A Neural Reordering Model for Phrase-based Translation

Peng Li
Tsinghua University
pengli09@gmail.com

joint work with Yang Liu, Maosong Sun, Tatsuya Izuha, Dakun Zhang
Phrase-based Translation

布什与沙龙举行了会谈

(Koehn et al., 2003; Och and Ney, 2004)
Phrase-based Translation

布什 与 沙龙 举行了 会谈

(Koehn et al., 2003; Och and Ney, 2004)
Phrase-based Translation

布什 与 沙龙 举行 了 会谈

(Koehn et al., 2003; Och and Ney, 2004)
Phrase-based Translation

布什 与 沙龙 举行 了 会谈

(Koehn et al., 2003; Och and Ney, 2004)
Phrase-based Translation

布什 与 沙龙 举行 了 会谈

Bush

(Koehn et al., 2003; Och and Ney, 2004)
Phrase-based Translation

布什与沙龙举行了会谈

Bush

(Koehn et al., 2003; Och and Ney, 2004)
Phrase-based Translation

Bush held a talk

布什与沙龙举行了会谈

(Koehn et al., 2003; Och and Ney, 2004)
Phrase-based Translation

布什
与 沙龙
举行 了 会谈

Bush held a talk

(Koehn et al., 2003; Och and Ney, 2004)
Phrase-based Translation

Bush held a talk with Sharon

(Koehn et al., 2003; Och and Ney, 2004)
Phrase-based Translation

布什 与 沙龙 举行 了 会谈

Bush held a talk with Sharon

segmentation

(Koehn et al., 2003; Och and Ney, 2004)
Phrase-based Translation

Bush\[\text{held a talk with}\] Sharon

布什与沙龙举行会谈

segmentation reordering

(Koehn et al., 2003; Och and Ney, 2004)
Phrase-based Translation

布什

Bush

与

held a talk

沙⻰龙

with Sharon

举行

translation

了

segmentation reordering

会谈

(Koehn et al., 2003; Och and Ney, 2004)
Reordering is Hard

Chinese President Xi Jinping and his US counterpart Barack Obama open two days of talks in California on a number of high-stakes issues.
Q: Can you figure out a sentence using these words?
Reordering is Hard

Chinese President Xi Jinping and his Us counterpart Barack Obama open two days of talks in California on a number of high-stakes issues

Q: Can you figure out a sentence using these words?
Reordering is Hard

• An NP-complete problem (Knight, 1999; Zaslavskiy et al., 2009)

• Reordering modeling has attracted intensive attention, e.g.

 • Distance-based model (Koehn et al., 2003)

 • Word-based lexicalized model (Koehn et al., 2007)

 • Phrase-based lexicalized model (Tillman, 2004)

 • Hierarchical phrase-based lexicalized model (Galley and Manning, 2008)
Distance-based Model

Bush held a talk with Sharon

布什与沙龙举行了会谈

(Koehn et al., 2003)
Lexicalized Models

Bush held a talk with Sharon

(Koehn et al., 2007; Tillman, 2004; Galley and Manning, 2008)
Lexicalized Models

布什与沙龙举行了会谈
Bush held a talk with Sharon

(Koehn et al., 2007; Tillman, 2004; Galley and Manning, 2008)
Lexicalized Models

(Koehn et al., 2007; Tillman, 2004; Galley and Manning, 2008)
Challenge #1: Sparsity

<table>
<thead>
<tr>
<th>Source Phrase</th>
<th>Target Phrase</th>
<th>M</th>
<th>S</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>布什</td>
<td>Bush</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>举行 了 会谈</td>
<td>held a talk</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>与 沙龙</td>
<td>with Sharon</td>
<td>0.7</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>举行 了</td>
<td>held a</td>
<td>0.6</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>会谈</td>
<td>talk</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Challenge #1: Sparsity

- Probability distributions are estimated by MLE
Challenge #1: Sparsity

- Probability distributions are estimated by MLE
Challenge #1: Sparsity

- Probability distributions are estimated by MLE
Challenge #1: Sparsity

- Probability distributions are estimated by MLE
Challenge #2: Ambiguity

ti gao xin yong ka ying yun de tou ming du

...... 提高 信用卡 营运 的 透明度，

(a)

...... enhanced transparency of credit card business .

yi ji ying yun mo shi zhuo wei zhi zao

...... 以及 营运 模式 转为 制造

(b)

...... the changing mode of business towards a more

jin yi bu gai shan jian zhu ye de ying yun

...... 进一步 改善 建造业 的 营运 。

(c)

...... further improve business in the construction industry .
Challenge #3: Context Insensitivity

Bush held a talk with Sharon.
Challenge #3: Context Insensitivity

How to resolve the three challenges?

