
Yang LE, Sun MS, Cheng Y et al. Neural parse combination. JOURNALOF COMPUTER SCIENCE ANDTECHNOLOGY

32(4): 749–757 July 2017. DOI 10.1007/s11390-017-1756-5

Neural Parse Combination

Lin-Er Yang 1,2,3, Student Member, CCF, Mao-Song Sun 1,2,3,4, Senior Member, CCF, Yong Cheng 5

Jia-Cheng Zhang 1,2,3, Student Member, CCF, Zheng-Hao Liu 1,2,3, Student Member, CCF, Huan-Bo Luan 1,2,3

and Yang Liu 1,2,3,4,∗, Senior Member, CCF

1Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

2State Key Laboratory of Intelligent Technology and Systems, Tsinghua University, Beijing 100084, China

3Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China

4Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou 221009, China

5Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China

E-mail: lineryang@gmail.com; sms@mail.tsinghua.edu.cn; chengyong3001@gmail.com; grit31@126.com
E-mail: liuzhenghao0819@163.com; luanhuanbo@gmail.com; liuyang2011@tsinghua.edu.cn

Received December 22, 2016; revised June 12, 2017.

Abstract Analyzing the syntactic structure of natural languages by parsing is an important task in artificial intelligence.

Due to the complexity of natural languages, individual parsers tend to make different yet complementary errors. We propose

a neural network based approach to combine parses from different parsers to yield a more accurate parse than individual

ones. Unlike conventional approaches, our method directly transforms linearized candidate parses into the ground-truth

parse. Experiments on the Penn English Treebank show that the proposed method improves over a state-of-the-art parser

combination approach significantly.

Keywords neural network, parsing, parse combination

1 Introduction

Parsing, which aims to analyze the syntactic struc-

ture of nature languages conforming to formal gram-

mars, is an important task in artificial intelligence. The

past two decades have witnessed the rapid develop-

ment of natural language parsing. While early parsers

rely on either generative or discriminative statisti-

cal models[1-8], neural network based approaches to

parsing[9-16] have received increasing attention recently.

Despite the apparent success of data-driven pars-

ing, it is widely observed that an individual parser

can only capture partial aspects of parsing regularities

due to the complexity of natural languages. In con-

stituency parsing, Henderson and Brill[17] found that

isolated constituent precision varies significantly across

three constituency parsers[1,18]. In dependency parsing,

McDonald and Nivre[19] observed that the graph-based

MSTParser[4] and the transition-based MaltParser[6]

make different errors: while MSTParser has an advan-

tage for the root category, MaltParser achieves con-

siderably better precision for nominal categories. For-

tunately, errors made by different parsers are usually

observed to be complementary[19], suggesting that in-

tegrating different parsers can potentially yield better

parses.

Therefore, a number of authors have explored ap-

proaches to parser combination[17,19-25]. These ap-

proaches can be roughly divided into two broad cate-

gories: parse combination and model combination.

While parse combination approaches which include

parse selection and parse hybridization, focus on com-

Regular Paper

Special Issue on Deep Learning

This work is supported by the National Basic Research 973 Program of China under Grant No. 2014CB340501, the Key Program
of the National Natural Science Foundation of China under Grant No. 61331013, and the National Natural Science Foundation of China
under Grant No. 61522204.

∗Corresponding Author

©2017 Springer Science +Business Media, LLC & Science Press, China



750 J. Comput. Sci. & Technol., July 2017, Vol.32, No.4

bining parses either at the parse level or at the con-

stituent level in the post-processing phase[17,20-23,25],

model combination approaches integrate different pars-

ing models at the learning phase[19,24]. As compared

with model combination that requires candidate models

to be combinable, parse combination can be more easily

applied to integrate the output of arbitrary parsers.

However, parse combination still suffers from a ma-

jor problem: it is difficult to find the ground-truth parse

in the search space of combination. For parse-level com-

bination, the search space only consists of a handful of

candidate single parses in which the ground-truth parse

is usually not included[17]. Enlarging the search space

by organizing it as a weighted parse chart to represent

more candidates, constituent-level combination is more

likely to contain the ground-truth parse. However, it is

still impossible to yield the ground-truth parse if there

exist ground-truth constituents excluded in candidate

parses.

In this work, we propose a neural network based

approach to parse combination. Inspired by Vinyals et

al.[12], we propose a multi-sequence-to-sequence model:

the input is a list of linearized parses produced by

different parsers and the output is the ground-truth

parse. Unlike conventional parse combination ap-

proaches, our model learns to combine candidate parses

directly into the ground-truth parse. We leverage

LSTM (Long-Short Term Memory)[26] to capture long-

distance contextual information and use the attention

mechanism[27] to dynamically select relevant parts from

candidate parses. Experiments on the Penn English

Treebank 1○ show that our method is superior to a state-

of-the-art parse combination approach.

