r € (0, 1], the total computational cost C becomes

C~|D|-Fs+r-|D|-(Bg+ Fr)+ Cyy, 3

where C,,, is the extra computational cost introduced by the data
selector. Obviously, we have to make r and C,,; small to achieve better
speedup.

4. Dynamic data selection is essential

Most existing data selection works for KD leverage a single static
data selection strategy. In this section, we will show that the best-
performed data selection strategy varies dynamically across various
aspects, including tasks, selected data sizes, pre-training and fine-tuning
stages, and the stages in a single KD process.
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4.1. Data selection strategies

Most existing KD acceleration methods only leverage uncertainty-
based data selection strategies. However, a wider range of strategies
have been investigated in other research fields (Ren et al., 2022), which
are also worth to be explored in KD acceleration. The typical data
selection strategies are summarized as follows':

Random strategy. Samples are selected randomly. It is widely used
as a baseline strategy.

Uncertainty-based strategy. Samples with higher student model
prediction uncertainty are selected. It is the only type of strategy that
has been explored by existing KD acceleration works (Xu et al., 2023;
Li et al., 2021). Three kinds of uncertainty score function U are used
in previous works:

+ Entropy, which is computed over the student prediction distribu-
tion:

Ux) = - Y P(ylx)log P(y|). @
y

» Margin, which measures the probability margin between the
most and second most probable labels v and V5

V(x) = Py 1x) — P ). ®)

+ Least-Confidence (Conf), which measures the uncertainty of
model about the most probable label y;:

©

Certainty-based strategy (Certainty). Samples with higher student
model prediction certainty are selected (Attenberg et al., 2010). Gener-
ally, the negative prediction entropy is used as the measurement for
certainty C

Ce) = Y P(y1x) log P(y]x).
y

V(x)=1-PQylx).

)

Diversity-based clustering strategy (Cluster). Samples are clus-
tered into groups and those closer to the clustering center are se-
lected (Xu et al., 2003), hoping the selected samples have high rep-
resentativeness. In this work, the samples are represented using the
feature x from the last layer of the student model and clustered using
K-means++ (Arthur and Vassilvitskii, 2007).

Density-based strategy (Density). Samples that have higher aver-
age similarities with all other ones are selected. Following the original
information density method (Settles and Craven, 2008), we use cosine
similarity as the similarity function
x"x;

(8)

simms(x, Xi) = m
i

4.2. Experimental settings

Fine-tuning stage distillation. We use a fine-tuned BERTg)gg
model as the teacher, and a 6-layer model as the student. Considering
the size of the training corpus, we choose four tasks from the GLUE
benchmark (Wang et al., 2018) which have sufficient training data,
including MNLI (Williams et al., 2018), SST-2 (Socher et al., 2013),
QNLI (Rajpurkar et al., 2016), and QQP (Chen et al., 2017). For each
task, we train the student for 5 epochs with a 2 x 10~ learning rate.
Please refer to Wang et al. (2018) for the details of the evaluation
metrics.

Pre-training stage distillation. We conduct pre-training experi-
ments with the DistilBERT framework (Sanh et al., 2019). We use

! Note that as C,, in Eq. (3) should be small, we do not consider time-
consuming strategies such as the expected model change approach (Freytag
et al., 2014) in this section.
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the 6-layer DistilBERT as the student architecture, and BERTg, g as
the teacher. The training configurations are the same as DistilBERT,
including parameters initialization, loss computation, and learning rate
schedules. We use a concatenation of English Wikipedia and Toronto
Book Corpus (Zhu et al., 2015) as our training corpus, which is the
as the DistilBERT and BERT model. We evaluate pre-trained models
on the GLUE benchmark, including two single sentence classification
tasks: CoLA (Warstadt et al., 2019), SST-2, and three sentence similarity
tasks: MRPC (Dolan and Brockett, 2005), STS-B (Cer et al., 2017), QQP,
and four natural language inference tasks: MNLI, QNLI, RTE (Bentivogli
et al., 2009), and WNLI (Levesque et al., 2012).

4.3. Experimental results

No strategy dominates in all tasks. As shown in Table 1, we find
that when only using 10% data for KD, most examined data selec-
tion strategies have improvements over the Random selection strategy.
Nevertheless, no approach emerges as the dominant strategy for all
tasks. Most data selection strategies even have worse performance than
Random strategy in one or some certain tasks.

