A Neural Reordering Model for Phrase-based Translation

Peng Li
Tsinghua University
pengli09@gmail.com

joint work with Yang Liu, Maosong Sun, Tatsuya Izuha, Dakun Zhang
Phrase-based Translation

布什 与 沙龙 举行 了 会谈

Bush held a talk with Sharon

segmentation reordering translation

(Koehn et al., 2003; Och and Ney, 2004)
Q: Can you figure out a sentence using these words?
Chinese President Xi Jinping and his Us counterpart Barack Obama open two days of talks in California on a number of high-stakes issues

Q: Can you figure out a sentence using these words?
Reordering is Hard

• An NP-complete problem (Knight, 1999; Zaslavskiy et al., 2009)

• Reordering modeling has attracted intensive attention, e.g.

 • Distance-based model (Koehn et al., 2003)

 • Word-based lexicalized model (Koehn et al., 2007)

 • Phrase-based lexicalized model (Tillman, 2004)

 • Hierarchical phrase-based lexicalized model (Galley and Manning, 2008)
Distance-based Model

布什 与 沙龙 举行 了 会谈
Bush held a talk with Sharon

(Koehn et al., 2003)
Lexicalized Models

(Koehn et al., 2007; Tillman, 2004; Galley and Manning, 2008)
Lexicalized Models

布什 与 沙龙 举行 了 会谈

Bush held a talk with Sharon

(Koehn et al., 2007; Tillman, 2004; Galley and Manning, 2008)
Lexicalized Models

布什 与 沙龙 举行 了 会谈

Bush held a talk with Sharon

(Koehn et al., 2007; Tillman, 2004; Galley and Manning, 2008)
Challenge #1: Sparsity

<table>
<thead>
<tr>
<th>Source Phrase</th>
<th>Target Phrase</th>
<th>M</th>
<th>S</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>布什</td>
<td>Bush</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>举行 了 会谈</td>
<td>held a talk</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>与 沙龙</td>
<td>with Sharon</td>
<td>0.7</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>举行 了</td>
<td>held a</td>
<td>0.6</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>会谈</td>
<td>talk</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Challenge #1: Sparsity

- Probability distributions are estimated by MLE.
Challenge #2: Ambiguity

(a) ti gao xin yong ka ying yun de tou ming du
...... 提高 信用卡 营运 的 透明度，

...... enhanced transparency of credit card business.

(b) yi ji ying yun mo shi zhuo wei zhi zao
...... 以及 营运 模式 转为 制造

...... the changing mode of business towards a more

(c) jin yi bu gai shan jian zhu ye de ying yun
...... 进一步 改善 建 造 业 的 营运。

...... further improve business in the construction industry.
Challenge #3: Context

Insensitivity

How to resolve the three challenges?

Bush held a talk with Sharon
Including More Contexts

Sparsity

Ambiguity

Context Insensitivity
Sparsity

• Including more contexts leads to severer sparsity

Reordering as Classification
Neural Reordering Model

- A neural classifier for predicting reordering orientations
- Conditioned on both the current and previous phrase pairs
 - Improves context sensitivity
 - Reduces reordering ambiguity
- A single classifier for all phrase pairs
 - Uses vector space representations
 - Alleviates the data sparsity problem
Recursive Autoencoder (RAE)

\[
[x'_1; x'_2] = f^{(2)}(W^{(2)}y_1 + b^{(2)})
\]

\[
y_1 = f^{(1)}(W^{(1)}[x'_2; x'_1] + b^{(1)})
\]

\[
\|x_1 - x'_1\|^2
\]

(Pollack; 1990; Socher et al, 2011)
Recursive Autoencoder (RAE)

\[[y'_1; x'_3] = f^{(2)}(W^{(2)} y_2 + b^{(2)}) \]

\[\|y_1 y_2 y'_1\|^2 (W^{(1)} [y_1; x_3] + b^{(1)}) \]

\[\|x_3 - x'_3\|^2 \]

(Pollack; 1990; Socher et. al, 2011)
Neural Classifier

orientations

RAE

softmax

current phrase pair

previous phrase pair

held a talk

with Sharon
Training

Reordering error on predicting orientations

Reconstruction error on recovering training examples
Reconstruction Error

- Reconstruction error

\[E_{rec}([c_1; c_2]; \theta) = \frac{1}{2} \| [c_1; c_2] - [c'_1; c'_2] \|^2 \]

