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Abstract

Implicit discourse relation recognition (IDRR) is a challeng-
ing but crucial task in discourse analysis. Most existing meth-
ods train multiple models to predict multi-level labels inde-
pendently, while ignoring the dependence between hierarchi-
cally structured labels. In this paper, we consider multi-level
IDRR as a conditional label sequence generation task and
propose a Label Dependence-aware Sequence Generation
Model (LDSGM) for it. Specifically, we first design a label
attentive encoder to learn the global representation of an input
instance and its level-specific contexts, where the label depen-
dence is integrated to obtain better label embeddings. Then,
we employ a label sequence decoder to output the predict-
ed labels in a top-down manner, where the predicted higher-
level labels are directly used to guide the label prediction at
the current level. We further develop a mutual learning en-
hanced training method to exploit the label dependence in a
bottom-up direction, which is captured by an auxiliary de-
coder introduced during training. Experimental results on the
PDTB dataset show that our model achieves the state-of-the-
art performance on multi-level IDRR. We release our code at
https://github.com/nlpersECJTU/LDSGM.

Introduction
As a crucial task in discourse analysis, implicit discourse
relation recognition (IDRR) aims to identify semantic rela-
tions (e.g., Contingency) between two arguments (sentences
or clauses). Figure 1 shows an instance from PDTB (Prasad
et al. 2008). It consists of two arguments (arg1 and arg2)
and is annotated with three hierarchical labels1, where the
second-level/child label Cause further refines the semantic
of the top-level/parent label Contingency, and so on. During
annotation, an implicit connective because is first inserted
to benefit the label annotation, and can be considered as the
most fine-grained label. Compared with explicit discourse
relation recognition, IDRR is more challenging because of
the absence of explicit connectives. Due to its wide appli-
cations in many natural language processing (NLP) tasks,
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1It is noteworthy that the organization of discourse relation la-
bels is predominantly hierarchical, which holds in the corpora of
different languages, for example, CDTB (Li et al. 2014).
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Figure 1: An implicit PDTB instance with annotated multi-
level labels and the inserted connective. Labels defined in
PDTB are organized in a three-layer hierarchical structure,
and the inserted connectives can be considered as the fourth-
level (most fine-grained) labels. For an instance, its multi-
level labels and the inserted connective can be considered as
a label sequence, e.g., Contingency, Cause, Reason, because
(the path of blue nodes) for the above instance.

such as summarization (Cohan et al. 2018) and event rela-
tion extraction (Tang et al. 2021), IDRR has become one of
hot research topics recently.

With the rapid development of deep learning, previous
IDRR models relying on human-designed features have e-
volved to neural network based models (Zhang et al. 2015;
Liu and Li 2016; Lei et al. 2017; Xu et al. 2019; Liu et al.
2020; Zhang et al. 2021). Despite their success, these stud-
ies usually train multiple models to predict multi-level la-
bels independently, while ignoring the dependence between
these hierarchically structured labels. To address this issue,
Nguyen et al. (2019) defined three loss terms to leverage the
dependence between labels and connectives. Though achiev-
ing promising results, they only exploit the label-connective
dependence to guide the model training. Wu et al. (2020)
introduced a hierarchical multi-task neural network stacked
with a CRF layer to infer the sequence of multi-level labels.
However, there still exist two drawbacks: 1) They stack sev-
eral feature layers together, and directly use features from d-
ifferent layers for label predictions at different levels, which
may be insufficient to fully exploit the label dependence for
feature extraction. 2) During decoding, the CRF layer has
the limitation in processing the label dependence because it
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only uses transition matrices to encourage valid label paths
and discourage other paths (Collobert et al. 2011). In oth-
er words, the label predictions at higher levels are not di-
rectly used to guide the label prediction at the current level.
Therefore it can be said that the potential of the dependence
between hierarchically structured labels has not been fully
exploited for multi-level IDRR.