Selected data size matters. Further results of fine-tuning stage
distillation on the QQP task (Table 2) indicate that the appropriate
selection strategy changes with selected data sizes. The Certainty strat-
egy is the most efficient when selection ratio is 10% or 20%, while
the uncertainty-based strategies, such as Entropy and Margin, dominate
the larger selection ratios. The Certainty strategy is even the worst
when selection ratio is 50%. This phenomenon indicates that the proper
strategy changes with different selected data sizes.

Dynamics of KD matters. To explore the appropriate strategy in
different training stages, we manually design simple dynamic data
selection strategies, and the results are show in Table 3. Taking “Entropy
— Certainty” as an example, it means choosing samples by the Entropy
strategy in the first half of training, and selecting by the Certainty strat-
egy in the second half. Surprisingly, we find the simple combination
of strategies “Certainty — Entropy” outperform single strategies. These
results shows that different selection strategies are needed in different
training stages.

Pre-training and fine-tuning distillation differs. The results in
Table 4 show that uncertainty-based strategies perform worse than
the random strategy in pre-training stage distillation, while they are
effective in the fine-tuning stage (Table 1). On the contrary, the Cluster
strategy, which has poor performance in fine-tuning stage distilla-
tion (Table 1), performs relative better Random in pre-training stage
distillation.

Apparently, the difference in training tasks and the complexity of
optimization contribute to the phenomenon. However, the further rea-
son behind this is unclear. Here we provide one possible explanation.
Following Wang et al. (2021), we analyze the gradient of student model
parameters V, . The gradient V,  can be decomposed into two parts,
including the gradient respect to golden cross-entropy loss VL., and
the gradient from distillation loss Vy L;,. We randomly select 36K
sentences from the training corpus, and calculate the probability that
Vgg L. shares the same direction with VL, on selected data.

Fig. 1 represents the probability that the angle between V, L., and
Vo Lia is less than 90°. We repeat the experiments with different data
selection ratios. For uncertainty-based strategy, Vo L. and Vy Ly,
are more likely to conflict with each other at the pre-training stage
distillation, while the risk is lower than random in the fine-tuning
stage. The conflict leads to a risk of introducing noise and disturbs the
direction of parameter updating (Wang et al., 2021).

In conclusion, we find that the proper data selection strategy for KD
changes for different tasks and selected data sizes. It also differs be-
tween pre-training and fine-tuning distillation. Therefore, dynamically
adapting data selection strategy is essential for KD.
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Fig. 1. The probability for gradients of L,
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and L,, have less than 90°.

Experiments of fine-tuning stage distillation on MNLI, SST-2, QNLI, and QQP tasks when the selection ratio is set to 10%. 1 denotes statistically significant
improvement over the random strategy. The best performances of static selection strategies are bolded, and performances worse than Random are underlined.
Results of students are averaged over 5 models fine-tuned with different random seeds on the validation set, and Speedup is calculated by the average

FLOPs per instance needed by KD.

Method Speedup MNLI-m/mm SST-2 QNLI QQP Avg
Teacher - 84.11/84.37 93.58 91.31 89.45 88.56
All Data 1.0x 82.35/82.52 90.99 88.20 89.06 86.62
Random 10.0x 80.16/80.66 89.96 86.34 87.47 84.92
Margin 80.17/80.80 90.57 86.86 87.61 85.20
Conf 80.02/80.73 90.64 86.86 87.61 85.17
Entropy 5.0x 79.99/80.70 90.55 86.80 87.63 85.13
Certainty 80.97/81.05 89.45 86.69 88.647 85.3671
Cluster 80.28/80.42 90.02 86.23 87.19 84.83
Density 80.45/80.63 90.37 86.46 87.69 85.127

Table 2
The best and the worst data selection strategies across different selected data sizes,
which are presented as selection ratios. The strategies are evaluated on QQP dev set.

Selection ratio 10% 20% 30% 40% 50%
Best Strategy Certainty Certainty Entropy Margin Entropy
Worst Strategy Diversity Diversity Density Density Certainty

Table 3
Comparison between static and dynamic strategies on QQP dev set
when selection ratio is set to 30%.

Strategy QQP
Random 88.25

Entropy 88.54

Static Conf 88.54
Margin 88.53

Certainty 88.64

Cluster 88.23

Density 88.28

. Entropy — Certainty 88.61
Dynamic Certainty — Entropy 88.70

5. AdaDS: Adaptive data selection for KD

To obtain consistent improvement over various tasks, data sizes, and
training steps, we propose a reinforced data selection framework AdaDS
which learns to adapt data selection strategy dynamically during KD
progress.