- Source side average reconstruction error

\[E_{rec,s}(S; \theta) = \frac{1}{N_s} \sum_i \sum_{p \in T_R^6(t_i, s)} E_{rec}([p.c_1, p.c_2]; \theta) \]

- Total reconstruction error

\[E_{rec}(S; \theta) = E_{rec,s}(S; \theta) + E_{rec,t}(S; \theta) \]
Reordering Error

• Average cross-entropy error

\[E_{reo}(S; \theta) = \frac{1}{|S|} \sum_i \left(-\sum_o d_{t_i}(o) \cdot \log(P_\theta(o|t_i)) \right) \]

• Joint training objective

\[J = \alpha E_{rec}(S; \theta) + (1 - \alpha) E_{reo}(S; \theta) + R(\theta) \]

\[R(\theta) = \frac{\lambda_L}{2} \| \theta_L - \theta_{L_0} \|^2 + \frac{\lambda_{rec}}{2} \| \theta_{rec} \|^2 + \frac{\lambda_{reo}}{2} \| \theta_{reo} \|^2 \]
Optimization

- Hyper-parameters optimization
 - $\alpha, \lambda_L, \lambda_{rec}, \lambda_{reo}$
 - Optimized by random search (Bergstra and Bengio, 2012)

- Training objective optimization: L-BFGS
 - Using backpropagation through structures to compute the gradients (Goller and Kuchler, 1996)
Experiments

• Chinese–English translation

• Training: 1.2M sentence pairs

• LM: 4-gram, 397.6M words

• Dev. set: NIST 06

• Test set: NIST 02–05, 08

• Case-insensitive BLEU

• Baselines

• Distance-based model

• Lexicalized model

\[
\begin{array}{c}
\text{word-based} \\
\text{phrase-based} \\
\text{hier. phrase-based}
\end{array}
\times
\begin{array}{c}
\text{M/S/D} \\
\text{left/right}
\end{array}
\]
M/S/D Orientations

• Care about relative position and adjacency
Left/Right Orientations

• Only care about relative position

Bush held a talk with Sharon right

Bush held a talk with Sharon left
Translation

<table>
<thead>
<tr>
<th>BLEU</th>
<th>MT06 (dev)</th>
<th>MT02</th>
<th>MT03</th>
<th>MT04</th>
<th>MT05</th>
<th>MT08</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>30.75</td>
<td>31.25</td>
<td>31.25</td>
<td>31.25</td>
<td>31.25</td>
<td>31.25</td>
</tr>
<tr>
<td>neural M/S/D</td>
<td>33.00</td>
<td>33.00</td>
<td>33.00</td>
<td>33.00</td>
<td>33.00</td>
<td>33.00</td>
</tr>
<tr>
<td>neural left/right</td>
<td>33.00</td>
<td>33.00</td>
<td>33.00</td>
<td>33.00</td>
<td>33.00</td>
<td>33.00</td>
</tr>
</tbody>
</table>
Non-Separability

- The unaligned Chinese word “de” makes a big difference in determining M/S/D orientations

Kinmen has 60000 resident population

金门有六万的常住人口
Non-Separability

- The unaligned Chinese word “de” makes a big difference in determining M/S/D orientations

金门 有 六 万 的 常住 人口
Kinmen has 60000 resident population
Non-Separability

六万的常住人口
60000 resident population

六万常住人口
60000 resident population
Non-Separability

- Left/right orientations are not so sensitive to unaligned words

Kinmen has 60,000 resident population
Non-Separability

• Left/right orientations are not so sensitive to unaligned words

金门 有 六 万 的 常住 人口

Kinmen has 60000 resident population
Non-Separability

六万的常住人口

六万的常住人口

60000 resident population

60000 resident population

left right
Non-Separability
Distortion Limit

![Distortion Limit Graph]

- Blue line: neural
- Green line: lexicalized
Word Vectors

![Bar plot showing BLEU scores for task-oriented and word2vec vectors across different datasets.](Image)
Vector Space Representations
Conclusion

• We propose a neural reordering model for phrase-based translation

• It improves the context sensitivity, reduces ambiguity and alleviates the data sparsity problem

• Future work

 • Train MT system and neural classifier jointly
 • Develop more efficient models to leverage larger contexts
 • Extend our work to syntax-based and n-gram based models
Thanks!