Bush held a talk with Sharon.
Including More Contexts

Sparsity

Ambiguity

Context Insensitivity

S

与 沙龙

举行 了 会谈

held a talk

with Sharon
Including More Contexts

Sparsity

✔ Ambiguity

✔ Context Insensitivity

S

与 沙龙

举行 了 会谈

held a talk

with Sharon
Including More Contexts

? Sparsity
✔ Ambiguity
✔ Context Insensitivity

S

与 沙龙

举行 了 会谈

held a talk

with Sharon
Sparsity

• Including more contexts leads to severer sparsity
Sparsity

- Including more contexts leads to severer sparsity
Neural Reordering Model
Neural Reordering Model

• A neural classifier for predicting reordering orientations
Neural Reordering Model

- A neural classifier for predicting reordering orientations

- Conditioned on both the current and previous phrase pairs
 - Improves context sensitivity
 - Reduces reordering ambiguity
Neural Reordering Model

• A neural classifier for predicting reordering orientations
• Conditioned on both the current and previous phrase pairs
 • Improves context sensitivity
 • Reduces reordering ambiguity
• A single classifier for all phrase pairs
 • Uses vector space representations
 • Alleviates the data sparsity problem
Recursive Autoencoder (RAE)

held a talk (Pollack; 1990; Socher et. al, 2011)
Recursive Autoencoder (RAE)

(Pollack; 1990; Socher et. al, 2011)
Recursive Autoencoder (RAE)

(Pollack; 1990; Socher et. al, 2011)
Recursive Autoencoder (RAE)

(Pollack; 1990; Socher et. al, 2011)
Recursive Autoencoder (RAE)

\[y_1 = f^{(1)}(W^{(1)}[x_1; x_2] + b^{(1)}) \]

(Pollack; 1990; Socher et. al, 2011)
Recursive Autoencoder (RAE)

\[
[x'_1; x'_2] = f^{(2)}(W^{(2)}y_1 + b^{(2)})
\]

\[
y_1 = f^{(1)}(W^{(1)}[x_1; x_2] + b^{(1)})
\]

(Pollack; 1990; Socher et. al, 2011)
Recursive Autoencoder (RAE)

\[\| x_1 - x'_1 \|^2 \]

\[\| x_2 - x'_2 \|^2 \]

(Pollack; 1990; Socher et. al, 2011)
Recursive Autoencoder (RAE)

(Pollack; 1990; Socher et. al, 2011)
Recursive Autoencoder (RAE)

\[y_2 = f^{(1)}(W^{(1)}[y_1; x_3] + b^{(1)}) \]

(Pollack; 1990; Socher et. al, 2011)
Recursive Autoencoder (RAE)

\[[y'_1; x'_3] = f^{(2)}(W^{(2)}y_2 + b^{(2)}) \]

\[y_2 = f^{(1)}(W^{(1)}[y_1; x_3] + b^{(1)}) \]

(Pollack; 1990; Socher et al., 2011)
Recursive Autoencoder (RAE)

\[||y_1 - y'_1||^2 \]

\[||x_3 - x'_3||^2 \]

(Pollack; 1990; Socher et al, 2011)
Recursive Autoencoder (RAE)

\[x_1, y_1, x_2, y_2, x_3 \]

(Pollack; 1990; Socher et. al, 2011)
Neural Classifier

current phrase pair

previous phrase pair
Neural Classifier

orientations

RAE

current phrase pair

previous phrase pair
Neural Classifier

softmax

orientations

举行 了 会谈 held a talk

与 沙龙 with Sharon

current phrase pair

previous phrase pair
Training

Reordering error on predicting orientations

Reconstruction error on recovering training examples
Training

Reordering error on predicting orientations

Reconstruction error on recovering training examples
Reconstruction Error

• Reconstruction error

\[E_{rec}([c_1; c_2]; \theta) = \frac{1}{2} \| [c_1; c_2] - [c'_1; c'_2] \|^2 \]

• Source side average reconstruction error

\[E_{rec,s}(S; \theta) = \frac{1}{N_s} \sum_i \sum_{p \in T^\theta_R(t_i, s)} E_{rec}([p.c_1, p.c_2]; \theta) \]

• Total reconstruction error

\[E_{rec}(S; \theta) = E_{rec,s}(S; \theta) + E_{rec,t}(S; \theta) \]
Reordering Error

• Average cross-entropy error

\[
E_{reo}(S; \theta) = \frac{1}{|S|} \sum_i \left(- \sum_o d_{ti}(o) \cdot \log(P_{\theta}(o|t_i)) \right)
\]

