
AI Open 4 (2023) 98–110

A
2
B

Contents lists available at ScienceDirect

AI Open

journal homepage: www.keaipublishing.com/en/journals/ai-open

Restricted orthogonal gradient projection for continual learning
Zeyuan Yang a, Zonghan Yang a, Yichen Liu c, Peng Li b,∗, Yang Liu a,b

a Department of Computer Science and Technology, Tsinghua University, China
b Institute for AI Industry Research, Tsinghua University, China
c College of Engineering, Peking University, China

A R T I C L E I N F O

Keywords:
Continual learning
Gradient projection
Forward knowledge transfer

A B S T R A C T

Continual learning aims to avoid catastrophic forgetting and effectively leverage learned experiences to
master new knowledge. Existing gradient projection approaches impose hard constraints on the optimization
space for new tasks to minimize interference, which simultaneously hinders forward knowledge transfer.
To address this issue, recent methods reuse frozen parameters with a growing network, resulting in high
computational costs. Thus, it remains a challenge whether we can improve forward knowledge transfer for
gradient projection approaches using a fixed network architecture. In this work, we propose the Restricted
Orthogonal Gradient prOjection (ROGO) framework. The basic idea is to adopt a restricted orthogonal
constraint allowing parameters optimized in the direction oblique to the whole frozen space to facilitate
forward knowledge transfer while consolidating previous knowledge. Our framework requires neither data
buffers nor extra parameters. Extensive experiments have demonstrated the superiority of our framework over
several strong baselines. We also provide theoretical guarantees for our relaxing strategy.
1. Introduction

A critical capability for intelligent systems is to continually learn
given a sequence of tasks (Thrun and Mitchell, 1995; McCloskey and
Cohen, 1989). Unlike human beings, vanilla neural networks straight-
forwardly update parameters regarding current data distribution when
learning new tasks, suffering from catastrophic forgetting (McCloskey
and Cohen, 1989; Ratcliff, 1990; Kirkpatrick et al., 2017). Continual
learning without forgetting has thus gained increasing attention in
recent years (Kurle et al., 2019; Ehret et al., 2020; Liu and Liu,
2022). Moreover, an ideal continual learner is expected to not only
avoid catastrophic forgetting but also facilitate forward knowledge
transfer (Lopez-Paz and Ranzato, 2017), i.e., leveraging past learning
experiences to master new knowledge efficiently and effectively (Parisi
et al., 2019; Finn et al., 2019). Without forward knowledge trans-
fer, approaches may have limited performance even with less forget-
ting (Kemker et al., 2018).

To mitigate forgetting and facilitate forward knowledge transfer,
replay-based methods (Lopez-Paz and Ranzato, 2017; Shin et al., 2017;
Choi et al., 2021) stores some old samples in the memory, and
expansion-based methods (Rusu et al., 2016; Yoon et al., 2017, 2019)
expand the model structure to accommodate incoming knowledge.
However, these methods require either extra memory buffers (Parisi
et al., 2019) or a growing network architecture as new tasks contin-
ually arrive (Kong et al., 2022), which are always computationally

∗ Corresponding author.
E-mail address: lipeng@air.tsinghua.edu.cn (P. Li).

expansive (De Lange et al., 2021). Thus, promoting performance within
a fixed network capacity remains challenging. Regularization-based
methods (Kirkpatrick et al., 2017; De Lange et al., 2021) penalize the
transformation of parameters regarding the corresponding plasticity
via regularization terms. Instead of constraining individual neurons
explicitly, recent gradient projection methods (Zeng et al., 2019; Saha
et al., 2021; Wang et al., 2021) further constrain the directions of
gradient update, obtaining superior performance. However, in spite
of effectively mitigating forgetting, the limited optimization space
also hinders the capability of learning new tasks (Zeng et al., 2019),
resulting in insufficient forward knowledge transfer.

Particularly, we illustrate the optimizing process of traditional gra-
dient projection methods by the black dashed line in Fig. 1. As shown in
Fig. 1, the strict orthogonal constraint may exclude the global optimum
(the red star) from the optimization space. In other words, constraining
the directions of gradient update fails on the plasticity in the stability-
plasticity dilemma (French, 1997). TRGP (Lin et al., 2022) tackles this
problem by allocating new parameters within the selected subspace of
old tasks as trust regions, suffering a similar computational cost burden
as expansion-based methods (Wang et al., 2021). Therefore, promoting
forward knowledge transfer within a fixed network capacity remains a
key challenge for gradient projection methods.
vailable online 25 August 2023
666-6510/© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.aiopen.2023.08.010
Received 9 August 2023; Accepted 21 August 2023
KeAi Communications Co. Ltd. This is an open access article under the CC

https://www.keaipublishing.com/en/journals/ai-open
http://www.keaipublishing.com/en/journals/ai-open
mailto:lipeng@air.tsinghua.edu.cn
https://doi.org/10.1016/j.aiopen.2023.08.010
https://doi.org/10.1016/j.aiopen.2023.08.010
http://creativecommons.org/licenses/by-nc-nd/4.0/

AI Open 4 (2023) 98–110Z. Yang et al.
Fig. 1. Illustration of our ROGO framework. The lines with arrows denote the gradients
on task 2 (pale blue area) after learning task 1 (pale yellow area). We indicated the
global optimum by the red star (★). The black straight line denotes the frozen space,
to which gradient projection methods constrain the gradients to be orthogonal.

To address this challenge, we propose our Restricted Orthogonal
Gradient prOjection (ROGO) framework to facilitate forward knowl-
edge transfer. Instead of optimizing in an orthogonal direction, our
method adopts a restricted orthogonal constraint. As illustrated by the
red line in Fig. 1, our framework allows the parameters to be updated
in the direction oblique to the original frozen space, which explores
a larger optimization space and thus obtains better performance on
new tasks. Specifically, we design a simple yet effective strategy to
find the critical subspace, namely the relaxing space, within the frozen
space. The parameters are jointly optimized in the relaxing and orig-
inal optimization spaces to facilitate forward knowledge transfer. A
complimentary regularization term is introduced to consolidate pre-
vious knowledge as well. Extensive experiments on various continual
learning benchmarks demonstrate that our ROGO framework promotes
forward knowledge transfer and achieves better classification perfor-
mance compared with related state-of-the-art approaches. Moreover,
our framework can also be extended as an expansion-based method by
storing the parameters of the selected relaxing space, universally sur-
passing TRGP (Lin et al., 2022) and other expansion-based approaches.
We also provide theoretical proof to guarantee the efficiency of our
strategy.

2. Related work

2.1. Gradient projection methods

Gradient projection methods constrain the gradients to be orthog-
onal to the frozen space constructed by previous tasks to overcome
forgetting. OWM (Zeng et al., 2019) first proposed to modify the
gradients upon projector matrices. OGD (Farajtabar et al., 2020) fur-
ther keeps the gradients orthogonal to the space spanned by previous
gradients, whereas GPM (Saha et al., 2021) computes the frozen space
based on old data. NCL (Kao et al., 2021) combines the idea of gradient
projection and Bayesian weight regularization to mitigate catastrophic
forgetting. In spite of minimizing backward interference, these ap-
proaches suffer poor forward transfer and lack plasticity (Kong et al.,
2022). FS-DGPM (Deng et al., 2021) introduces a soft weight to regulate
the frozen space to achieve better performance on new tasks, requiring
extra data buffer and over ten times the training time. TRGP (Lin
et al., 2022) further expands the model with trust regions, introducing
additional scale parameters. On the contrary, we focus on facilitating
forward knowledge transfer relying on either previous data or extra
parameters by optimizing parameters in the direction oblique to the
frozen space.
99
2.2. Regularization-based methods

Regularization-based methods (Zhu et al., 2021; Yu et al., 2020)
introduce regularization terms to the objective function to penalize
the modification of parameters, requiring neither data buffers nor
extra parameters as gradient projection methods. EWC (Kirkpatrick
et al., 2017) first proposes to constrain the change based on ap-
proximated importance weights. HAT (Serra et al., 2018) learns task-
based hard attention to identify important parameters. Other meth-
ods, also called parameter-isolation methods, defy forgetting via freez-
ing the gradient updates of particular parameters (De Lange et al.,
2021). PackNet (Mallya and Lazebnik, 2018) iteratively prunes and
allocates parameters subset to incoming tasks, whereas Kumar et al.
(2021) facilitate inter-task transfer with the IBP (Griffiths and Ghahra-
mani, 2011). Instead of restricting individual parameter updates, our
approach constrains the direction of gradients.

2.3. Other methods

Replay-based methods (Lopez-Paz and Ranzato, 2017; Chaudhry
et al., 2018) maintain a complementary memory for old data, which
are replayed during learning new tasks. Recent approaches (Chen-
shen et al., 2018; Cong et al., 2020) deploy auxiliary deep generative
models to synthesize pseudo data. However, including extra data into
the current task introduces excessive training time (De Lange et al.,
2021). Expansion-based methods (Yoon et al., 2017, 2019) dynamically
allocate new parameters to learn new tasks. While these methods face
capacity explosion inevitably after learning a long sequence of tasks.
In contrast, our method maintains a fixed network architecture and
requires no previous data.

3. Restricted orthogonal gradient projection

3.1. Preliminaries

In a continual learning setting, we consider 𝑇 tasks arriving as a
sequence. When learning the current task, the datasets of old tasks are
inaccessible. We use an 𝐿-layer neural network with fixed capacity, and
parameters defined as = {𝑊 𝑙}𝐿𝑙=1, where 𝑊 𝑙 denotes the parameters
in the 𝑙th layer.

To mitigate catastrophic forgetting, gradient projection methods
construct the representative space, namely the frozen space, based on
previous tasks and optimize the parameters orthogonal to the frozen
space. Specifically, for each task 𝑡, Saha et al. (2021) obtain the layer-
wise representation space 𝑅𝑙

𝑡 by compressing the representation matrix
𝐇𝑙

𝑡 = [ℎ𝑙𝑡,1,… , ℎ𝑙𝑡,𝑁𝑡
], where 𝑁𝑡 denotes the number of samples in task 𝑡

and ℎ𝑙𝑡,𝑗 denotes the intermediate representation of the 𝑗th input. The
constructed representation spaces of previous tasks are then concate-
nated to be the frozen gradient space 𝑡 = {𝑈 𝑙

𝑡 }
𝐿
𝑙=1 = {𝑅𝑙

1 ∪⋯ ∪ 𝑅𝑙
𝑡}

𝐿
𝑙=1

for future training.
During training task 𝑡, gradients 𝑔𝑙𝑡 are layer-wise constrained to be

orthogonal to 𝑈 𝑙
𝑡−1. Particularly, assuming 𝐁𝑙

𝑡−1 = [𝑢𝑙𝑡−1,1,… , 𝑢𝑙𝑡−1,𝑁] as
the total 𝑁 orthogonal basis of 𝑈 𝑙

𝑡−1, GPM (Saha et al., 2021) modifies
the gradients as:

𝑔𝑙𝑡 = 𝑔𝑙𝑡 − Proj𝑈 𝑙
𝑡−1

(𝑔𝑙𝑡) = 𝑔𝑙𝑡 − 𝐁𝑙
𝑡−1(𝐁

𝑙
𝑡−1)

𝑇 𝑔𝑙𝑡 (1)

In spite of alleviating forgetting, the strict orthogonal constraint on
parameters hinders the forward knowledge transfer by the limited
optimization space, thus compromising the performance of new tasks.
TRGP (Lin et al., 2022) tackles this problem by selecting old tasks
relevant to the current task and expanding corresponding frozen spaces
as the trust regions. The scaled weight projection is further introduced
for memory-efficient updating and storing the parameters by scaling the

AI Open 4 (2023) 98–110Z. Yang et al.

d
g

𝑔

a
o
s

t
b
T
i
p

𝑔

B
𝑉
i
n
u
v
T

s
i
i
p
E
m
f

3

t

i
f

𝛩

w
r
n

⎧

⎪

⎨

⎪

⎩

w
r
r
h
𝑈

I
𝑈
i
t
𝑈

h
g
s
d

T
s

basis. Considering that task 𝑖 is selected as the trust region, the scaled
weight projection is:

Proj
𝑆𝑙
𝑖

𝑈 𝑙
𝑖
(𝑔𝑙𝑡) = 𝐁𝑙

𝑖𝐒
𝑙
𝑖(𝐁

𝑙
𝑖)
𝑇 𝑔𝑙𝑡 (2)

where 𝐒𝑙𝑖 denotes the scale matrix. For each task 𝑡, TRGP selects several
ifferent tasks as the trust regions 𝑈 𝑙

𝑖 . During the training phase,
radient 𝑔𝑙𝑡 is modified as:

𝑙
𝑡 = 𝑔𝑙𝑡 − Proj𝑈 𝑙

𝑡−1
(𝑔𝑙𝑡) +

∑

𝑖
Proj

𝑆𝑙
𝑖

𝑈 𝑙
𝑖
(𝑔𝑙𝑡) (3)

The parameters in the trust regions are retrained and the learned scale
matrices are stored in the memory. During the inference phase, TRGP
retrieves the model training on each task by replacing the parameters
with the scale matrices. The parameters 𝑊 𝑙

𝑡,𝐼 used for inference on task
𝑡 are:

𝑊 𝑙
𝑡,𝐼 = 𝑊 𝑙 −

∑

𝑖
Proj𝑈 𝑙

𝑖
(𝑊 𝑙) +

∑

𝑖
Proj

𝑆𝑙
𝑖

𝑈 𝑙
𝑖
(𝑊 𝑙) (4)

However, as tasks come, storing scaling matrices introduces increasing
extra parameters. Our experiments demonstrate that TRGP requires
around 5000% amount of the parameters regarding the initial network
after 20 tasks on MiniImageNet, see Fig. 3-(b). Therefore, we propose to
facilitate forward knowledge transfer within a fixed network capacity
by a restricted orthogonal constraint, allowing parameters updated in
the direction oblique to the whole frozen space.