In this paper, we consider multi-level IDRR as a condi-
tional label sequence generation task and propose a Label
Dependence-aware Sequence Generation Model (LDSGM).
Overall, our model consists of a label attentive encoder and a
label sequence decoder, both of which can effectively lever-
age the dependence between labels. In the encoder, based on
the hierarchical structure of labels, we introduce graph con-
volutional network (Kipf and Welling 2017) to learn better
label embeddings, which are used as the query of attention
mechanisms to extract level-specific contexts. Then the de-
coder sequentially outputs the predicted labels level by lev-
el in a top-down manner. In this way, the easily-predicted
higher-level labels can be directly used to guide the label
prediction at the current level.

We further develop a mutual learning enhanced training
method to leverage the label dependence. Concretely, we in-
troduce an auxiliary decoder that sequentially conducts label
predictions in a bottom-up manner. The intuition behind is
that annotators usually first insert suitable connectives to fa-
cilitate the higher-level label annotations (Prasad et al. 2008;
Li et al. 2014). Our decoder and the auxiliary one are able to
capture the label dependence in two different directions and
thus are complement to each other. Therefore, we transfer
the knowledge of the auxiliary decoder to enhance ours via
mutual learning (Zhang et al. 2018b). Please note that the
auxiliary decoder is not involved during inference.

The main contributions of our work are three-fold:

• We consider multi-level IDRR as a label sequence gener-
ation task. To our knowledge, our work is the first attempt
to deal with this task in the way of sequence generation.

• We propose a label dependence-aware sequence genera-
tion model. Both its encoder and decoder, combined with
the mutual learning enhanced training method, can fully
leverage the label dependence for multi-level IDRR.

• Experimental results and in-depth analysis show that our
model achieves the state-of-the-art performance on the
PDTB dataset, and more consistent predictions on multi-
level labels.

Our Model
Given M hierarchical levels of defined labels C =
(C1, ..., Cm, ..., CM ), where Cm is the set of labels in the
m-th hierarchical level, and an instance x=(arg1, arg2) as
input, our LDSGM model aims to generate a label sequence
y = y1, ..., ym, ..., yM , where ym ∈Cm. As shown in Fig-
ure 2, our model mainly consists of a label attentive encoder
and a label sequence decoder. In the following sections, we
will detail these two components and the mutual learning
enhanced training method for our model.

Label Attentive Encoder
Our encoder comprises several stacked Transformer layers, a
graph convolutional network (GCN) and level-specific label
attention mechanisms. Specifically, we employ the Trans-
former layers to learn the local and global representations
of an input instance, the GCN to obtain better label embed-
dings by integrating the dependence between hierarchically-
structured labels, and finally the label attention mechanism-
s to extract level-specific contexts from the local represen-
tations. Afterwards, the learned global representation and
level-specific contexts are used as inputs of our decoder for
label sequence generation.

Given an instance x = (arg1, arg2), we first stack K
Transformer layers (Vaswani et al. 2017) to learn its word-
level semantic representations as follows:

vcls, v1, ..., vi, ..., vNw
=Transformers(arg1, arg2), (1)

where the instance is formulated as a sequence with special
tokens: [CLS]+arg1+[SEP]+arg2+[SEP], vcls is the repre-
sentation of [CLS], and {vi}Nw

i=1 are representations of other
tokens. The key part of a Transformer layer is the multi-
head self-attention mechanism. For IDRR, by concatenating
two arguments as input, this mechanism can directly cap-
ture the semantic interactions between words within not on-
ly the same argument but also different arguments. During
the subsequent predictions, vcls is considered as the global
representation of the instance and thus involved for the la-
bel predictions at each level, while {vi}Nw

i=1 are local repre-
sentations from which we extract level-specific contexts for
predictions at different levels.