5.1. Overview
We view the data selection problem as a batch mode Partially

Observable Markov Decision Process (POMDP) (Matiisen et al., 2020),
and solve it with our data selection framework AdaDS (illustrated in
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Fig. 2). First, several basic selection strategies, which are typical active
learning algorithms, provide different proposals of data selection from
the current batch B with the help of feature maps and predictions
given by the student model f, . Second, a reinforced data strategy
selector (RL selector) chooses one of the proposals and only the selected
data in the chosen proposal will be used in KD. To achieve consistent
improvement across different distillation tasks, the AdaDS framework
dynamically adjusts the RL selector by its reward, which comes from
the observation of the student model performance change. We will
describe the design of adaptive data selection framework in Section 5.2
and the definitions of observation and reward in Section 5.3.

5.2. Reinforce data selection strategy selector

One straightforward design for the adaptive data selection frame-
work is directly rating each original sample through one data selector
model, and selecting original samples with the highest rates. However,
this design is impractical due to the complexity issues and the sparsity
of rewards. Under this design, for each sample, the data selector needs
to decide whether to select or not, so the data selector takes actions
frequently. In contrast, the rewards available are sparse. Considering
the computational cost required by each observation, to achieve KD
acceleration, the number of observation steps in a complete KD process
is limited. In addition, the dynamics of KD discussed in Section 4.3 also
limits the reuse of historical rewards. Therefore, under this straightfor-
ward design, the data selector needs to make a tremendous number of
actions (usually tens of thousands) to get one reward, which makes data
selector model hardly to be trained.

In this paper, to reduce the complexity of data selection and the
sparsity of rewards during training, we decompose the adaptive data
selection framework into two components, including the basic selec-
tion strategies and reinforce data selection strategy selector (RL selector).
Specifically, we introduce basic selection strategies from typical query
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Experiments of pre-training stage distillation with DistilBERT framework when selection ratio is set to 10%. Speedup is calculated by the average FLOPs per instance needed by
KD. The best performances of static selection strategies are bolded, and performances worse than Random are underlined. The uncertainty-based strategy performs even worse

than the random strategy.

Method MNLI-m/mm QQpP QNLI SST-2 CoLA STS-B MRPC RTE Avg
Teacher 84.28/84.70 89.44 91.51 92.48 55.88 88.67 85.34 64.55 81.87
All Data 82.09/82.34 88.42 88.51 90.73 50.34 86.42 86.10 59.13 79.34
Random 81.90/82.36 88.30 88.64 91.19 48.13 85.22 85.79 57.76 78.81
Entropy 81.82/82.30 88.41 88.82 90.99 42.45 84.30 86.34 59.06 78.28
Margin 80.91/81.42 88.00 86.72 90.96 46.72 82.42 77.13 56.90 76.80
Conf 81.61/82.17 88.27 88.91 91.05 41.23 84.06 85.56 59.86 78.08
Certainty 81.13/81.77 88.12 87.88 90.87 48.72 83.87 82.39 59.93 78.30
Cluster 81.81/82.30 88.43 88.64 91.24 49.13 85.48 85.41 57.47 78.88
Density 81.93/82.45 88.35 88.67 91.33 46.74 84.36 84.61 58.34 78.53

- e
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; @ sudenbokwad
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H 3 o © !

Adaptive data selection

Knowledge distillation

Fig. 2. Illustration of our reinforcement learning based method. In each training step, we choose the most useful data from the mini-batch. The reinforced data selection strategy
selector (RL selector) chooses one of the basic data selection strategies to select samples. Only the selected data are used for the knowledge distillation process, including student
forward, teacher forward, and student backward passes. During distillation, the RL selector is constantly updated according to the performance of the student model, which is
evaluated on the instances randomly sampled from the training dataset (selector evaluation data).

strategies described in Section 4.1, including the uncertainty-based
strategy, diversity-based clustering approach, and density-based strat-
egy. Each strategy captures different attributes of samples, such as
informativeness, density, and diversity, providing multiple selection
criteria for the RL selector. Then, the RL selector only needs to choose
one of these strategies at each observation step ¢, which is a multi-arm
bandit problem.