3.2. Overview

In this section, we introduce our Restricted Orthogonal Gradient
prOjection (ROGO) framework. To better characterize the relationship
between the gradient direction and the frozen space, we first define the
angle between a given space and a vector in Definition 3.1.

Algorithm 1: Restricted orthogonal gradient projection

1: Initiate the frozen spaces 0 = {𝑈 𝑙
0}

𝐿
𝑙=1 as ∅s and optimize 1 for

task 1.
2: Compute frozen space 1 with representation matrices.
3: for 𝑡 ∈ 2, ..., 𝑇 do
4: Initiate the relaxing space {𝑉 𝑙

𝑡 }
𝐿
𝑙=1 as ∅s.

5: repeat
6: Fine-tune for predefined 𝑒𝑡 epochs.
7: Determine additional relaxing space {𝑉 𝑙,𝑛𝑒𝑤

𝑡 }𝐿𝑙=1 by the search-
ing strategy in Section 3.3.

8: 𝑉 𝑙
𝑡 ← 𝑉 𝑙

𝑡 ∪ 𝑉 𝑙,𝑛𝑒𝑤
𝑡 .

9: until 𝑉 𝑙,𝑛𝑒𝑤
𝑡 is ∅.

10: Optimize {𝑊 𝑙
𝑡 }

𝐿
𝑙=1 orthogonal to 𝑈 𝑙

𝑡−1∖𝑉
𝑙
𝑡 with the regularization

terms in Section 3.4.
11: Determine the representation space {𝑅𝑙

𝑡}
𝐿
𝑙=1.

12: Update the frozen space by 𝑈 𝑙
𝑡 = 𝑈 𝑙

𝑡−1 ∪ 𝑅𝑙
𝑡.

13: end for

Definition 3.1 (Angle Between Vector and Space). We denote the angle
between two inputs as 𝛩(⋅) and the inner product between two vectors
as ⟨⋅, ⋅⟩. The angle between a vector 𝑣 ∈ R𝑛 and a space 𝑈𝑛×𝑐 ⊂ R𝑛 is
defined as the minimum angle between the given vector 𝑣 and any unit
vector 𝑢 ∈ 𝑈 :

𝛩(𝑣, 𝑈) = arccosmax
𝑢∈𝑈

⟨𝑣, 𝑢⟩
‖𝑣‖

(5)

Instead of 90◦ in traditional gradient projection methods, we aim
to relax the angle between the frozen space and the modified gra-
dient to be an acute angle. However, directly rotating a vector in
a high-dimensional space is too flexible to control. Hence, we no-
tice Proposition 3.2.
100

f

Proposition 3.2. Given the full space 𝑅 and a random space 𝑈 ⊂ 𝑅, for
ny vector 𝑣 ∈ 𝑈⟂, where 𝑈⟂ = 𝑅∖𝑈 denotes the orthogonal complement
f 𝑈 , it can be modified to be oblique to the given space 𝑈 in any angle, by
caling and combining a vector 𝑣′ within a selected subspace 𝑈 ′ ⊆ 𝑈 .

According to Proposition 3.2, we can manipulate the gradient direc-
ion to be oblique to the entire frozen space 𝑈 𝑙

𝑡−1 in any target angle
y modifying the parameters within an appropriate subspace of 𝑈 𝑙

𝑡−1.
herefore, for each task 𝑡, instead of directly rotating the gradient, we

ntroduce the layer-wise relaxing space 𝑉 𝑙
𝑡 ⊆ 𝑈 𝑙

𝑡−1. During the training
hase, we modify the gradients as:
𝑙
𝑡 = 𝑔𝑙𝑡 − Proj𝑈 𝑙

𝑡−1∖𝑉
𝑙
𝑡
(𝑔𝑙𝑡) (6)

y jointly optimizing the parameters within the selected relaxing space
𝑙
𝑡 and the original optimization space, the strict orthogonal constraint
s relaxed. Hence, with a relaxing space whose basis is an empty set,
amely dim(𝑉 𝑙

𝑡) = 0, our framework works exactly the same as GPM,
nder the orthogonal constraint. Therefore, our framework can be
iewed as a generalization of GPM by regulating the relaxing space 𝑉 𝑙

𝑡 .
he relaxing space selection thus becomes the key procedure.

In Section 3.3, we introduce our searching strategy for the relaxing
pace. Given the relaxing space 𝑉 𝑙

𝑡 , we involve complementary regular-
zation loss to better consolidate previous knowledge. The procedure
s provided in Section 3.4. For better illustration, we provide the
rocedure of our method in Algorithm 1. Besides, we propose ROGO-
xp in Section 3.5, involving additional parameters as expansion-based
ethods, to further validate the flexibility and effectiveness of our

ramework.

.3. Searching the relaxing space

To determine the relaxing space 𝑉 𝑙
𝑡 , we first construct the represen-

ation space 𝑅𝑙
𝑔,𝑡 by the top-𝑘 principal eigenvectors of the represen-

tative matrix [𝑔𝑙𝑡,1,… , 𝑔𝑙𝑡,𝑁𝑡
], where 𝑔𝑙𝑡,𝑗 denotes the gradient of the 𝑗th

nput. The estimated importance is further characterized by the angle
rom 𝑅𝑙

𝑔,𝑡. Here we define that a vector 𝑑 is relaxable when:

(𝑑,𝑅𝑙
𝑔,𝑡) ≤ 𝛾 𝑙𝑡 (7)

here 𝛾 𝑙𝑡 is a predefined threshold. For task 𝑡, we aim to find the
elaxing space 𝑉 𝑙

𝑡 ⊆ 𝑈 𝑙
𝑡−1 spanned all by relaxable vectors in 𝑈 𝑙

𝑡−1,
amely:

max
𝑢∈𝑉 𝑙

𝑡

𝛩(𝑢, 𝑅𝑙
𝑔,𝑡) ≤ 𝛾 𝑙𝑡

min
𝑣∈𝑈 𝑙,𝑐

𝑡−1

𝛩(𝑣,𝑅𝑙
𝑔,𝑡) > 𝛾 𝑙𝑡

(8)

here 𝑈 𝑙,𝑐
𝑡−1 = 𝑈 𝑙

𝑡−1∖𝑉
𝑙
𝑡 denotes the complemented subspace of 𝑉 𝑙

𝑡 with
espect to 𝑈 𝑙

𝑡−1. Criterion (8) guarantees that all vectors in 𝑉 𝑙
𝑡 are

elaxable and there remains none relaxable vector in 𝑈 𝑙,𝑐
𝑡−1. However, it is

ard to construct the appropriate 𝑉 𝑙
𝑡 directly from the high-dimensional

𝑙
𝑡−1.

Therefore, we propose a simple yet efficient strategy to find 𝑉 𝑙
𝑡 .

nitiating 𝑉 𝑙
𝑡 as ∅, we iteratively select the closest vector to 𝑅𝑙

𝑔,𝑡 within
𝑙,𝑐
𝑡−1 by arg min𝛩(𝑑,𝑅𝑙

𝑔,𝑡) and then append it into 𝑉 𝑙
𝑡 as the basis if it

s relaxable. This procedure is repeated until no relaxable vector is left,
hus obtaining the target 𝑉 𝑙

𝑡 consisting of all relaxable vectors within
𝑙
𝑡−1.

To further substantiate the effectiveness of our searching strategy,
ere we introduce Theorem 3.3. According to Theorem 3.3, our strategy
uarantees to find the maximum space within the whole solution set
atisfying criterion (8). The pseudo-code of our searching strategy and
etailed proof are provided in Appendices D and A.2.

heorem 3.3. Denote = {𝑢|𝛩(𝑢, 𝑅𝑙
𝑔,𝑡) ≤ 𝛾 𝑙𝑡 and 𝑢 ∈ 𝑈 𝑙

𝑡−1} as the whole
olution set, the obtained relaxing space 𝑉 𝑙

𝑡 guarantees 𝑑𝑖𝑚(𝑉
𝑙
𝑡) ≥ 𝑑𝑖𝑚(𝑉),
or ∀𝑉 ⊂ .

AI Open 4 (2023) 98–110Z. Yang et al.

t
g

T
t
a

m
d

Moreover, we provide theoretical analysis on the upper bound of the
dimension of 𝑉 𝑙

𝑡 , which is also the number of iterations, to investigate
he efficiency of our strategy. Here we introduce Theorem 3.4, which
uarantees that the dimension of 𝑉 𝑙

𝑡 is no more than of the represen-
tation space 𝑅𝑙

𝑔,𝑡. In other words, the number of iterations is bounded.
Hence, as 𝑅𝑙

𝑔,𝑡 is constructed by the top-𝑘 principal eigenvectors, the
dimension of 𝑉 𝑙

𝑡 is further regulated by hyperparameters, of which the
ablation study is provided in Section 5. We also include the detailed
proof in Appendix A.3.

Theorem 3.4. Denote 𝑘𝑟 as the dimension of the representation space 𝑅𝑙
𝑔,𝑡

and 𝑘𝑣 as the dimension of the relaxing space 𝑉 𝑙
𝑡 , 𝑘𝑣 ≤ 𝑘𝑟, regardless of the

frozen space 𝑈 𝑙
𝑡−1.

3.4. Constrained update in the relaxing space

Given the selected relaxing space 𝑉 𝑙
𝑡 , the optimization space is en-

larged, thus facilitating forward knowledge transfer. In the meanwhile,
we also want to consolidate previous knowledge stored within 𝑉 𝑙

𝑡 .
One direct way is to incorporate additional regularization terms such
as EWC (Kirkpatrick et al., 2017). However, regularization terms are
designed for explicit parameters, which are not applicable to implicit
subspace in our framework. Therefore, we borrow the scaled weight
projection (Lin et al., 2022) to modify explicit parameters instead. With
the scale matrix 𝐒𝑙𝑡, the gradient 𝑔𝑙𝑡 is modified as:

𝑔𝑙𝑡 = 𝑔𝑙𝑡 − Proj𝑈 𝑙
𝑡−1

(𝑔𝑙𝑡) + Proj
𝑆𝑙
𝑡

𝑉 𝑙
𝑡
(𝑔𝑙𝑡) (9)

Notice that we update the parameters within 𝑙
𝑡 with 𝐒𝑙𝑡 after training

each task, instead of storing the parameters for inference as TRGP.
Parameters within 𝑙

𝑡 are then restrictedly fine-tuned by adding regu-
larization terms on 𝐒𝑙𝑡 of instead of directly on parameters. Specifically,
the objective function is:

𝑡 = (𝑡,(𝑡)) +
𝐿
∑

𝑙=1
𝛽𝑙‖𝐒𝑙𝑡 − 1(𝐒

𝑙
𝑡)‖

2
2 (10)

where 1(⋅) denotes the identity matrix with the same shape as the input
matrix and 𝛽𝑙 is the weight of the regularization term for layer 𝑙. During
backpropagation, gradients within the relaxing space 𝑉 𝑙

𝑡 are regulated
by 𝐒𝑙𝑡. To further validate our strategy, we also equip TRGP with
the above regularization terms for better comparison in Section 4.3.
Generally, in our method, we adopt our searching strategy to determine
the relaxing space and modify those parameters with constraints on the
scaling matrices.