Besides, we adopt a GCN to learn better label embeddings
based on the hierarchical structure of labels. GCN is a multi-
layer graph-based neural network that induces node embed-
dings based on properties of their neighborhoods (Kipf and
Welling 2017). In this work, we directly consider the hierar-
chical structure of labels as an undirected graph, where each
label corresponds to a graph node. The corresponding adja-
cent matrix A ∈ RNC×NC is defined as follows:

Ajk =

{
1 if j = k
1 if Parent(j)=k or Parent(k)=j,
0 otherwise

(2)

where Parent(j)=k means that the label corresponding to
node j is the subclass of that to node k, and NC is total
number of nodes (labels). Using GCN, given the initial rep-
resentation of node j as e0j , we produce the output elj of node
j at the l-th layer (l ∈ [1, L]) as

elj = σ(
NC∑
k=1

AjkW
lel−1k + bl), (3)

where W l and bl are the parameters, σ(∗) is a nonlinear
function. Finally, we obtain the label embeddings as the out-
puts {eLj }

NC
j=1 of the L-th layer. For simplicity, we denote all

label embeddings at them-th level asEm ∈ Rde×|Cm|, with
de as the dimension of label embedding.

Our GCN is a simple network with only parametersW l ∈
Rde×de and bl ∈ Rde at the l-th layer. We select this sim-
ple GCN because discourse label graphs are usually small,
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Figure 2: The architecture of our LDSGM model. The dotted parts are only included at the training phase.

for example, only 117 nodes and 262 edges in our exper-
iments. It is also noteworthy that the label hierarchy is a
graph (not tree) structure because many-to-many mappings
exist between the second-level labels and connectives (some
connectives are ambiguous).

In our encoder, one of the important steps is to capture
the associations between input arguments and labels at each
level. To this end, we design level-specific label attention
mechanisms to learn contexts for label predictions. Specif-
ically, given the label embeddings Em and the learned lo-
cal representations V={v1, ..., vi, ..., vNw

} ∈ Rdw×Nw , we
adopt the attention mechanism at the m-th level to extract
the level-specific context cm in the following way:

cm = V α,

α = softmax(max-pooling(V >WmEm)),
(4)

where Wm∈Rdw×de is a parameter matrix, α∈RNw is the
calculated weight vector, max-pooling(∗) is the column-
wise max-pooling operator, and > denotes the matrix trans-
pose operation. The i-th element in α indicates the associa-
tion degree between the i-th local representation and all label
embeddings at them-th level. Note that all label embeddings
at a level are used to query its level-specific context. Finally,
we use the learned contexts {cm}Mm=1 for the label predic-
tions at corresponding levels, respectively.

Overall, our encoder has several advantages: 1) The de-
pendence between hierarchically structured labels is fully
leveraged for better label embeddings. 2) By using the la-
bel attention mechanisms, our encoder extracts label-aware
level-specific contexts for the predictions at different levels.

Label Sequence Decoder
Our decoder is an RNN-based one that sequentially gener-
ates the predicted labels in a top-down manner, that is, the
top-level label, the second-level label, and so on. By doing
so, the easily-predicted higher-level labels can be used to
guide the label prediction at the current level. We choose
Gate Recurrent Unit (GRU) (Cho et al. 2014) to construct
our decoder because of its wide usage in text generation and
the short length of label sequences. Please note that Trans-
former can also be used as our decoder.

Formally, given three kinds of inputs, including the global
representation vcls, the extracted level-specific context cm,
and the previously-predicted label distribution ~ym−1, our de-
coder produces the distribution ~ym at the m-th level as fol-
lows:

~ym = softmax(Wo
~hm + bo),

~hm = GRU(~hm−1, [vcls; cm; g(~ym−1)]),
(5)

where ~hm and ~hm−1 are the decoder hidden states, [; ] is



the concatenation operation, and Wo and bo are the trainable
parameters. As for g(~ym−1), only using the label with the
highest probability under the distribution ~ym−1 may cause
error propagation. To mitigate this issue, we follow Yang
et al. (2018) to fully exploit information in ~ym−1 by defining
g(~ym−1) as Em−1~ym−1, where Em−1 represents all label
embeddings at the level m−1. Our decoder exploits high-
level predictions in a soft constraint manner. That is to say, it
does not constrain the current predicted label to be a subclass
of the previously-predicted label.