• Joint training objective

\[
J = \alpha E_{rec}(S; \theta) + (1 - \alpha) E_{reo}(S; \theta) + R(\theta)
\]

\[
R(\theta) = \frac{\lambda_L}{2} \|\theta_L - \theta_{L0}\|^2 + \frac{\lambda_{rec}}{2} \|\theta_{rec}\|^2 + \frac{\lambda_{reo}}{2} \|\theta_{reo}\|^2
\]
Optimization

• Hyper-parameters optimization
 • $\alpha, \lambda_L, \lambda_{rec}, \lambda_{reo}$
 • Optimized by random search (Bergstra and Bengio, 2012)

• Training objective optimization: L-BFGS
 • Using backpropagation through structures to compute the gradients (Goller and Kuchler, 1996)
Experiments

- Chinese-English translation
- Training: 1.2M sentence pairs
- LM: 4-gram, 397.6M words
- Dev. set: NIST 06
- Test set: NIST 02-05, 08
- Case-insensitive BLEU
Experiments

- Chinese-English translation
- Training: 1.2M sentence pairs
- LM: 4-gram, 397.6M words
- Dev. set: NIST 06
- Test set: NIST 02-05, 08
- Case-insensitive BLEU

- Baselines
 - Distance-based model
 - Lexicalized model

 \[
 \begin{align*}
 \text{word-based} \\
 \text{phrase-based} \\
 \text{hier. phrase-based} \\
 \text{model type}
 \end{align*}
\]

 \[
 \begin{align*}
 \text{M/S/D} \\
 \text{left/right} \\
 \text{orientations}
 \end{align*}
\]
M/S/D Orientations

- Care about relative position and adjacency
Left/Right Orientations

- Only care about relative position
Translation
Translation

![Bar chart showing BLEU scores for different models: baseline, neural M/S/D, and neural left/right. The models include MT06 (dev), MT02, MT03, MT04, MT05, and MT08.]
Translation

- BLEU scores for different models:
 - MT06 (dev)
 - MT02
 - MT03
 - MT04
 - MT05
 - MT08

- Models compared:
 - baseline
 - neural M/S/D
 - neural left/right
Translation

<table>
<thead>
<tr>
<th>BLEU</th>
<th>MT06 (dev)</th>
<th>MT02</th>
<th>MT03</th>
<th>MT04</th>
<th>MT05</th>
<th>MT08</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>30.75</td>
<td>33</td>
<td>31.75</td>
<td>30.75</td>
<td>30.75</td>
<td>24</td>
</tr>
<tr>
<td>30.75</td>
<td>31.75</td>
<td>33</td>
<td>30.75</td>
<td>30.75</td>
<td>30.75</td>
<td>24</td>
</tr>
</tbody>
</table>
Non-Separability

• The unaligned Chinese word “de” makes a big difference in determining M/S/D orientations

Kinmen has 60,000 resident population

金门有六万人的常住人口
Non-Separability

• The unaligned Chinese word “de” makes a big difference in determining M/S/D orientations

Kinmen has 60000 resident population
Non-Separability

- The unaligned Chinese word “de” makes a big difference in determining M/S/D orientations

Kinmen has 60,000 resident population
Non-Separability

- The unaligned Chinese word “de” makes a big difference in determining M/S/D orientations

 Kinmen has 60000 resident population
Non-Separability

六万的 常住人口
60000 resident population

六万 常住人口
60000 resident population
Non-Separability

- Left/right orientations are not so sensitive to unaligned words
Non-Separability

- Left/right orientations are not so sensitive to unaligned words

Kinmen has 60,000 resident population
Non-Separability

六万的常住人口
60000 resident population

六万的常住人口
60000 resident population

left right
Non-Separability
Word Vectors

Task-oriented vectors vs word2vec vectors

BLEU scores for MT06 (dev), MT02, MT03, MT04, MT05, and MT08.
Vector Space Representations

by june 1
within the agencies
take care of old
as detention center

and complete by end 1998
and for other
or other economic

range of services to

economy is required to
but is willing to

said his visit is to

late 2011
june 18, 2001
is making use of
Conclusion

• We propose a neural reordering model for phrase-based translation

• It improves the context sensitivity, reduces ambiguity and alleviates the data sparsity problem
Conclusion

• We propose a neural reordering model for phrase-based translation

• It improves the context sensitivity, reduces ambiguity and alleviates the data sparsity problem

• Future work

 • Train MT system and neural classifier jointly

 • Develop more efficient models to leverage larger contexts

 • Extend our work to syntax-based and n-gram based models
Thanks!