However, during training, the direction of gradients shifts sharply
and frequently due to the steep learning scope of deep neural networks.
Diverse subspaces would be selected in different training phases. There-
fore, we iteratively examine whether there remains relaxable vectors
within the remaining frozen space 𝑈 𝑙,𝑐

𝑡−1 after limited epochs and then
search for additional relaxing space 𝑉 𝑙,𝑛𝑒𝑤

𝑡 . If additional relaxing space
𝑉 𝑙,𝑛𝑒𝑤
𝑡 is involved, we expand the scaling matrix with identity matrices

to accommodate the increased space. In contrast, TRGP maintains a
fixed-size scaling matrix throughout training. As the 𝑈 𝑙

𝑡−1 is fixed for
each task, the number of iterations of our strategy is naturally limited.
In the implementation, we further constrain the maximum number of
iterations for efficiency.

In general, by iteratively searching for the relaxing space and modi-
fying those gradients with additional regularization loss, our restricted
orthogonal method optimizes the parameters in the direction oblique
to the whole frozen space, thus facilitating forward knowledge trans-
fer while consolidating previous knowledge within a fixed network
101

capacity. (
3.5. Extensions

To further validate our framework, we propose ROGO-Exp, a mod-
ified version of our proposed ROGO, directly storing the parameters
within the relaxing space. Similar to TRGP, for each task 𝑡, we retrieve
the corresponding relaxing space {𝑉 𝑙

𝑡 }
𝐿
𝑙=1 and the scale matrices {𝐒𝑙𝑡}𝐿𝑙=1

during the inference phase. The modified parameters 𝑊 𝑙
𝑡,𝐼 used for

inference on task 𝑡 are:

𝑊 𝑙
𝑡,𝐼 = 𝑊 𝑙 − Proj𝑉 𝑙

𝑡
(𝑊 𝑙) + Proj

𝑆𝑙
𝑡

𝑉 𝑙
𝑡
(𝑊 𝑙) (11)

where 𝑊 𝑙 denotes the parameters of layer 𝑙 of current network. By
replacing the parameters in the relaxing space with the parameters
optimized in task 𝑡, the model achieves better performance, at the
price of expansive computational cost in long task sequences. Further
experimental results validate the efficiency of our ROGO-Exp against
state-of-the-art expansion-based methods.

4. Experiments

4.1. Experimental setup

Datasets: Following Saha et al. (2021), we evaluate our ap-
proach on CIFAR-100 Split (Krizhevsky and Hinton, 2009), MiniIma-
geNet (Vinyals et al., 2016), Permuted MNIST (PMNIST) (Kirkpatrick
et al., 2017). Moreover, we introduce the Mixture benchmark, pro-
posed by Serra et al. (2018), including eight datasets. In this work,
we conduct experiments on Mixture with the seven tasks sequence
except for TrafficSigns.1 Details and statistics of the datasets can be
found in Appendix B.1. Moreover, we include the details of network
architectures in Appendix B.2.

Baselines: We compare ROGO with competitive and well-estab-
lished methods within a fixed network capacity. For regularization-
based methods, we compare against EWC (Kirkpatrick et al., 2017)
and HAT (Serra et al., 2018). For gradient projection methods, we
consider OGD (Farajtabar et al., 2020) and GPM (Saha et al., 2021). For
replay-based methods, we adopt ER_Res (Chaudhry et al., 2019) and
A-GEM (Chaudhry et al., 2018). The memory buffer size for PMNIST,
CIFAR-100 Split, MiniImageNet, and Mixture are 1000, 2000, 500, and
3000, respectively. Moreover, we consider TRGP (Lin et al., 2022) as
a competitive approach under an expansion setting. Implementation
details are listed in Appendix B.3.

Metrics: Denote 𝐴𝑖,𝑗 as the test accuracy of task 𝑗 after learning
task 𝑖 and 𝑏𝑖 as the test accuracy of task 𝑖 at random initialization. We
employ the following three evaluation metrics: (1) Average Accuracy
(ACC) (Mirzadeh et al., 2020): the average test accuracy evaluated
after learning all tasks, defined as 1

𝑇
∑𝑇

𝑖=1 𝐴𝑇 ,𝑖; (2) Backward Transfer
(BWT) (Lopez-Paz and Ranzato, 2017): the average accuracy decrease
after learning all tasks, defined as 1

𝑇−1
∑𝑇−1

𝑖=1 (𝐴𝑇 ,𝑖 − 𝐴𝑖,𝑖); (3) Forward
ransfer (𝛺𝑛𝑒𝑤) (Kemker et al., 2018): the average accuracy of new
asks, defined as 1

𝑇−1
∑𝑇

𝑖=2(𝐴𝑖,𝑖 − 𝑏𝑖). As 𝑏𝑖 stays still across different
pproaches, we consider 1

𝑇−1
∑𝑇

𝑖=2 𝐴𝑖,𝑖. Besides, FWT (Lopez-Paz and
Ranzato, 2017) reflects the influence of the observed tasks on new tasks
in a zero-shot manner, defined as 1

𝑇−1
∑𝑇

𝑖=2(𝐴𝑖−1,𝑖−𝑏𝑖). In this paper, we
ainly focus on 𝛺𝑛𝑒𝑤, while FWT results are also provided. Detailed
efinitions are provided in Appendix B.4.

1 We fail to obtain TrafficSigns, as all the links provided in Stallkamp et al.
2011), Serra et al. (2018) and Saha et al. (2021) are expired.

AI Open 4 (2023) 98–110Z. Yang et al.

C
o
i
G

w
a
m
s
c

4

w
n
a
T
R

t

Table 1
Comparison of average accuracy and forward transfer. For each task, we mark the
best and the second best performance in bold and underline respectively. All results
reported are averaged over 5 runs.

Method CIFAR-100 Split MiniImageNet

ACC (%) 𝛺𝑛𝑒𝑤 (%) ACC (%) 𝛺𝑛𝑒𝑤 (%)

Multitaska 79.58 ± 0.54 – 69.46 ± 0.62 –

A-GEMb 63.98 ± 1.22 77.48 ± 0.40 57.24 ± 0.72 67.55 ± 1.20
ER_Resb 71.73 ± 0.63 77.13 ± 0.18 58.94 ± 0.85 69.48 ± 0.42

EWC 68.80 ± 0.88 69.87 ± 1.09 52.01 ± 2.53 63.45 ± 2.80
HAT 72.06 ± 0.50 71.50 ± 0.62 59.78 ± 0.57 62.63 ± 0.63
OGD 70.96 ± 0.32 73.86 ± 0.57 59.83 ± 0.62 62.02 ± 1.24
GPM 72.48 ± 0.40 71.53 ± 0.54 60.41 ± 0.61 61.63 ± 0.60
ROGO 74.04 ± 0.35 75.22 ± 0.36 63.66 ± 1.24 63.81 ± 0.39

Method PMNIST Mixture

ACC (%) 𝛺𝑛𝑒𝑤 (%) ACC (%) 𝛺𝑛𝑒𝑤 (%)

Multitaska 96.70 ± 0.02 – 81.29 ± 0.23 –

A-GEMb 83.56 ± 0.16 97.42 ± 0.03 59.86 ± 1.01 85.87 ± 0.42
ER_Resb 87.24 ± 0.53 97.37 ± 0.05 75.07 ± 0.55 86.35 ± 0.22

EWC 89.97 ± 0.57 93.13 ± 0.70 69.62 ± 2.69 74.41 ± 1.00
HAT – – 77.54 ± 0.18 79.26 ± 0.15
OGD 82.56 ± 0.66 97.40 ± 0.06 74.38 ± 0.27 81.97 ± 0.53
GPM 93.91 ± 0.16 96.56 ± 0.04 77.49 ± 0.68 82.13 ± 0.37
ROGO 94.20 ± 0.11 96.26 ± 0.10 77.91 ± 0.45 82.21 ± 0.42

aDenotes under the non-incremental setting.
bDenotes requiring an extra data buffer.

4.2. Main results

We show the comparative results on four benchmarks in Table 1.
The accuracy results of major baselines are adopted from GPM (Saha
et al., 2021) and we implement all the baselines to get the forward
knowledge transfer and forgetting results. Implementation details are
provided in Appendix B.3. We run each experiment five times and
report the mean results and the standard deviation. Detailed results
including the forgetting are provided in Appendix C.2.

According to Table 1, ROGO dominates EWC across all benchmarks
and generally outperforms HAT. Although HAT obtains comparable
accuracy on Mixture, ROGO gains 2.7% better 𝛺𝑛𝑒𝑤 on average. For
gradient projection methods, compared with GPM, ROGO achieves over
1% and 3% higher ACC on CIFAR-100 Split and MiniImageNet respec-
tively while improving the forward knowledge transfer. We observe
that OGD+ achieves the better 𝛺𝑛𝑒𝑤 on several datasets. Whereas, it
fails on the accuracy with significant forgetting. Also, we notice that
A-GEM and ER_Res gain better 𝛺𝑛𝑒𝑤, in spite of the inferior accuracy
compared with GPM and especially ROGO. We assume that this is
because replay-based methods explore the full optimization space with
extra data, while both regularization-based and gradient projection
methods constrain the optimization space to mitigate forgetting. In gen-
eral, ROGO obtains the best accuracy and improves forward knowledge
transfer without extra data buffers across all datasets.

Moreover, we compare the average accuracy after learning each task
on CIFAR-100 Split with GPM, as GPM achieves the highest accuracy
among selected baselines. As shown in Fig. 2-(a), ROGO increasingly
gains superior performance by a larger margin, as the optimization
space of GPM is gradually constrained by accumulated frozen spaces.
We provide detailed results on other benchmarks in Appendix C.1.
For better illustration, we also exhibit the accuracy evolution of spe-
cific tasks during sequential training in Fig. 2-(b). Here we choose
the second task on CIFAR-100 Split. According to the results, ROGO
universally outperforms GPM over the task sequence. Results of three
randomly selected tasks are provided in Appendix C.4 respectively. In
addition, we observe the accuracy on new tasks in Fig. 2-(c). Similar
102

to the average accuracy, ROGO achieves increasingly better 𝛺𝑛𝑒𝑤 by
Table 2
Comparison of average accuracy and forward transfer with TRGP under an expansion
setting. The percentages indicate the ratios of the rank of the relaxing space with respect
to the frozen space. For each dataset, we mark the best and second best performance
in bold and underline. Detailed results are provided in Appendix C.7.

Method CIFAR-100 Split MiniImageNet

ACC (%) 𝛺𝑛𝑒𝑤 (%) ACC (%) 𝛺𝑛𝑒𝑤 (%)

TRGP 74.46 ± 0.22 75.01 ± 0.22 61.78 ± 1.94 63.08 ± 1.40
ROGO-Exp 50% 74.90 ± 0.37 75.68 ± 0.43 63.46 ± 0.85 62.76 ± 0.64
ROGO-Exp 80% 74.97 ± 0.30 75.46 ± 0.17 62.57 ± 1.32 62.32 ± 1.19
ROGO-Exp T% 75.34 ± 0.61 75.86 ± 0.42 62.78 ± 1.00 62.42 ± 1.28

Method PMNIST Mixture

ACC (%) 𝛺𝑛𝑒𝑤 (%) ACC (%) 𝛺𝑛𝑒𝑤 (%)

TRGP 96.34 ± 0.11 97.07 ± 0.14 83.54 ± 1.15 84.88 ± 0.95
ROGO-Exp 50% 96.44 ± 0.20 97.07 ± 0.10 82.45 ± 0.49 84.13 ± 0.25
ROGO-Exp 80% 96.76 ± 0.15 97.20 ± 0.08 83.33 ± 0.31 84.60 ± 0.20
ROGO-Exp T% 97.01 ± 0.08 97.26 ± 0.05 83.62 ± 0.26 84.44 ± 0.42

Table 3
Comparison of average accuracy and forward transfer with TRGP within a fixed
network capacity. We modify TRGP as TRGP-Reg with the same regularization terms.
𝛽 indicates the regularization weight. For each dataset, we mark the best and
second best performance in bold and underline. Detailed results are provided in
Appendix C.7.