The CRF-based IDRR model (Wu et al. 2020) first com-
putes label predictions at all levels simultaneously, and then
infers the globally optimized label sequence. It does not
leverage the predicted higher-level labels when computing
the label prediction at current level. By contrast, our decoder
exploits the predicted label distributions at higher levels for
the current prediction, as described in Equation 5.

Mutual Learning Enhanced Training
As described above, our decoder generates labels in a top-
down manner, which can only exploit the dependence from
the predicted higher-level labels, leaving that from lower
levels unexploited. To address this issue, we develop a mu-
tual learning enhanced training method, where the label de-
pendence in the bottom-up direction can be utilized to im-
prove the model training.

As shown in the dotted parts of Figure 2, we introduce
an auxiliary decoder that possesses the same architecture as
the decoder but sequentially generates predicted label dis-
tributions ~yM , ..., ~ym, ..., ~y1 in a bottom-up manner2. In this
way, the predicted lower-level labels can be used to help the
label prediction at the current level. The basic intuition be-
hind our auxiliary decoder is that annotators usually insert
a suitable connective to help the higher-level label annota-
tions of a given instance. These inserted connectives can be
considered as the most fine-grained labels, and have been ex-
ploited to boost IDRR in previous studies (Qin et al. 2017;
Bai and Zhao 2018; Nguyen et al. 2019). Apparently, ours
and the auxiliary decoder are able to capture the label depen-
dence in two different directions and thus are complement to
each other. Therefore, during the model training, we transfer
the knowledge of the auxiliary decoder to enhance ours via
mutual learning (Zhang et al. 2018b). Please note that our
auxiliary decoder is not involved during inference.

To facilitate the understanding of the training procedure,
we describe it in Algorithm 1. The most notable characteris-
tic is that ours and the auxiliary decoder can boost each other
by iteratively transferring knowledge between them during
training. To do this, in addition to the conventional cross-
entropy based losses, we introduce two additional losses to
minimize the divergence between the predicted label distri-
butions of these two decoders. Concretely, suppose θe, θd
and θad to be the parameter sets of the encoder, the decoder,
and the auxiliary decoder, we define the following objective
functions over the training data D to update these parame-

2The auxiliary decoder also uses the learned global representa-
tion vcls and the level-specific contexts {cm}Mm=1.

Algorithm 1: The training procedure

1: Input: Training set D, validation set D′

2: repeat
3: repeat
4: Load a batch size of instances B ∈ D
5: Generate predicted label distributions ~y1, ..., ~ym, ..., ~yM

using the decoder for each instance in B
6: Generate predicted label distributions ~yM , ..., ~ym, ..., ~y1

using the auxiliary decoder for each instance in B
7: Update θe, θd by minimizing L(B; θe, θd)
8: Update θad by minimizing L(B; θad)
9: Save the best model according to the average perfor-

mance at all levels on D′

10: until no more batches
11: until convergence

ters, respectively:

L(D; θe, θd) =
∑

(x,y)∈D

M∑
m=1

{−Eym [log ~ym]

+ λ ∗KL( ~ym||~ym)},

L(D; θad) =
∑

(x,y)∈D

M∑
m=1

{−Eym [log ~ym]

+ λ ∗KL(~ym|| ~ym)},

(6)

where ym is the one-hot encoding of the ground-truth label
ym ∈ y, ~ym and ~ym are the predicted label distributions at
them-th level by ours and the auxiliary decoder respectively,
Eym

[∗] is the expected value with respect to ym, KL(∗||∗) is
the Kullback-Leibler(KL) divergence function, and λ is the
coefficient used to control the impacts of different loss items.
We repeat the above knowledge transfer process, until both
loss functions converge. By doing so, the label dependence
in both top-down and bottom-up directions can be captured
to benefit the decoder during the model training.