We choose the simple and straightforward Online algorithm (Mati-
isen et al., 2020) to solve this multi-arm bandit problem. The Online
algorithm is a simplified version of Q-learning for batch mode POMDP,
where “Q” refers to the expected rewards for an action taken in a given
state. The algorithm estimates the Q value by the Q from the last time
step and the current reward r;:

Oii(a) = ar, + (1 — a)0,(a,) 9

where g, is the current action of step 7, and « is the learning rate

of the Online algorithm. After step 7, a,,; is selected by the e-greedy

algorithm, which chooses arg maxQ, ,;(a) with a probability of 1 —e and
a

a random action of e.
5.3. Observation and reward

The objective of RL selector is for the student to achieve the lowest
loss on the training dataset. Therefore, the ideal observation o, for each
observation step ¢ should be the loss calculated on the entire training
dataset

1D

1
z L(xn Yis 05)’
i=1

o 10
D] (10)

and the ideal reward should be the performance of student model after
the whole KD progress.

However, there are two problems with this design: (1) At each
observation step ¢, it is difficult for us to directly get the observation
o, by computing the loss on the entire training set considering the
computational complexity factor. (2) At the same time, due to the time
complexity and the dynamic characteristics of knowledge distillation,
it is also difficult for us to obtain the ideal reward for each action.

60

To address the former problem, we compute the loss of the student
model only on a fraction of the dataset, named as selector evaluation
data, thereby estimating the loss on the entire training dataset. In order
to prevent the data leakage of the development set, we construct se-
lector evaluation data with M randomly sampled training data points:

L(x;,y;,05). an

Mz

L
M

i=1
To address the latter issue, we define the reward r in a greedy
manner to make the loss of the student model on the training dataset
drops the fastest. Specifically, we define the reward as the acceleration
of the loss decay, i.e. the increase in the loss decaying speed v. To
compute this acceleration, we use a windowing mechanism, which
keeps the last K observations. Then we use the linear regression to
calculate the loss decaying speed v, which equals to the negative
slope of {0;_g,1,0,_k42,---,0;}, Where ¢ is the current observation step.
Finally, the current reward r, can be described as r, = v, — v,_;.

5.4. Computational cost of AdaDS

During the KD process, AdaDS requires a forward pass on all data
within each training batch for data selection. Moreover, a forward
pass is needed for each selector evaluation sample during the selector
evaluation period. The complexity of selector update is negligible due
to the utilization of a tabular-based Q-learning method. Consequently,

the time complexity of the data selection process is
|D| - Fg+r-|D|-(Bg+ Fp)+n,,MFg, 12)

where n,,,, denotes the number of selector evaluation periods during
one epoch.

6. Experiments of AdaDS
6.1. Baselines

We compare our method with static baseline strategies described in
Section 4.1, including Random, Entropy, Margin, Conf, Certainty, Cluster,
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Experiments of fine-tuning stage distillation when the selection ratio is set to 10%. We include the Best and the Worst results of static selection strategies in Table 1. Notice that
the Avg scores of Best and Worst are the best or worst among Avg, not the averages of the best or worst scores.

Method Speedup MNLI-m/mm SST-2 QNLI QQP Avg
Teacher (BERTjgp) - 84.11/84.37 93.58 91.31 89.45 88.56
All Data 1.0x 82.35/82.52 90.99 88.20 89.06 86.62
Random 10.0x 80.16/80.66 89.96 86.34 87.47 84.92
static Best 80.97/81.05 90.64 86.86 88.64 85.367
Worst 3.6x 79.99/80.42 89.45 86.23 87.19 84.83
Dynamic Ensemble 80.11/80.55 89.95 86.26 87.25 84.82
¥ RandMix 80.581/80.94 90.30 86.977 87.85% 85.33%
Ours 3.4x 81.19/81.39 90.27 87.17+ 88.73+ 85.75¢
and Density. To explore the effectiveness of our dynamic method, we £ 895
also compare our method with the following simple dynamic strategies: % g0
0 . [
>
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AdaDS achieves consistent improvement over static strategies.
Table 5 shows the performance of baseline strategies and our method
when 10% data are selected. Our method achieves improvement over
random strategy across all tasks and outperforms all static selection
strategies in most tasks. The results in Fig. 3 justify that AdaDS is also
effective over different selected data sizes. For the challenging pre-
training distillation (in Fig. 4), in which static strategies fail to have
significant improvement, AdaDS also surpasses Random in the averaged
GLUE score. In summary, different from the static selection strategies,
AdaDS achieves consistent improvement over different tasks, data sizes,
and both pre-training and fine-tuning distillation.