Method CIFAR-100 Split MiniImageNet

ACC (%) 𝛺𝑛𝑒𝑤 (%) ACC (%) 𝛺𝑛𝑒𝑤 (%)

TRGP-Reg 𝛽 = 1 72.01 ± 0.30 73.17 ± 0.24 55.81 ± 2.43 59.14 ± 1.00
TRGP-Reg 𝛽 = 5 71.96 ± 0.40 72.64 ± 0.67 58.81 ± 2.24 62.05 ± 0.74
TRGP-Reg 𝛽 = 50 72.49 ± 0.09 72.67 ± 0.26 22.69 ± 0.39 20.39 ± 0.36
ROGO 74.04 ± 0.35 75.22 ± 0.36 63.66 ± 1.24 63.81 ± 0.39

Method PMNIST Mixture

ACC (%) 𝛺𝑛𝑒𝑤 (%) ACC (%) 𝛺𝑛𝑒𝑤 (%)

TRGP-Reg 𝛽 = 1 76.57 ± 2.69 94.95 ± 0.23 73.31 ± 1.05 83.64 ± 0.38
TRGP-Reg 𝛽 = 5 75.50 ± 3.96 95.47 ± 0.30 74.71 ± 0.85 83.27 ± 0.24
TRGP-Reg 𝛽 = 50 76.56 ± 3.83 95.88 ± 0.19 17.36 ± 0.86 7.27 ± 0.98
ROGO 94.20 ± 0.11 96.26 ± 0.10 77.91 ± 0.45 82.21 ± 0.42

relaxing the strict orthogonal constraint. Results on other benchmarks
included in Appendix C.3 further substantiate this phenomenon.

To understand our relaxing strategy better, we further conduct
experiments on different thresholds 𝜖, which regulate the dimension of
the frozen space. Saha et al. (2021) argue that 𝜖 mediates the stability-
plasticity dilemma by controlling the frozen space and thus is critical
for GPM. However, ROGO enables the frozen space to be adaptively
relaxed regarding the current task. Therefore, 𝜖 plays a much less
important role in ROGO. We present the performance of different 𝜖 on

IFAR-100 Split in Fig. 2-(d). As shown in Fig. 2-(d), the performance
f GPM drops significantly when 𝜖 ≥ 0.97, the optimal value reported
n GPM, while ROGO consistently performs well even with 𝜖 = 0.98.
enerally, ROGO is more robust on the threshold 𝜖.

In brief, our approach universally outperforms selected baselines
ithout extra data buffers. Achieving better average accuracy, ROGO
lso improves forward knowledge transfer by exploring a larger opti-
ization space than GPM. To validate the efficiency of our relaxing

trategy, we further compare ROGO-Exp with well-established and
ompetitive expansion-based methods in the next section.

.3. Comparison with expansion-based methods

The above experiments exhibit the superiority of our approach
hen maintaining a fixed network capacity. However, under the sce-
ario with no limit on the network capacity, expansion-based methods
chieve great performance by allocating new neurons or modules.
herefore, to further validate our strategy, we compare ROGO and
OGO-Exp with relative expansion-based methods.

In this section, we adopt TRGP (Lin et al., 2022), which expands
he optimization space by retraining parameters within the selected

AI Open 4 (2023) 98–110Z. Yang et al.

a
i

n
a

t
T
a
r
n
T
t
w
f
p
h

i
c
T
s
c
T
a
T
o
R
b
p
w
e

Fig. 2. Results on CIFAR-100 Split setting: (a) average accuracy after learning each
task; (b) accuracy evolution of a randomly selected task; (c) accuracy tested on task 𝑖
fter learning task 𝑖; (d) average accuracy of different 𝜖. The optimum 𝜖 value of GPM
s annotated by a red circle ‘‘o’’, and the shaded area indicates the standard deviation.

Fig. 3. (a) Relaxing ratios of the last layer on three datasets. (b) Ratios of the
umber of extra parameters concerning the number of the parameters of the network
rchitecture on MiniImageNet.

rust regions, achieving superior performance. In the inference phase,
RGP reuses the parameters in corresponding trust regions memorized
fter learning this task. In contrast, GPM and ROGO only store the
epresentation of the frozen space. Therefore, although indeed a stable
etwork capacity is allocated for each task, the entire memory size of
RGP grows continually. As shown in Fig. 3-(b), after learning the last
ask on MiniImageNet, TRGP requires around 5000% extra parameters
ith respect to the network capacity. Results on other benchmarks

urther substantiate that TRGP introduces a significant number of extra
arameters. Thus, we categorize TRGP as an expansion-based method
ere.

In this setting, the main difference between ROGO-Exp and TRGP
s the strategy of deciding which part of the frozen space to reuse. We
onduct experiments on all four benchmarks and report the results in
able 2. The percentages indicate the ratios of the rank of the relaxing
pace with respect to the corresponding frozen space. We evaluate two
onstant ratios and further use the ratios in TRGP, denoted as T%. As
RGP selects the top 2 tasks as the trust regions, T% is larger than 80%
t most times. According to Table 2, ROGO-Exp universally outperforms
RGP, even by relaxing only 50% of the frozen space. Moreover, we
bserve that ROGO gains superior performance over both TRGP and
OGO-Exp on MiniImageNet. We assume that the reason is the positive
ackward transfer. Training the network on new tasks also benefits the
revious task. In general, our approach achieves better performance
ith a comparable size of the relaxing space, which substantiates the
103

fficiency of our searching strategy.
Table 4
Ablation study of 𝜁 = cos 𝛾 on CIFAR100-Split, where 𝛾 is the threshold for the relaxing
strategy. 𝜁𝑐𝑜𝑛𝑣 and 𝜁𝑓𝑐 denote the threshold for convolutional and fully connected layers,
respectively. Here we report the relaxing ratio of each layer.
𝜁𝑐𝑜𝑛𝑔 𝜁𝑓𝑐 Conv1 Conv2 Conv3 Fc1 Fc2 ACC BWT

0.20 0.20 38.09% 34.63% 51.11% 80.75% 60.56% 71.97% −2.97%
0.50 0.50 30.26% 28.75% 40.53% 34.78% 11.26% 72.58% −2.41%
0.80 0.80 28.51% 18.71% 25.68% 5.94% 0.23% 73.34% −2.04%
0.90 0.90 27.87% 14.16% 18.65% 1.08% 0.07% 73.68% −1.76%
0.95 0.90 26.31% 10.51% 13.63% 0.97% 0.04% 74.04% −1.43%
0.95 0.95 24.12% 10.52% 13.83% 0.08% 0.00% 73.87% −1.53%
0.99 0.99 18.66% 5.51% 9.51% 0.00% 0.00% 73.70% −1.34%

Table 5
Ablation study of 𝛽 on CIFAR100-Split, where 𝛽 is the regularization weight.
𝛽 ACC BWT

0.0 72.43% −3.03%
0.1 72.94% −2.57%
0.5 73.68% −1.88%
1.0 74.04% −1.34%
5.0 73.77% −1.42%
10.0 73.42% −0.87%
50.0 72.65% −0.83%

We further modify TRGP as TRGP-Reg with similar regularization
terms on the scale matrices as our ROGO to compare the relaxing
strategies. We report the results on four benchmarks with three repre-
sentative regularization weights 𝛽 on TRGP-Reg in Table 3. As shown
in Table 3, ROGO significantly outperforms TRGP-Reg, especially on
PMNIST, gaining around 20% ACC improvement. Generally, ROGO
achieves better or comparable 𝛺𝑛𝑒𝑤 than TRGP under or without the
constraint of a fixed network capacity. Detailed results in this section
are provided in Appendix C.7.

5. Analysis and discussion

To gain a deeper insight into ROGO, we investigate the trend of
scales of the space relaxed by our strategy. With the theoretical upper
bound of the rank of the relaxed subspace provided in Theorem 3.4,
we further inspect the ratios of the relaxing spaces concerning corre-
sponding frozen spaces in practice. Fig. 3-(a) exhibits the results of the
last layer on three datasets. Generally, relaxing ratios maintain a stable
trend, fluctuating smoothly within a small range over sequential tasks.
As different tasks explore different optimization directions, ideal relax-
ing spaces vary across tasks, consistent with our fluctuation. To further
investigate our method, we provide the ablation study in Tables 4 and
5.

Ablation study of the relaxing ratios. ROGO mediates the
stability-plasticity dilemma by controlling the dimension and flexibility
of the relaxing space by 𝛾 in Eq. (8). For better illustration, here we
represent 𝛾 by 𝜁 = cos 𝛾. We first conduct an ablation study of 𝜁 ,
reporting both the performance and the relaxing ratios in Table 4,
where 𝜁𝑐𝑜𝑛𝑣 denotes the hyper-parameter for convolutional layers and
𝜁𝑓𝑐 denotes the hyper-parameter for fully connected layers. As shown
in Table 4, increasing 𝜁 gradually constrains the scale of the relaxing
space, thus alleviating the forgetting. On the other hand, a small
𝜁 guarantees sufficient forward knowledge transfer, while fails on
consolidating previous knowledge. Generally, our method persists in
a superb performance with 𝜁 ≥ 0.80.

Ablation study of the regularization weights. Moreover, we ob-
serve the performance of ROGO with various regularization weights
𝛽 in Table 5. In this work, we adopt a consistent 𝛽 for the entire
network. According to Table 5, Similarly, we observe less forgetting on
larger 𝛽, which constrains the update of parameters within the relaxing
space more strictly. However, strict constraints also lead to limited
performance on new tasks as discussed in Section 4. In a nutshell, 𝜁

AI Open 4 (2023) 98–110Z. Yang et al.

𝑣

w

w

𝑣

w
𝑣

A

s
s
b
w

and 𝛽 operate together in ROGO to overcome catastrophic forgetting
and enhance forward transfer.

Training time. The dimension of the frozen spaces keeps growing
as the tasks accumulate, leading to expanding range for searching
relaxing spaces. Therefore, the computation complexity and time con-
sumption are supposed to increase gradually. We further reported the
time consumption comparison on CIFAR-100 Split and MiniImageNet
in Appendix C.5, where ROGO takes around 50% more time than GPM,
similar to TRGP. In general, the practical efficiency of our approach is
acceptable.

6. Conclusion

In this paper, we proposed ROGO, a novel continual learning frame-
work that facilitates forward knowledge transfer in gradient projec-
tion methods within a fixed network capacity. ROGO imposes a re-
stricted orthogonal constraint allowing parameters to be updated in
the direction oblique to the whole frozen space, which thus explores
a larger optimization space. Extensive experiments demonstrate that
our ROGO framework surpasses related state-of-the-art approaches on
diverse benchmarks. Moreover, we proposed ROGO-Exp that allows
network expansion with the relaxing space, which achieves better
performance than related expansion-based methods.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Founda-
tion of China (No. 61925601, 62276152). We thank all anonymous
reviewers for their valuable comments and suggestions on this work.

Appendix A. Proof

In this section, we sequentially provide the proof of Theorems 3.3
and 3.4. For better comprehension, we first introduce complementary
Lemma A.1. For simplification, all vectors here are assumed to be unit
vectors, namely ‖𝑣‖ = 1.

Lemma A.1. Denote the relaxed space as 𝑉 = span{𝑣1, 𝑣2,… , 𝑣𝑛}, where
𝑣𝑛 is the last base included in 𝑉 . Given representation space 𝑈 , ∀𝑣 ∈ 𝑉 , we
have 𝛩(𝑣, 𝑈) ≤ 𝛩(𝑣𝑛, 𝑈).