Experiments
To investigate the effectiveness of our model, we conduct
experiments on the PDTB 2.0 corpus (Prasad et al. 2008).

Dataset
Since only part of PDTB instances are annotated with the
third-level labels, we take the top-level and second-level
labels into consideration, and regard the inserted connec-
tives as the third-level labels. There are four top-level label-
s are considered, including Temporal (Temp), Contingency
(Cont), Comparison (Comp) and Expansion (Expa). Further,
there exist 16 second-level labels, five of which with few
training instances and no validation and test instance are re-
moved. Therefore, we conduct an 11-way classification on
the second-level labels. For the connective classification, we
consider all 102 connectives defined in PDTB. Following
previous studies (Bai and Zhao 2018; Wu et al. 2020; Liu
et al. 2020), we split the PDTB corpus into three parts: the
training set with 12,775 instances (Section 2-20), the valida-
tion set with 1,183 instances (Section 0-1), and the test set
with 1,046 instances (Section 21-22).
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Figure 3: Effects of λ on the validation set.

Settings
All hyper-parameters are determined according to the best
average model performance at three levels on the validation
set. We use the pre-trained RoBERTa-base3 (Liu et al. 2019),
which has 12 layers with 768 hidden units and 12 attention
heads per layer, as our Transformer layers. We set the layer
number of GCN as 2 since more layers do not bring the per-
formance improvement. The graph node embeddings with
the dimension 100 are randomly initialized according to the
uniform distributionU [−0.01, 0.01]. The GRU hidden states
in decoders are 768 dimensions. All other parameters are ini-
tialized with the default values in PyTorch. To avoid overfit-
ting, we employ the dropout strategy (Srivastava et al. 2014)
with the rate 0.2 over the outputs of RoBERTa-base. Final-
ly, we adopt Adam (Kingma and Ba 2015) with the learning
rate of e-5 and the batch size of 32 to update the model pa-
rameters for 15 epochs. To alleviate instability in the model
training, we conduct all experiments for five times with dif-
ferent random seeds and report average results. Due to the
skewed distribution of test dataset, we use both the macro-
averaged F1 score and accuracy (Acc) to evaluate the model.

Baselines
We compare our LDSGM model with the following compet-
itive baselines:

• IDRR-C&E (Dai and Huang 2019): a neural IDRR model
using a regularization approach to leverage coreference
relations and external event knowledge.
• IDRR-Con (Shi and Demberg 2019a): a neural IDRR

model attempting to learn better argument representa-
tions by leveraging the inserted connectives.
• KANN (Guo et al. 2020): a knowledge-enhanced atten-

tive neural network that effectively fuses discourse con-
text and its external knowledge from WordNet.
• MTL-MLoss (Nguyen et al. 2019): it is a neural mod-

el based on multi-task learning, where the labels and
connectives are simultaneously predicted, with mapping
losses to leverage the dependence between them.

3https://huggingface.co/transformers/model doc/roberta.html

• BERT-FT (Kishimoto, Murawaki, and Kurohashi 2020):
it fine-tunes BERT (Devlin et al. 2019) for IDRR with
texts tailored to discourse classification, explicit connec-
tive prediction and implicit connective prediction.
• HierMTN-CRF (Wu et al. 2020): a hierarchical multi-

task neural network stacked with a CRF layer to infer the
sequence of multi-level labels.
• BMGF-RoBERTa (Liu et al. 2020): a RoBERTa-based

model, which is equipped with a bilateral matching mod-
ule to capture the interaction between arguments, and a
gated fusion module to derive final representations for la-
bel classification.
• MTL-MLoss-RoBERTa and HierMTN-CRF-RoBERTa:

for a fair comparison, we enhance MTL-MLoss and
HierMTN-CRF with RoBERTa instead of ELMo and
BERT, respectively.
• OurEncoder+OurDecoder: a variant of our model where

the mutual learning enhanced training is removed.