AdabDSs is effective among dynamic strategies. According to the
results in Table 5, although basic strategies are effective, our method
still surpasses the highest of those performances in most cases. This
phenomenon indicates that the dynamic schedules has a higher up-
per bound of performance than static strategies. However, not all
dynamical schedules are better than static. The results of Ensemble and
RandMix strategies show that these simple combinations are unable to
outperform static strategies. We argue the performance gap between
AdaDS and dynamic baseline strategies comes from the effective sched-
ule learned by the Online algorithm (described in Section 5.2). For
example, Fig. 5(a) shows the strategy of our RL agent during fine-tuning
stage distillation on the QQP task when only 10% data are selected. In
fine-tuning stage distillation (see in Fig. 3), the Certainty strategy has
more significant improvement over other strategies with limited data
size. Our method has similar performances over these ratios because
the Online algorithm simply learns to select Certainty strategy during
training. The focus on the density attribute of samples near the end of
training contributes to the slight improvement of AdaDS over Certainty
in Table 5.

The schedules of AdaDS are dynamic and adaptive. To further
explore the schedules learned by the Online algorithm, we observe the
actions of the RL selector of AdaDS during training. Fig. 5 shows the
learned schedules across different selection ratios and distillation tasks.
We find all these schedules are dynamic, and the schedules for pre-
training stage distillation (in Figs. 5(b) and 5(c)) differs from those
for fine-tuning stage distillation (in Fig. 5(a)). The difference between
Figs. 5(b) and 5(c) indicates that different strategies are needed for
different selection ratios also.

However, it is difficult to give a thorough explanation of these
schedules since the actions of the RL selector depends on the reward
(defined in Section 5.3) history. Here we provide several influential
factors. (a) The difference between choices in Figs. 5(a) and 5(b) is due
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combined score on fine-tuning stage distillation (QQP task) over
ratios. Our method achieves higher performance than all basic
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Fig. 4. Pre-training stage distillation experiments, the results are the averaged score
on evaluation sets of 8 GLUE tasks. We record the results of 30% and 40% selection
ratios for Random strategy, while 10% and 20% for other strategies.

to the different training tasks and data characteristics. As mentioned in
Section 4.3, with a 10% selection ratio, the top 10% samples sorted by
prediction entropy leads to a higher probability of conflict in gradient.
During training, this problem can be mitigated under a larger batch size
(pre-training stage), but aggravated under a smaller batch size (fine-
tuning stage). (b) The difference between selection ratios (Figs. 5(b)
and 5(c)) also has a complex influence. For example, considering the
gradient conflict we mentioned before, instances with top 20% entropy
have a much lower risk of conflict than those with 10% entropy
(Fig. 1a). This lower risk of conflict is a positive factor in choosing the
Entropy strategy.

AdabDS is efficient. As Figs. 3 and 4 show, AdaDS achieves the
same performance with much less overall computational cost, or better
performance with the same overall computational cost. Although extra
computational cost is introduced by the observation and reward calcu-
lation (describe in Section 5.3) of AdaDS, it is tolerable considering the
performance improvements.

Applications on other KD methods and architectures. Moreover,
our method can be used simultaneously with other knowledge distilla-
tion approaches such as BERT-PKD (Sun et al., 2019), TinyBERT (Jiao
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Fig. 5. Schedules of selection strategy change across different selection ratios and
distillation tasks. For each schedule, the dominant strategy also changes during the
training process.
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Fig. 6. The averaged score on TinyBERT architecture over four different NLU tasks.
Our method achieves higher performance than all basic strategies on most selection
ratios.

et al., 2020), and MetaKD (Pan et al., 2021). To validate the appli-
cability of our method across various KD frameworks, we conduct
experiments on the TinyBERT architecture using QQP, MNLI, QNLI, and
SST-2 datasets. We summarize the averaged scores on the four datasets
in Fig. 6. The results illustrate that our method surpasses all baseline
strategies in the most of selection ratios, demonstrating it as the most
efficient data selection strategy on TinyBERT architecture.

In summary, with the help of dynamic and adaptive schedules, the
AdaDS method is effective and can outperform both static and dynamic
baseline strategies in most cases.

7. Conclusion

In this paper, we propose an adaptive data selection framework
AdaDS to accelerate knowledge distillation. AdaDS is effective across
different tasks, selected data sizes, pre-training, and fine-tuning stages,
while the performance of the existing acceleration methods is incon-
sistent. AdaDS framework also outperforms static methods by utilizing
the dynamics of the distillation process.

In future, we will investigate and further improve the effectiveness
of our method on extremely large PLMs such as GPT-3 (Brown et al.,
2020). And we also plan to explore a larger action space for the
adaptive selector.
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