A.1. Proof of Lemma A.1

Depicting the angle by projection form, Lemma A.1 can be expressed
as:

∀𝑣 ∈ 𝑉 , ‖Proj𝑈 (𝑣)‖ ≥ ‖Proj𝑈 (𝑣𝑛)‖ (A.1)

Denote 𝐁 = [𝑢1,… , 𝑢𝑚] as the representative matrix of the repre-
sentation space 𝑈 = span{𝑢1,… , 𝑢𝑚}, where 𝑢𝑖 is the 𝑖th normalized
orthogonal base of 𝑈 . Lemma A.1 can be further expressed as:

∀𝑣 ∈ 𝑉 , 𝑣𝑇𝐁𝐁𝑇 𝑣 ≥ 𝑣𝑇𝑛 𝐁𝐁
𝑇 𝑣𝑛 (A.2)

As 𝑣𝑖s are the basis sequentially appended by our searching strategy,
for any 𝑖 ≤ 𝑗, we have:

𝑣𝑇𝑖 𝐁𝐁
𝑇 𝑣𝑖 ≥ 𝑣𝑇𝑗 𝐁𝐁

𝑇 𝑣𝑗 (A.3)

Consider a special case where the current relaxed subspace has
only one base, denoted by 𝑉 = span{𝑣1}, namely 𝑛 = 1. Obviously,
Lemma A.1 is true in this case. Thus, we consider the general case that
104

𝑛 ≥ 2.
We provide proof by inductive reasoning. Note that as we assume
all vectors to be unit vectors, we have ∑

𝑖 ‖𝑤𝑖‖
2
2 = 1.

First, we consider a special case 𝑉 = span{𝑣1, 𝑣2}, namely 𝑛 = 2.
Assume there exists 𝑣 = 𝑤1𝑣1 + 𝑤2𝑣2 that 𝑣𝑇𝐁𝐁𝑇 𝑣 < 𝑣𝑇2 𝐁𝐁

𝑇 𝑣2, with
𝑤2

1 +𝑤2
2 = 1, we have:

𝑤2
1𝑣

𝑇
2 𝐁𝐁

𝑇 𝑣2 > 𝑤2
1𝑣

𝑇
1 𝐁𝐁

𝑇 𝑣1 + 2𝑤1𝑤2𝑣
𝑇
1 𝐁𝐁

𝑇 𝑣2 (A.4)

Construct 𝑣′ = 𝑤2𝑣1 −𝑤1𝑣2, we have:

′𝑇𝐁𝐁𝑇 𝑣′ = 𝑤2
2𝑣

𝑇
1 𝐁𝐁

𝑇 𝑣1 +𝑤2
1𝑣

𝑇
2 𝐁𝐁

𝑇 𝑣2 − 2𝑤1𝑤2𝑣
𝑇
1 𝐁𝐁

𝑇 𝑣2
> 𝑤2

2𝑣
𝑇
1 𝐁𝐁

𝑇 𝑣1 +𝑤2
1𝑣

𝑇
2 𝐁𝐁

𝑇 𝑣2 +𝑤2
1𝑣

𝑇
1 𝐁𝐁

𝑇 𝑣1 −𝑤2
1𝑣

𝑇
2 𝐁𝐁

𝑇 𝑣2
= 𝑣𝑇1 𝐁𝐁

𝑇 𝑣1

(A.5)

hich contradicts 𝛩(𝑣1, 𝑈) ≤ 𝛩(𝑣, 𝑈) for ∀𝑣 ∈ span{𝑣1, 𝑣2}.
Then we consider the general case 𝑉 = span{𝑣1,… , 𝑣𝑡}. For ∀𝑣 ∈ 𝑉 ,

e have 𝛩(𝑣, 𝑈) ≤ 𝛩(𝑣𝑡, 𝑈). After 𝑣𝑡+1 is included, we assume that
there exists 𝑣 ∈ 𝑉 that 𝛩(𝑣, 𝑈) > 𝛩(𝑣𝑡+1, 𝑈). Then we can find the
maximum 𝑠 satisfying that there exists 𝑣 =

∑𝑠
𝑖=1 𝑤𝑖𝑣𝑖 + 𝑤𝑡+1𝑣𝑡+1 that

𝛩(𝑣, 𝑈) > 𝛩(𝑣𝑡+1, 𝑈) and for ∀𝑣′ =
∑𝑠−1

𝑖=1 𝑤𝑖𝑣𝑖 + 𝑤𝑡+1𝑣𝑡+1, we have
𝛩(𝑣′, 𝑈) ≤ 𝛩(𝑣𝑡+1, 𝑈). When 𝑠 = 1, it is similar to the special case,
so the proof is omitted. Thus, we consider the case where 𝑠 ≥ 2. For
simplification, we express 𝑣 as 𝑣 = 𝑐0𝑣0 + 𝑐1𝑣𝑠 + 𝑐2𝑣𝑡+1 with 𝑣0 =
∑𝑠−1

𝑖=1 𝑎𝑖𝑣𝑖, where 𝑐𝑖s and 𝑎𝑖s are coefficients. We have:

(𝑐0𝑣0 + 𝑐1𝑣𝑠 + 𝑐2𝑣𝑡+1)𝑇𝐁𝐁𝑇 (𝑐0𝑣0 + 𝑐1𝑣𝑠 + 𝑐2𝑣𝑡+1) < 𝑣𝑇𝑡+1𝐁𝐁
𝑇 𝑣𝑡+1 (A.6)

As 𝛩(𝑤1𝑣0 +𝑤2𝑣𝑠, 𝑈) ≤ 𝛩(𝑣𝑠, 𝑈) ≤ 𝛩(𝑣𝑡+1, 𝑈), we have:

(𝑤1𝑣0 +𝑤2𝑣𝑠)𝑇𝐁𝐁𝑇 (𝑤1𝑣0 +𝑤2𝑣𝑠) ≥ 𝑣𝑇𝑠 𝐁𝐁
𝑇 𝑣𝑠 (A.7)

which is:

𝑤2
1𝑣

𝑇
0 𝐁𝐁

𝑇 𝑣0 + 2𝑤1𝑤2𝑣
𝑇
0 𝐁𝐁

𝑇 𝑣𝑠 ≥ 𝑤2
1𝑣

𝑇
𝑠 𝐁𝐁

𝑇 𝑣𝑠 ≥ 𝑤2
1𝑣

𝑇
𝑡 𝐁𝐁

𝑇 𝑣𝑡 (A.8)

Similarly we have:

𝑤2
1𝑣

𝑇
0 𝐁𝐁

𝑇 𝑣0 + 2𝑤1𝑤2𝑣
𝑇
0 𝐁𝐁

𝑇 𝑣𝑡 ≥ 𝑤2
1𝑣

𝑇
𝑡 𝐁𝐁

𝑇 𝑣𝑡 (A.9)

Then we can express Eq. (A.6) as:

𝑣𝑇𝑡+1𝐁𝐁
𝑇 𝑣𝑡+1 > (𝑐20 + 𝑐22)𝑣

𝑇
𝑡 𝐁𝐁

𝑇 𝑣𝑡 + 𝑐21𝑣
𝑇
𝑠 𝐁𝐁

𝑇 𝑣𝑠 + 2𝑐1𝑐2𝑣𝑇𝑠 𝐁𝐁
𝑇 𝑣𝑡 (A.10)

As ‖𝑣‖ = ‖𝑣𝑖‖ = 1, 𝑐20 + 𝑐21 + 𝑐22 = 1. Then we have:

−2𝑐1𝑐2𝑣𝑇𝑠 𝐁𝐁
𝑇 𝑣𝑡 > 𝑐21𝑣

𝑇
𝑠 𝐁𝐁

𝑇 𝑣𝑠 − 𝑐21𝑣
𝑇
𝑡+1𝐁𝐁

𝑇 𝑣𝑡+1 (A.11)

Construct 𝑣′ = 𝑐2𝑣𝑠−𝑐1𝑣𝑡+1
√

𝑐21+𝑐
2
2

, we have:

′𝑇𝐁𝐁𝑇 𝑣′ = 1
𝑐21 + 𝑐22

(𝑐22𝑣
𝑇
𝑠 𝐁𝐁

𝑇 𝑣𝑠 + 𝑐21𝑣
𝑇
𝑡+1𝐁𝐁

𝑇 𝑣𝑡+1 − 2𝑐1𝑐2𝑣𝑇𝑠 𝐁𝐁
𝑇 𝑣𝑡)

> 1
𝑐21 + 𝑐22

(𝑐22𝑣
𝑇
𝑠 𝐁𝐁

𝑇 𝑣𝑠 + 𝑐21𝑣
𝑇
𝑡+1𝐁𝐁

𝑇 𝑣𝑡+1

+ 𝑐21𝑣
𝑇
𝑠 𝐁𝐁

𝑇 𝑣𝑠 − 𝑐21𝑣
𝑇
𝑡+1𝐁𝐁

𝑇 𝑣𝑡+1)

= 𝑣𝑇𝑠 𝐁𝐁
𝑇 𝑣𝑠

(A.12)

hich contradicts 𝛩(𝑣𝑠, 𝑈) ≤ 𝛩(𝑣, 𝑈) for ∀𝑣 ∈ span{𝑣𝑠, 𝑣𝑠+1,… , 𝑣𝑡,
𝑡+1}.

Thus, for ∀𝑣 ∈ 𝑉 = span{𝑣1,… , 𝑣𝑛}, we have 𝛩(𝑣, 𝑈) ≤ 𝛩(𝑣𝑛, 𝑈).

.2. Proof of Theorem 3.3

Here we provide proof of Theorem 3.4. Denote the whole solution
et as 𝑆 = {𝑢|𝛩(𝑢, 𝑈) ≤ 𝛾 and 𝑢 ∈ 𝑈𝑓 } where 𝑈 is the representation
pace, 𝑈𝑓 is the frozen space and 𝛾 is the threshold. Theorem 3.3 can
e expressed as that all subspace 𝑉 ′ ⊆ 𝑆 satisfies dim(𝑉 ′) ≤ dim(𝑉),
here 𝑉 is the relaxing space obtained by our searching strategy.

AI Open 4 (2023) 98–110Z. Yang et al.

r
o
𝛩

d

t
o
t

A

a

w

∀

𝑘

C
h

e
h
t
p
a
a
e
W
e
h
e
(
C
w
(
a
s
s

b
F
f

2
n
2
t

m
a
M
t

R
M
i
(
o

B

H
A
(
(
b
(
w
u
s
b
e
M
8

h
i
w
5
a

c
u
l

For the sake of contradiction, we assume there exists 𝑉 ′ ⊆ 𝑆 that
dim(𝑉 ′) > dim(𝑉). Denote 𝑉 𝑐

𝑓 as the orthogonal complement of 𝑉 with
espect to the frozen space 𝑈𝑓 , as the relaxing space is a subspace
f the frozen space. According to Lemma A.1, for ∀𝑣 ∈ 𝑉 𝑐

𝑓 , we have
(𝑣, 𝑈) > 𝛾. We also have:

im(𝑉 ′ ∩ 𝑉 𝑐
𝑓) = dim(𝑉 ′) + dim(𝑉 𝑐

𝑓) − dim(𝑉 ′ + 𝑉 𝑐
𝑓) > 0 (A.13)

Thus, there exists 𝑣′ ∈ 𝑉 ′ that 𝑣′ ∈ 𝑈 𝑐
𝑓 , namely there exists 𝑣′ ∈ 𝑆

hat 𝛩(𝑣′, 𝑈) > 𝛾, which is contradict. Therefore, the relaxing space
btained by our searching strategy takes up the maximum subspace of
he whole solution set.