Effect of the Coefficient λ
As shown in Equation 6, the coefficient λ is an importan-
t hyper-parameter that controls the relative impacts of two
different losses. Thus, we vary λ from 0 to 2.5 with an in-
crement of 0.5 each step, and inspect the performance of our
model using different λs on the validation set. The larger
λ indicates that ours and the auxiliary decoder learn more
knowledge from each other.

Figure 3 shows the experimental results. We can find that,
compared with the model without mutual learning (λ = 0),
the performance of our model at any level is always im-
proved via mutual learning. When λ exceeding 1.0, the per-
formance of our model tends to be stable and declines fi-
nally. Only one exception is F1 of connective classification,
which reaches its best score when λ = 0.5. Thus, we direct-
ly set λ = 1.0 for all experiments thereafter.

Main Results
Table 1 shows the main results, from which we can reach
the following conclusions. First, all models enhanced with
contextualized word embeddings (Parts 2 and 3) outperfor-
m those using static word embeddings (Part 1). Second, in



Model Embeddings Top-level Second-level Connective
F1 Acc F1 Acc F1 Acc

IDRR-C&E (Dai and Huang 2019) GloVe 50.49 58.32 32.13 46.03 - -
IDRR-Con (Shi and Demberg 2019a) word2vec 46.40 61.42 - 47.83 - -

KANN (Guo et al. 2020) GloVe 47.90 57.25 - - - -
IDRR-C&E (Dai and Huang 2019) ELMo 52.89 59.66 33.41 48.23 - -
MTL-MLoss (Nguyen et al. 2019) ELMo 53.00 - - 49.95 - -

BERT-FT (Kishimoto, Murawaki, and Kurohashi 2020) BERT 58.48 65.26 - 54.32 - -
HierMTN-CRF (Wu et al. 2020) BERT 55.72 65.26 33.91 52.34 10.37 30.00

BMGF-RoBERTa (Liu et al. 2020) RoBERTa 63.39 69.06 - 58.13 - -
MTL-MLoss-RoBERTa RoBERTa 61.89 68.42 38.10 57.72 7.75 29.57

HierMTN-CRF-RoBERTa RoBERTa 62.02 70.05 38.28 58.61 10.45 31.30
OurEncoder+OurDecoder RoBERTa 62.93 70.66 39.71 59.59 10.67 31.54

LDSGM RoBERTa 63.73 71.18 40.49 60.33 10.68 32.20

Table 1: Experimental results on PDTB. The best results of previous baselines are underlined.

Model Top-Sec Top-Sec-Con
HierMTN-CRF 46.29 19.15

BMGF-RoBERTa 47.06 21.37
OurEncoder+OurDecoder 57.86 25.31

LDSGM 58.61 26.85

Table 2: Comparison with recent models on the consisten-
cy among multi-level label predictions. We run the code of
BMGF-RoBERTa (Liu et al. 2020) and report the results.

most cases, jointly inferring multi-level labels (HierMTN-
CRF-RoBERTa, OurEncoder+OurDecoder, LDSGM) per-
forms better than separately predicting in BMGF-RoBERTa,
which means that integrating the label dependence is indeed
helpful. Third, our LDSGM model achieves the state-of-
the-art performance on classification tasks at all three level-
s. When considering accuracy, it obtains 1.13%, 1.72% and
0.90% improvements over the best results of previous base-
lines (Part 3), respectively. In terms of F1, it also performs
consistently better than previous models.

Consistency among Multi-level Label Predictions Un-
like most previous studies predicting labels at different lev-
els independently, our LDSGM model converts multi-level
IDRR into a label sequence generation task, which intuitive-
ly is able to alleviate the inconsistency among label predic-
tions at different levels. To verify this, we report the model
performance via two new metrics: 1) Top-Sec: the percent-
age of correct predictions at both the top-level and second-
level labels; 2) Top-Sec-Con: the percentage of correct pre-
dictions across all three levels. As shown in Table 2, com-
pared with baselines, our model achieves more consistent
predictions in terms of both Top-Sec and Top-Sec-Con.

Overall, all above-mentioned results strongly demonstrate
the effectiveness of our model in capturing the dependence
between hierarchically structured labels.

Ablation Study and Analysis
To evaluate the effects of different components, we compare
LDSGM with its variants: 1) w/o GCN. In this variant, the

GCN is not used to learn better label embeddings, which
means that the label dependence is not exploited by our en-
coder. 2) w/o LA. We replace the level-specific label atten-
tion with the one without label embeddings, where the hid-
den states of decoder are used as query to retrieve contexts
for label predictions; 3) w/o PP. In this variant, the previous
predictions are not used to guide the prediction of labels at
the current level, that is to say, g(~ym−1) is removed from
Equation 5; 4) w/o ML. Mutual learning enhanced training
is not involved, meaning that our model degenerates into the
OurEncoder+OurDecoder model.

From Part 1 of Table 3, we can observe that our LDSGM
model always exhibits better performance than their corre-
sponding variants across all three levels. Therefore, we con-
firm that incorporating label dependence into both our en-
coder and decoder is indeed beneficial. Moreover, as shown
in Part 2, with the same encoder, our LDSGM model al-
ways achieves better performance than those based on other
decoding schemes, including Softmax+MultiTask, CRF, and
Ensemble(OurDecoder, AuxDecoder). These results strong-
ly demonstrate the effectiveness of exploiting the label de-
pendence in two different directions (top-down and bottom-
up). Finally, we should note that the ensemble scheme yield-
s poor performance on connective classification. The reason
behind is that, for the auxiliary decoder, it is very hard to pre-
dict connectives without the guidance of predicted higher-
level labels, with only 6.79% F1 score and 27.90% Acc.

Performance on Minority Label Predictions
Note that recent studies usually ignore the problem of ad-
dressing the highly skewed distribution of labels. For ex-
ample, only about 6.8% of PDTB instances are annotat-
ed as five of the considered 11 second-level labels (Tem-
p.Synchrony, Cont.Pragmatic cause, Comp.Concession, Ex-
pa.Alternative, and Expa.List). Therefore, we report the
label-wise F1 scores for the second-level labels in Table 4.
A closer look into the results reveals that though our LDS-
GM model outperforms BMGF-RoBERTa (Liu et al. 2020)
on most majority labels, the F1 scores for three minority la-
bels are still 0%. Besides, the BERT-based model (Kishimo-



Model Top-level Second-level Connective
F1 Acc F1 Acc F1 Acc

LDSGM 63.73 71.18 40.49 60.33 10.68 32.20
w/o GCN 63.47 70.77 39.32 59.54 9.81 30.94
w/o LA 62.84 70.19 39.15 59.09 10.64 31.32
w/o PP 63.68 70.78 39.27 59.62 10.08 30.86

w/o ML (aka. OurEncoder+OurDecoder) 62.93 70.66 39.71 59.59 10.67 31.54
OurEncoder+Softmax+MultiTask 62.82 70.25 38.28 58.37 9.60 30.82

OurEncoder+CRF 62.82 70.53 38.82 59.09 10.41 31.24
OurEncoder+Ensemble(OurDecoder, AuxDecoder) 63.04 70.80 39.91 59.61 8.61 29.95

Table 3: Ablation study. LA means the level-specific label attention mechanism, PP represents previous predictions, and ML
means the mutual learning enhanced training. Softmax+MultiTask denotes that we stack softmax layers on the top of our en-
coder to individually predict labels at different levels, and then train them based on multi-task learning. Ensemble(OurDecoder,
AuxDecoder) means that we directly ensemble the prediction results of ours and the auxiliary decoder.