.3. Proof of Theorem 3.4

Here we provide proof of Theorem 3.4. Denote the relaxing space
nd the representation space as 𝑉 and 𝑈 = span{𝑢1,… , 𝑢𝑘𝑟} respec-

tively. With Lemma A.1, we have ∀𝑣 ∈ 𝑉 , 𝛩(𝑣, 𝑈) ≤ 𝛩(𝑣𝑘𝑣 , 𝑈) < 𝜋
2 ,

here 𝑘𝑣 denotes dim(𝑉), the dimension of 𝑉 . In other words,

𝑣 ∈ 𝑉 , 𝑣 ̸⟂ 𝑈 (A.14)

Similar to Theorem 3.4, assume the dimension of 𝑉 is larger than
𝑟, namely dim(𝑉) > dim(𝑈) = 𝑘𝑟. Denote 𝑈 𝑐 as the orthogonal com-

plement of 𝑈 with respect to the whole space R. Obviously, dim(𝑈 𝑐) =
𝑛 − 𝑘𝑟, where 𝑛 is the dimension of R. Then we have:

dim(𝑉 ∩ 𝑈 𝑐) = dim(𝑉) + dim(𝑈 𝑐) − dim(𝑉 + 𝑈 𝑐)

> 𝑘𝑟 + (𝑛 − 𝑘𝑟) − 𝑛 = 0
(A.15)

Thus, there exists 𝑣′ ∈ 𝑉 such that 𝑣′ ∈ 𝑈 𝑐 too. As 𝑈 𝑐 is the
orthogonal complement, ∀𝑢 ∈ 𝑈 𝑐 , 𝑢 ⟂ 𝑈 . Then we have 𝑣′ ⟂ 𝑈 , which
contradicts Eq. (A.14). Therefore, the assumption is aborted. We have
that 𝑘𝑣 ≤ 𝑘𝑟. The upper bound of the dimension of 𝑉 is 𝑘𝑟, namely the
dimension of the representation space 𝑈 .

Appendix B. Experimental setup

B.1. Datasets

Here we introduce the datasets we use for evaluation. (1) CIFAR-
100 Split Saha et al. (2021) constructed CIFAR-100 Split, by splitting

IFAR100 (Krizhevsky and Hinton, 2009) into 10 tasks where each task
as 10 classes. (2) MiniImageNet Following Saha et al. (2021), we

split MiniImageNet (Vinyals et al., 2016) into 20 sequential tasks with
5 classes each. (3) Permuted MNIST (PMNIST) PMNIST (Kirkpatrick
t al., 2017) is a variant of MNIST (LeCun et al., 1998) where each task
as a different permutation of inputting images, consists of 10 sequen-
ial tasks with 10 classes each. (4) Mixture Serra et al. (2018) first pro-
osed Mixture consisting of 8 datasets, including CIFAR-10 (Krizhevsky
nd Hinton, 2009), MNIST (LeCun et al., 1998), CIFAR-100 (Krizhevsky
nd Hinton, 2009), SVHN (Netzer et al., 2011), FashionMNIST (Xiao
t al., 2017), TrafficSigns (Stallkamp et al., 2011), FaceScrub (Ng and
inkler, 2014), and NotMNIST (Bulatov, 2011), from which Ebrahimi

t al. (2020) further constructed 5-Datasets. Here we follow the original
arder benchmark. Particularly, we consider all tasks as a sequence
xcept TrafficSigns (Stallkamp et al., 2011), which we failed to access.
5) CIFAR-100 Sup In addition, following Yoon et al. (2019), we adopt
IFAR-100 Sup consisting of 20 superclasses as sequential tasks. Here
e adopt the five different predefined orders proposed by Yoon et al.

2019) and report the main results in Appendix C.7. Among all evalu-
ted datasets, PMNIST is a benchmark under the domain-incremental
cenario, while other four datasets are under the task-incremental
cenario.

Moreover, we provide the statistics of selected datasets in Ta-
les B.6 and B.7. For the Mixture benchmark, the images of MNIST,
ashionMNIST, and notMNIST are replicated across all RGB channels
105

ollowing Serra et al. (2018). 0
Table B.6
Statistics of CIFAR-100 Split, MiniImageNet, and PMNIST.

CIFAR-100 Split CIFAR-100 Sup MiniImageNet PMNIST

Image size 32 × 32 32 × 32 84 × 84 28 × 28
Channels 3 3 3 1
Classes 100 100 100 10
Tasks 10 20 20 10
Classes/task 10 5 5 10
Training samples/task 4750 2375 2375 54,000
Validation samples/task 250 125 125 6000
Testing samples/task 1000 500 500 10,000

B.2. Model details

MLP architecture: We adopt a 3-layer model including two hid-
den layers with 100 neurons each for the PMNIST setting, the same
as Lopez-Paz and Ranzato (2017). ReLU is used as the activate function
here and for all other architectures. Also, we use softmax with cross
entropy loss on all settings.

AlexNet architecture: For CIFAR-100 Split setting, we adopt the
same network as Serra et al. (2018) with batch normalization, including
two fully connected layers and three convolutional layers. The convolu-
tional layers have 4 × 4, 3 × 3, and 2 × 2 kernel sizes with 64, 128, and
56 filters respectively. After each convolutional layer, we add batch
ormalization and 2 × 2 max-pooling. Each fully connected layer has
048 units. For the first two layers, we use the dropout of 0.2, and for
he rest layers, we use the dropout of 0.5.
Modified LeNet-5 architecture: For the CIFAR-100 Sup setting, a

odified LeNet-5 architecture consisting of two convolutional layers
nd two fully connected layers is adopted, similar to Saha et al. (2021).
ax-pooling of 3 × 2 is used after each convolutional layer. The last

wo layers have 800 and 500 units respectively.
Reduced ResNet-18 architecture: We adopt the same reduced

esNet-18 architecture as Saha et al. (2021) for the MiniImageNet and
ixture settings, using 2 × 2 average-pooling before the classifier layer

nstead of the 4 × 4 average-pooling used by Lopez-Paz and Ranzato
2017). Moreover, we present the dimension of the representation space
f each layer of our architectures in Table B.8.

.3. Implementation details

We use the official implementation of GPM (Saha et al., 2021),
AT (Serra et al., 2018), and TRGP (Lin et al., 2022). We implement
-GEM and ER_Res with the official implementation by Chaudhry et al.

2018) and implement EWC with the implementation by Serra et al.
2018). For OGD (Farajtabar et al., 2020), we use the implementation
y Bennani et al. (2020). Following Saha et al. (2021) and Lin et al.
2022), we run all experiments five times on an established seed
ithout fixing the cuda settings for a fair comparison. Particularly, we
se five random seeds on PMNIST where there is no diversity on a
ingle seed. For CIFAR-100 Sup, we use five different orders provided
y Yoon et al. (2019). Following Saha et al. (2021), we report the
xperimental results of replay-base methods A-GEM and ER_Res on the
ixture dataset with the same buffer size as GPM and ROGO, which is

.98M in terms of the number of parameters for Resnet18 architecture.
On CIFAR-100 Split, MiniImageNet, and PMNIST, we follow the

yper-parameters utilized by Saha et al. (2021) and Lin et al. (2022),
ncluding learning rate, batch size, and the threshold 𝜖. On Mixture, as
e adopt the same network architecture Saha et al. (2021) use on their
-Dataset setting, we follow the provided learning rate and batch size
s well.

As discussed in Section 5, the threshold 𝜁 = cos 𝛾 controls the
riterion of the relaxing space. For CIFAR100-Split and PMNIST, we
se 𝜁 = 0.95 for convolutional layers and 𝜁 = 0.9 for fully connected
ayers. For MiniImageNet and Mixture, we use the same 𝜁 for all layers,

.95 and 0.9 respectively. The regularization weight 𝛽 is set as 5 for

AI Open 4 (2023) 98–110Z. Yang et al.

𝑏
p

i

Table B.7
Statistics of mixture benchmark.
Dataset Classes # Training # Validation # Testing

CIFAR-10 (Krizhevsky and Hinton, 2009) 10 47,500 2500 10,000
MNIST (LeCun et al., 1998) 10 57,000 3000 10,000
CIFAR-100 (Krizhevsky and Hinton, 2009) 100 47,500 2500 10,000
SVHN (Netzer et al., 2011) 10 69,595 3662 26,032
FashionMNIST (Xiao et al., 2017) 10 57,000 3000 10,000
FaceScrub (Ng and Winkler, 2014) 100 19,570 1030 2,289
NotMNIST (Bulatov, 2011) 10 16,011 842 1,873
t
T
a
b
S

i
A
k
G
p

C

t
t
l
i

Table B.8
Dimension of the representation space of each layer.

Network Depth Dimension of the representation
space

MLP 3 layers 784; 100; 100
AlexNet 5 layers 48; 576; 512; 1024; 2048
LeNet-5 4 layers 75; 500; 3200; 800
ResNet-18 17 layers and 3

short-cut connections
27; 180; 180; 180; 180; 180; 360;
20; 360; 360; 360; 720; 40; 720;
720; 720; 1440; 80; 1440; 1440

the ResNet18 architecture and 1 for others. Moreover, we limit the
max iteration times to 2 for CIFAR100-Split and MiniImageNet for
efficiency. Particularly, we run all the experiments on a single NVIDIA
GeForce RTX 2080 Ti GPU.

B.4. Metrics

Here we present the detailed definitions of the metrics evaluating
the forward knowledge transfer. 𝛺𝑛𝑒𝑤 (Kemker et al., 2018). Denote
𝑖 as the test accuracy of task 𝑖 at random initialization, FWT, first
roposed by Lopez-Paz and Ranzato (2017), is defined as FWT =
1

𝑇−1
∑𝑇

𝑖=2(𝐴𝑖−1,𝑖−𝑏𝑖), evaluating the zero-shot performance of the initial-
zation with respect to the observed tasks. While 𝛺𝑛𝑒𝑤, first proposed

by Kemker et al. (2018), is defined as 𝛺𝑛𝑒𝑤 = 1
𝑇−1

∑𝑇
𝑖=2(𝐴𝑖,𝑖−𝑏𝑖), reflect-

ing the test accuracy on new tasks based on the learnt knowledge. As 𝑏𝑖
stays still across different approaches, we consider 𝛺𝑛𝑒𝑤 = 1

𝑇−1
∑𝑇

𝑖=2 𝐴𝑖,𝑖

for simplicity. For this simplified 𝛺𝑛𝑒𝑤, we have: 𝛺𝑛𝑒𝑤 = 𝑇
𝑇−1𝐴𝐶𝐶 −

𝐵𝑊 𝑇 − 1
𝑇−1𝐴1,1, with the ACC and BWT defined in Section 4.1.

Appendix C. Experimental results

C.1. Final accuracy

We provide the test accuracy after learning each task on other
benchmarks here. As discussed in Section 4, our ROGO universally out-
performs GPM over the task sequence on all benchmarks (see Fig. C.4).

C.2. Backward knowledge transfer

As mentioned in Section 4.1, final accuracy (ACC), forgetting (BWT)
and forward knowledge transfer (𝛺𝑛𝑒𝑤) are jointly considered to eval-
uate a continual learner. According to Table C.9, ROGO achieves the
best forgetting on MiniImageNet and PMNIST datasets. Despite our re-
laxing strategy focusing on facilitating the forward knowledge transfer,
ROGO gains better final accuracy with comparable forgetting over all
benchmarks. Generally speaking, ROGO achieves superior performance
106

than previous baselines with a fixed network capacity. d
Table C.9
Comparison of average accuracy and forgetting tested after learning all tasks. Multitask
is under the non-incremental setting. For each task, we mark the best and the second
best performance in bold and underline respectively. All results reported are averaged
over 5 runs.

Method CIFAR-100 Split MiniImageNet

ACC (%) BWT (%) ACC (%) BWT (%)

Multitask⋆ 79.58 ± 0.54 – 69.46 ± 0.62 –

A-GEM† 63.98 ± 1.22 −16.30 ± 1.19 57.24 ± 0.72 −10.95 ± 1.29
ER_Res† 71.73 ± 0.63 −5.50 ± 0.76 58.94 ± 0.85 −8.84 ± 0.56

EWC 68.80 ± 0.88 −2.31 ± 0.76 52.01 ± 2.53 −12.14 ± 2.28
HAT 72.06 ± 0.50 −0.12 ± 0.42 59.78 ± 0.57 −3.31 ± 0.05
OGD 70.96 ± 0.32 73.86 ± 0.57 59.83 ± 0.62 62.02 ± 1.24
GPM 72.48 ± 0.40 −0.72 ± 0.27 60.41 ± 0.61 −1.54 ± 0.34
ROGO 74.04 ± 0.35 −1.43 ± 0.43 63.66 ± 1.24 −0.09 ± 0.94

Method PMNIST Mixture

ACC (%) BWT (%) ACC (%) BWT (%)

Multitask⋆ 96.70 ± 0.02 – 81.29 ± 0.23 –

A-GEM† 83.56 ± 0.16 −14.57 ± 2.33 59.86 ± 1.01 −29.37 ± 1.11
ER_Res† 87.24 ± 0.53 −10.24 ± 1.58 75.07 ± 0.55 −11.81 ± 0.82

EWC 89.97 ± 0.57 −3.58 ± 1.22 69.62 ± 2.69 −6.00 ± 4.09
HAT – – 77.54 ± 0.18 −0.55 ± 0.28
GPM 93.91 ± 0.16 −3.30 ± 0.09 77.49 ± 0.68 −4.70 ± 0.50
ROGO 94.20 ± 0.11 −2.44 ± 0.13 77.91 ± 0.45 −4.55 ± 0.36

Table C.10
The accuracy tested on task 𝑖 after learning task 𝑖 and 𝛺𝑛𝑒𝑤 on CIFAR-100 Split.