Second-level Label BMGF-RoBERTa LDSGM
Temp.Asynchronous 56.18 56.47

Temp.Synchrony 0.0 0.0
Cont.Cause 59.60 64.36

Cont.Pragmatic cause 0.0 0.0
Comp.Contrast 59.75 63.52

Comp.Concession 0.0 0.0
Expa.Conjunction 60.17 57.91
Expa.Instantiation 67.96 72.60
Expa.Restatement 53.83 58.06
Expa.Alternative 60.00 63.46

Expa.List 0.0 8.98

Table 4: Label-wise F1 scores for the second-level labels.

to, Murawaki, and Kurohashi 2020) also shows poor perfor-
mance on minority labels. This is because that small num-
bers of training examples are insufficient to optimize the
huge amounts of parameters in these models. In the future,
we will pay more attention to the minority labels.

Related Work
Early studies for IDRR mainly resort to manually-designed
features (Lin, Kan, and Ng 2009; Park and Cardie 2012;
Rutherford and Xue 2014). With the rapid development of
deep learning, neural network based IDRR models have
gradually become dominant. In this aspect, many efforts
have been devoted to learning better semantic representa-
tions of arguments, where typical studies include the shallow
CNN (Zhang et al. 2015), entity-enhanced recursive neu-
ral network (Ji and Eisenstein 2015), CNN with character-
enhance embeddings (Qin, Zhang, and Zhao 2016), vari-
ational generation model (Zhang et al. 2016), knowledge-
augmented LSTM (Kishimoto, Murawaki, and Kurohashi
2018), and TransS-driven joint learning framework (He et al.
2020). Recently, more researchers focus on developing neu-
ral networks to better capture the semantic interaction be-
tween two input arguments for IDRR, for example, multi-
level attention mechanisms (Liu and Li 2016), bi-attention
mechanisms (Lei et al. 2017), topic tensor networks (Xu

et al. 2019), the knowledge-based memory network (Guo
et al. 2020), and the graph-based context model (Zhang et al.
2021). To enrich the limited training data, another line of re-
search focuses on leveraging explicit discourse data via data
selection methods (Wu et al. 2016; Xu et al. 2018), multi-
task learning (Liu et al. 2016; Lan et al. 2017), task-specific
embeddings (Braud and Denis 2016; Wu et al. 2017), or
pre-training methods (Kishimoto, Murawaki, and Kurohashi
2020). More recently, contextualized representations learned
from pre-trained models, such as ELMo (Peters et al. 2018),
BERT, and RoBERTa, have significantly improved the per-
formance of IDRR (Bai and Zhao 2018; Shi and Demberg
2019b; Liu et al. 2020). All the above studies predict label-
s at different levels independently. Unlike them, our work
infers multi-level labels jointly via a sequence generation
model. The most related to ours is (Wu et al. 2020), which
adopts a CRF-based decoder to infer label sequences. By
contrast, our work is the first attempt to recast multi-level
IDRR as a conditional label sequence generation task.

Our work is also related to recent efforts on multi-label
text classification, where the dependence between labels are
used to improve the encoder for better feature extraction (X-
ie and Xing 2018; Huang et al. 2019; Zhou et al. 2020), or
the decoder for joint label predictions (Yang et al. 2018; Wu,
Xiong, and Wang 2019). Ours significantly differs from the
above work in following aspects: 1) Both the encoder and
decoder in our model can effectively leverage the label de-
pendence; 2) A bottom-up auxiliary decoder is introduced to
boost our top-down decoder via mutual learning.

Conclusion
In this paper, we have presented a label dependence-aware
sequence generation model, which can fully leverage the de-
pendence between hierarchically structured labels for multi-
level IDRR. Experimental results and in-depth analyses on
the PDTB corpus clearly demonstrate the effectiveness of
our model. To our knowledge, our work is the first attemp-
t to deal with this task in the way of sequence generation.
An interesting future work is to combine advantages of ours
and auxiliary decoder via asynchronous bidirectional decod-
ing (Zhang et al. 2018a; Su et al. 2019) during inference.
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