Method 1 2 3 4 5 6 7 8 9 Avg (𝛺𝑛𝑒𝑤)

GPM 67.7 72.5 70.1 73.6 71.8 70.3 71.0 71.8 73.7 71.5
ROGO 71.7 74.8 73.6 76.9 75.8 74.7 74.0 75.9 79.3 75.2

C.3. Forward knowledge transfer

We provide the detailed forward knowledge transfer performance
on all four benchmarks here. First, we present the results of 𝛺𝑛𝑒𝑤 and
he detailed accuracy of each task after learning it in
ables C.10 to C.13. According to Tables C.12 and C.13, ROGO achieves
similar forward knowledge transfer compared with GPM. For other

enchmarks, ROGO improves 𝛺𝑛𝑒𝑤 by 2.7% and 1.8% on CIFAR-100
plit and MiniImageNet respectively, as shown in Tables C.10 and C.11.

Moreover, we provide the result of FWT (using the definition
n Lopez-Paz and Ranzato (2017)) on all benchmarks in Table C.14.
ccording to Table C.14, although our method facilitates the forward
nowledge transfer reflected by 𝛺𝑛𝑒𝑤, ROGO achieves better FWT than
PM on all three task-incremental benchmarks, namely better zero-shot
erformance.

.4. Accuracy evolution

Here we present the accuracy tested on three randomly selected
asks immediately after learning them. We select the 2nd, 4th, and 6th
asks for all benchmarks. Generally, ROGO outperforms GPM on se-
ected tasks over the sequence. We further notice that the improvement
s more significant on later tasks owing to a larger relaxing space, as

iscussed in Section 5 (see Figs. C.5–C.7).

AI Open 4 (2023) 98–110Z. Yang et al.
Table C.11
The accuracy tested on task 𝑖 after learning task 𝑖 and 𝛺𝑛𝑒𝑤 on MiniImageNet.

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Avg (𝛺𝑛𝑒𝑤)

GPM 59.0 57.1 65.6 59.6 76.2 57.2 66.5 72.8 81.5 42.0 59.6 62.1 62.3 58.9 57.2 59.0 50.7 65.7 57.3 61.6
ROGO 57.1 55.1 66.2 61.3 79.8 61.4 66.6 73.5 83.6 42.8 65.1 63.4 67.1 64.6 61.6 61.6 50.0 68.2 60.8 63.7
Fig. C.4. Average accuracy after learning each task on (a) CIFAR100-Split, (b)
MiniImageNet, (c) PMNIST, and (d) Mixture.

Table C.12
The accuracy tested on task 𝑖 after learning task 𝑖 and 𝛺𝑛𝑒𝑤 on PMNIST.

Method 1 2 3 4 5 6 7 8 9 Avg (𝛺𝑛𝑒𝑤)

GPM 97.5 97.4 97.0 96.8 96.5 96.2 96.2 95.8 95.1 96.5
ROGO 97.4 97.2 97.0 96.5 96.3 96.1 95.7 94.9 94.8 96.2

Table C.13
The accuracy tested on task 𝑖 after learning task 𝑖 and 𝛺𝑛𝑒𝑤 on Mixture.

Method 1 2 3 4 5 6 Avg (𝛺𝑛𝑒𝑤)

GPM 99.0 43.7 87.3 99.1 69.9 93.4 82.1
ROGO 99.1 42.9 87.6 99.1 70.6 93.5 82.2

Table C.14
Comparison of forward knowledge transfer between GPM and ROGO, evaluated by
FWT.

Methods CIFAR-100 Split MiniImageNet PMNIST Mixture

GPM −0.65 ± 0.18 −0.26 ± 0.88 +0.66 ± 1.17 −0.52 ± 1.49
ROGO +0.20 ± 0.36 +0.30 ± 0.29 −0.63 ± 0.97 +0.13 ± 0.77

Table C.15
Time comparison evaluated on two benchmarks. We use the results reported in Lin
et al. (2022) and the time is normalized with respect to GPM.

Datasets Methods

OWM EWC HAT A-GEM ER_Res GPM TRGP ROGO

CIFAR-100 2.41 1.76 1.62 3.48 1.49 1.00 1.65 1.62
MiniImageNet – 1.22 0.91 1.79 0.82 1.00 1.34 1.43

C.5. Time consumption

We report the time consumption of ROGO on two benchmarks
compared with relative baselines. TRGP and ROGO are both evaluated
on a single NVIDIA GeForce RTX 2080 Ti GPU and we report the results
according to Lin et al. (2022). As discussed in Section 5, ROGO takes
acceptable extra time compared with GPM on both datasets. For both
107
Fig. C.5. Accuracy evolution of the 2nd task on (a) CIFAR-100 Split, (b) MiniImageNet,
(c) PMNIST, and (d) Mixture.

Fig. C.6. Accuracy evolution of the 4th task on (a) CIFAR-100 Split, (b) MiniImageNet,
(c) PMNIST, and (d) Mixture.

datasets, ROGO tasks similar time as TRGP, which is similar to EWC
and much less than A-GEM and OWM (see Table C.15).

C.6. Memory usage

We provide a comparison between TRGP and ROGO on the ratio
of the amount of extra parameters concerning the amount of the
parameters of the initial network architecture. According to Fig. C.8,
TRGP requires at least 200% of the number of extra parameters after
learning all tasks on all four benchmarks, while ROGO only stores the
representation of the frozen space, which can further be released in the
inference phase.

AI Open 4 (2023) 98–110Z. Yang et al.

(

Fig. C.7. Accuracy evolution of the 6th task on (a) CIFAR-100 Split, (b) MiniImageNet,
c) PMNIST, and (d) Mixture.

Fig. C.8. Ratio of the amount of extra parameters concerning the amount of the
parameters of the initial network architecture on (a) CIFAR100-Split, (b) MiniImageNet,
(c) PMNIST, and (d) Mixture.

C.7. Other results

Here we provide detailed results including the forgetting perfor-
mance compared with TRGP in Tables C.16 and C.17. Similar to the
discussion in Section 4.3, our ROGO framework obtains superior ac-
curacy performance with comparable forgetting under or without the
constraint of a fixed network capacity.

Moreover, we illustrate the test accuracy over the task sequence
in Fig. C.9. As shown in Fig. C.9-(a) and Fig. C.9-(b), our ROGO-
Exp dominates TRGP on both benchmarks relaxing either 80% or
T% of the frozen space under an expansion setting. We further com-
pare ROGO with TRGP modified with the same regularization terms.
As shown in Fig. C.9-(c) and Fig. C.9-(d), the performance of TRGP
drops significantly constrained in a fixed network capacity on both
benchmarks.

Following GPM (Saha et al., 2021), we conduct experiments on
the CIFAR-100 Sup dataset as well. The implementation details are
108
Fig. C.9. Test accuracy after learning each task under an expansion setting on (a)
CIFAR-100 Split and (b) PMNIST, and within a fixed network capacity on (c) CIFAR-100
Split and (d) PMNIST.

Table C.16
Comparison of average accuracy and forgetting with TRGP under an expansion setting.
The percentages indicate the ratios of the rank of the relaxing space with respect to
the frozen space. For each dataset, we mark the best and the second best performance
in bold and underline.

Method CIFAR-100 Split MiniImageNet

ACC (%) BWT (%) ACC (%) BWT (%)

TRGP 74.46 ± 0.22 −0.42 ± 0.20 61.78 ± 1.94 −1.01 ± 0.58
ROGO-Exp 50% 74.90 ± 0.37 −0.99 ± 0.27 63.46 ± 0.85 0.50 ± 0.39
ROGO-Exp 80% 74.97 ± 0.30 −0.68 ± 0.39 62.57 ± 1.32 0.42 ± 0.57
ROGO-Exp T% 75.34 ± 0.61 −0.63 ± 0.57 62.78 ± 1.00 0.45 ± 0.35

Method PMNIST Mixture

ACC (%) BWT (%) ACC (%) BWT (%)

TRGP 96.34 ± 0.11 −0.58 ± 0.10 83.54 ± 1.15 −0.80 ± 1.10
ROGO-Exp 50% 96.44 ± 0.20 −0.75 ± 0.13 82.45 ± 0.49 −0.74 ± 0.16
ROGO-Exp 80% 96.76 ± 0.15 −0.46 ± 0.08 83.33 ± 0.31 −0.98 ± 0.23
ROGO-Exp T% 97.01 ± 0.08 −0.31 ± 0.05 83.62 ± 0.26 −0.33 ± 0.14

Table C.17
Comparison of average accuracy and forgetting with TRGP within a fixed network
capacity. We modify TRGP as TRGP-Reg with similar regularization terms. 𝛽 indicates
the regularization weight. For each dataset, we mark the best and the second best
performance in bold and underline.

Method CIFAR-100 Split MiniImageNet

ACC (%) BWT (%) ACC (%) BWT (%)

TRGP-Reg 𝛽 = 1 72.01 ± 0.30 −1.63 ± 0.20 55.81 ± 2.43 −3.69 ± 2.19
TRGP-Reg 𝛽 = 5 71.96 ± 0.40 −1.09 ± 0.37 58.81 ± 2.24 −2.85 ± 1.54
TRGP-Reg 𝛽 = 50 72.49 ± 0.09 −0.69 ± 0.24 22.69 ± 0.39 0.01 ± 0.07
ROGO 74.04 ± 0.35 −1.43 ± 0.43 63.66 ± 1.24 −2.44 ± 0.13

Method PMNIST Mixture

ACC (%) BWT (%) ACC (%) BWT (%)

TRGP-Reg 𝛽 = 1 76.57 ± 2.69 −20.69 ± 2.94 73.31 ± 1.05 −11.05 ± 1.43
TRGP-Reg 𝛽 = 5 75.50 ± 3.96 −22.41 ± 4.24 74.71 ± 0.85 −9.33 ± 1.05
TRGP-Reg 𝛽 = 50 76.56 ± 3.83 −21.63 ± 4.13 17.36 ± 0.86 −0.01 ± 0.03
ROGO 94.20 ± 0.11 −0.09 ± 0.94 77.91 ± 0.45 −4.55 ± 0.36

included in Appendix B.3 as well. Here we report the accuracy perfor-
mance in Table C.18. Note that the selected baselines for this setting all
require extra parameters other than GPM and we directly use the results
of the baselines reported in GPM and TRGP. In accordance with the

AI Open 4 (2023) 98–110Z. Yang et al.

A
d

Table C.18
Results of ACC (%) on CIFAR-100 Sup setting. STL is under a non-incremental setting.

ll baselines require extra network capacity except GPM. We also report the standard
eviation result of ROGO for comparison.
Metric Methods

STL* PNN DEN RCL APD GPM TRGP ROGO

ACC (%) 61.00 50.76 51.10 51.99 56.81 57.72 58.25 58.74 ± 0.60

results on the other four benchmarks discussed in Section 4.2, ROGO
outperforms GPM and other related baselines by a significant margin.
Particularly, we notice ROGO directly obtains superior performance
than TRGP within a fixed network capacity under this setting.

Appendix D. Algorithm

We present the pseudo-code of our searching strategy here.

Algorithm 2: Relaxing Space Searching

Input: gradient {𝑔𝑙𝑡}
𝐿
𝑙=1, frozen space {𝑈 𝑙

𝑡−1}
𝐿
𝑙=1 and thresholds

{𝜖𝑙𝑡ℎ, 𝛾
𝑙
𝑡 }

𝐿
𝑙=1

Output: relaxing space {𝑉 𝑙
𝑡 }

𝐿
𝑙=1

1: for 𝑙 ∈ 1, ..., 𝐿 do
2: Construct the significant representation space 𝑅𝑙

𝑔,𝑡 from gradients
𝑔𝑙𝑡 with top-𝑘 eigenvectors.

3: 𝑉 𝑙
𝑡 ← ∅

4: repeat
5: 𝑑 ← argmin

𝑑∈𝑈 𝑙,𝑐
𝑡−1

𝛩(𝑑,𝑅𝑙
𝑔,𝑡)

6: if 𝛩(𝑑,𝑅𝑙
𝑔,𝑡) ≤ 𝛾 𝑙𝑡 then

7: 𝑉 𝑙
𝑡 ← 𝑉 𝑙

𝑡 ∪ 𝑑
8: 𝑈 𝑙,𝑐

𝑡−1 ← 𝑈 𝑙
𝑡−1∖𝑉

𝑙
𝑡

9: end if
10: until 𝛩(𝑑,𝑅𝑙

𝑔,𝑡) > 𝛾 𝑙𝑡
11: end for

References

Bennani, M.A., Doan, T., Sugiyama, M., 2020. Generalisation guarantees for continual
learning with orthogonal gradient descent. arXiv preprint arXiv:2006.11942.

Bulatov, Y., 2011. Notmnist dataset. http://yaroslavvb.com/upload/notMNIST/.
Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M., 2018. Efficient lifelong

learning with a-gem. arXiv preprint arXiv:1812.00420.
Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P.K., Torr, P.H.,

Ranzato, M., 2019. Continual learning with tiny episodic memories. CoRR, arXiv:
1902.10486.

Chenshen, W., HERRANZ, L., Xialei, L., et al., 2018. Memory replay GANs: Learning to
generate images from new categories without forgetting. In: The 32nd International
Conference on Neural Information Processing Systems, Montréal, Canada. pp.
5966–5976.

Choi, Y., El-Khamy, M., Lee, J., 2021. Dual-teacher class-incremental learning with data-
free generative replay. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 3543–3552.

Cong, Y., Zhao, M., Li, J., Wang, S., Carin, L., 2020. Gan memory with no forgetting.
Adv. Neural Inf. Process. Syst. 33, 16481–16494.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A.,
Slabaugh, G., Tuytelaars, T., 2021. A continual learning survey: Defying forgetting
in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44 (7), 3366–3385.

Deng, D., Chen, G., Hao, J., Wang, Q., Heng, P.-A., 2021. Flattening sharpness for
dynamic gradient projection memory benefits continual learning. Adv. Neural Inf.
Process. Syst. 34, 18710–18721.

Ebrahimi, S., Meier, F., Calandra, R., Darrell, T., Rohrbach, M., 2020. Adversarial
continual learning. In: European Conference on Computer Vision. Springer, pp.
386–402.
109
Ehret, B., Henning, C., Cervera, M.R., Meulemans, A., Von Oswald, J., Grewe, B.F.,
2020. Continual learning in recurrent neural networks. arXiv preprint arXiv:2006.
12109.

Farajtabar, M., Azizan, N., Mott, A., Li, A., 2020. Orthogonal gradient descent for
continual learning. In: International Conference on Artificial Intelligence and
Statistics. PMLR, pp. 3762–3773.

Finn, C., Rajeswaran, A., Kakade, S., Levine, S., 2019. Online meta-learning. In:
International Conference on Machine Learning. PMLR, pp. 1920–1930.

French, R.M., 1997. Pseudo-recurrent connectionist networks: An approach to
the’sensitivity-stability’dilemma. Connect. Sci. 9 (4), 353–380.

Griffiths, T.L., Ghahramani, Z., 2011. The Indian buffet process: An introduction and
review.. J. Mach. Learn. Res. 12 (4).

Kao, T.-C., Jensen, K., van de Ven, G., Bernacchia, A., Hennequin, G., 2021. Natural
continual learning: success is a journey, not (just) a destination. Adv. Neural Inf.
Process. Syst. 34, 28067–28079.

Kemker, R., McClure, M., Abitino, A., Hayes, T., Kanan, C., 2018. Measuring catas-
trophic forgetting in neural networks. In: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 32.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A.,
Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al., 2017. Overcom-
ing catastrophic forgetting in neural networks. Proc. natl. acad. sci. 114 (13),
3521–3526.

Kong, Y., Liu, L., Wang, Z., Tao, D., 2022. Balancing stability and plasticity through
advanced null space in continual learning. arXiv preprint arXiv:2207.12061.

Krizhevsky, A., Hinton, G., 2009. Learning Multiple Layers of Features from Tiny
Images. Technical report, Citeseer.

Kumar, A., Chatterjee, S., Rai, P., 2021. Bayesian structural adaptation for continual
learning. In: International Conference on Machine Learning. PMLR, pp. 5850–5860.

Kurle, R., Cseke, B., Klushyn, A., Van Der Smagt, P., Günnemann, S., 2019. Continual
learning with bayesian neural networks for non-stationary data. In: International
Conference on Learning Representations.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied to
document recognition. Proc. IEEE 86 (11), 2278–2324.

Lin, S., Yang, L., Fan, D., Zhang, J., 2022. TRGP: Trust region gradient projection for
continual learning. arXiv preprint arXiv:2202.02931.

Liu, H., Liu, H., 2022. Continual learning with recursive gradient optimization. arXiv
preprint arXiv:2201.12522.

Lopez-Paz, D., Ranzato, M., 2017. Gradient episodic memory for continual learning.
Adv. neural inf. process. syst. 30.

Mallya, A., Lazebnik, S., 2018. Packnet: Adding multiple tasks to a single network by
iterative pruning. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 7765–7773.

McCloskey, M., Cohen, N.J., 1989. Catastrophic interference in connectionist networks:
The sequential learning problem. In: Psychology of Learning and Motivation, Vol.
24. Elsevier, pp. 109–165.

Mirzadeh, S.I., Farajtabar, M., Pascanu, R., Ghasemzadeh, H., 2020. Understanding the
role of training regimes in continual learning. Adv. Neural Inf. Process. Syst. 33,
7308–7320.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y., 2011. Reading digits
in natural images with unsupervised feature learning. In: NIPS Workshop on Deep
Learning and Unsupervised Feature Learning.

Ng, H.-W., Winkler, S., 2014. A data-driven approach to cleaning large face datasets. In:
2014 IEEE International Conference on Image Processing. ICIP, IEEE, pp. 343–347.

Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S., 2019. Continual lifelong
learning with neural networks: A review. Neural Netw. 113, 54–71.

Ratcliff, R., 1990. Connectionist models of recognition memory: constraints imposed by
learning and forgetting functions. Psychol. rev. 97 (2), 285.

Rusu, A.A., Rabinowitz, N.C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K.,
Pascanu, R., Hadsell, R., 2016. Progressive neural networks. arXiv preprint arXiv:
1606.04671.

Saha, G., Garg, I., Roy, K., 2021. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762.

Serra, J., Suris, D., Miron, M., Karatzoglou, A., 2018. Overcoming catastrophic for-
getting with hard attention to the task. In: International Conference on Machine
Learning. PMLR, pp. 4548–4557.

Shin, H., Lee, J.K., Kim, J., Kim, J., 2017. Continual learning with deep generative
replay. Adv. neural inf. process. syst. 30.

Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C., 2011. The german traffic sign
recognition benchmark: a multi-class classification competition. In: The 2011
International Joint Conference on Neural Networks. IEEE, pp. 1453–1460.

Thrun, S., Mitchell, T.M., 1995. Lifelong robot learning. Robot. auton. syst. 15 (1–2),
25–46.

http://arxiv.org/abs/2006.11942
http://yaroslavvb.com/upload/notMNIST/
http://arxiv.org/abs/1812.00420
http://arxiv.org/abs/1902.10486
http://arxiv.org/abs/1902.10486
http://arxiv.org/abs/1902.10486
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb5
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb5
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb5
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb5
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb5
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb5
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb5
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb6
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb6
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb6
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb6
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb6
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb7
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb7
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb7
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb8
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb8
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb8
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb8
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb8
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb9
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb9
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb9
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb9
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb9
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb10
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb10
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb10
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb10
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb10
http://arxiv.org/abs/2006.12109
http://arxiv.org/abs/2006.12109
http://arxiv.org/abs/2006.12109
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb12
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb12
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb12
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb12
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb12
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb13
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb13
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb13
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb14
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb14
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb14
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb15
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb15
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb15
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb16
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb16
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb16
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb16
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb16
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb17
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb17
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb17
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb17
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb17
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb18
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb18
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb18
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb18
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb18
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb18
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb18
http://arxiv.org/abs/2207.12061
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb20
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb20
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb20
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb21
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb21
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb21
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb22
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb22
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb22
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb22
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb22
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb23
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb23
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb23
http://arxiv.org/abs/2202.02931
http://arxiv.org/abs/2201.12522
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb26
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb26
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb26
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb27
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb27
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb27
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb27
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb27
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb28
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb28
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb28
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb28
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb28
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb29
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb29
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb29
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb29
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb29
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb30
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb30
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb30
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb30
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb30
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb31
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb31
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb31
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb32
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb32
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb32
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb33
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb33
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb33
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/2103.09762
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb36
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb36
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb36
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb36
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb36
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb37
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb37
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb37
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb38
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb38
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb38
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb38
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb38
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb39
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb39
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb39

AI Open 4 (2023) 98–110Z. Yang et al.
Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al., 2016. Matching networks for
one shot learning. Adv. neural inf. process. syst. 29.

Wang, S., Li, X., Sun, J., Xu, Z., 2021. Training networks in null space of feature
covariance for continual learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 184–193.

Xiao, H., Rasul, K., Vollgraf, R., 2017. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Yoon, J., Kim, S., Yang, E., Hwang, S.J., 2019. Scalable and order-robust continual
learning with additive parameter decomposition. arXiv preprint arXiv:1902.09432.

Yoon, J., Yang, E., Lee, J., Hwang, S.J., 2017. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547.
110
Yu, L., Twardowski, B., Liu, X., Herranz, L., Wang, K., Cheng, Y., Jui, S., Weijer, J.v.d.,
2020. Semantic drift compensation for class-incremental learning. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
6982–6991.

Zeng, G., Chen, Y., Cui, B., Yu, S., 2019. Continual learning of context-dependent
processing in neural networks. Nat. Mach. Intell. 1 (8), 364–372.

Zhu, F., Zhang, X.-Y., Wang, C., Yin, F., Liu, C.-L., 2021. Prototype augmentation
and self-supervision for incremental learning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 5871–5880.

http://refhub.elsevier.com/S2666-6510(23)00012-8/sb40
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb40
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb40
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb41
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb41
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb41
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb41
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb41
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1902.09432
http://arxiv.org/abs/1708.01547
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb45
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb45
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb45
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb45
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb45
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb45
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb45
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb46
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb46
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb46
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb47
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb47
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb47
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb47
http://refhub.elsevier.com/S2666-6510(23)00012-8/sb47

	Restricted orthogonal gradient projection for continual learning
	Introduction
	Related Work
	Gradient Projection Methods
	Regularization-based Methods
	Other Methods

	Restricted Orthogonal Gradient Projection
	Preliminaries
	Overview
	Searching the Relaxing Space
	Constrained Update in the Relaxing Space
	Extensions

	Experiments
	Experimental Setup
	Main Results
	Comparison with Expansion-based Methods

	Analysis and Discussion
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Proof
	Proof of Lemma A.1
	Proof of Theorem 3.3
	Proof of Theorem 3.4

	Appendix B. Experimental Setup
	Datasets
	Model Details
	Implementation Details
	Metrics

	Appendix C. Experimental Results
	Final Accuracy
	Backward Knowledge Transfer
	Forward Knowledge Transfer
	Accuracy Evolution
	Time Consumption
	Memory Usage
	Other Results

	Appendix D. Algorithm
	References