2 Background

2.1 Problem Statement

The goal of parse combination is to integrate the

strengths of individual parsers to improve parsing ac-

curacy. For example, Fig.1(a) shows a candidate parse

produced by one parser. While the parse correctly iden-

tifies “Making computers smaller” as a verb phrase (i.e.,

VP), its prediction on “means sacrificing memory” is

wrong. On the contrary, as shown in Fig.1(b), the can-

didate produced by another parser correctly analyzes

“means sacrificing memory” but is wrong with “Making

computer smaller”. Since the two candidate parses are

complementary, combining them can potentially yield

the ground-truth parse shown in Fig.1(c).

S

VP

VP

NN

memory

VBG

sacrificing

sacrificing

sacrificing

VBZ

means

S

VP

S

ADJP

JJR

smaller

NP

NNS

computers

VBG

Making

S

VP

VP

S

VP

NP

NN

memory

VBG

VBZ

means

JJR

smaller

NP

NNS

computers

VBG

Making

S

VP

S

VP

NP

NN

memory

VBG

VBZ

means

S

VP

S

ADJP

JJR

smaller

NP

NNS

computers

VBG

Making

(a)

(b)

(c)

Fig.1. (a) One candidate parse. (b) Another candidate parse.
(c) Combined parse. Parser combination aims to integrate the
strengths of individual parsers to yield more accurate parses.

2.2 Parse Selection

To combine parses, a straightforward idea is to se-

lect a single promising parse from the candidate set,

which is often referred to as parse selection. This can

be done either by maximizing the expected precision or

1○https://catalog.ldc.upenn.edu/LDC99T42, June 2017.



Lin-Er Yang et al.: Neural Parse Combination 751

F1 score of the selected parse[17,21] or by discriminative

reranking with hand-crafted features[22-23].

A key limitation of such parse-level combination is

that the search space often rules out the ground-truth

parses. For example, as neither Fig.1(a) nor Fig.1(b) is

identical to the ground-truth parse, it is impossible for

parse selection approaches to yield the correct parse.

2.3 Parse Hybridization

To alleviate this problem, a number of researchers

proposed parse hybridization approaches that com-

bine parses at the constituent level[17,20-21,25]. The

central idea is to choose constituents on which all

parses agree. For example, in Fig.1(a) and Fig.1(b),

both parses assign “sacrificing memory” the same con-

stituent (VP, 4, 6), suggesting that it is likely to be cor-

rect because two parses reach a consensus.

More formally, given N parses {T (1), . . . , T (N)} and

their associated probabilities, a parse hybridization

model as described in [20] computes the weight of a

constituent by summing weights of all parses that con-

tain the constituent as follows:

w((ℓ, i, j)) =

N
∑

n=1

P (T (n))
q
(ℓ, i, j) ∈ T (n)

y
,

where w((l, i, j)) is the weight of a constituent span-

ning from the i-th word to the j-th word with label ℓ,

P (T (n)) is the probability of the n-th candidate parse,

and J(ℓ, i, j) ∈ T (n)K returns 1 if T (n) contains the con-

stituent and 0 otherwise.

After calculating constituent weights, Sagae and

Lavie[20] populated a chart with high-weight con-

stituents and used a CKY-style parse algorithm to find

the heaviest tree. One advantage of this approach over

parse selection is the enlarged search space: new trees

that are not included in the candidate set can be gene-

rated.

Although parse hybridization is superior to parse

selection by introducing agreement between candidates

at a smaller granularity, it is still difficult to yield the

ground-truth parse if constituents in the ground-truth

parse are not observed in candidate parses. In addition,

the weight of constituents is simply calculated by voting

and ignores contexts. Fossum and Knight[21] indicated

that parse hybridization approaches allow arbitrary

context-free productions because parsing with weighted

constituents is not constrained by formal grammars,

which may hinder downstream applications.

3 Neural Parse Combination

3.1 Model

In this work, we propose a neural network based ap-

proach to parse combination. The basic idea is to uti-

lize a single, large neural network to directly transform

multiple candidate parses to a combined parse. This

can be done by linearizing parses[12] and extending the

attention-based sequence-to-sequence architecture[27]

to take multiple sequences as input and the ground-

truth parse as output.

Given N candidate parses {T (1), . . . , T (N)}, we first

follow Vinyals et al.[12] to obtain their linearized forms.

For example, Fig.1(a) can be linearized as

(S (S (VP VBG (S (NP NNS )NP ... .

Unlike [12] that aims to transform a natural language

sentence into a linearized parse, our goal is to combine

multiple linearized parses into one linearized parse.

Formally, given a set of linearized candidate parses

{x(1), . . . ,x(N)} and a linearized ground-truth parse y,

the neural parse combination model is defined as

P (y|x(1), . . . ,x(N); θ)

=

J
∏

i=1

P (yi|x
(1), . . . ,x(N),y<j ; θ), (1)

where yi is the i-th token in the linearized ground-

truth parse, y<i = {y1, . . . , yi−1} is a partial output

sequence, and θ is a set of model parameters.

Following Bahdanau et al.[27], we define each condi-

tional probability in (1) as

P (yi|x
(1), . . . ,x(N),y<i; θ)

=
exp

(

g(yi−1, ci, si, θ)
)

∑

y′ exp
(

g(y′, ci, si, θ)
) ,

where g(·) is a non-linear function, ci is a context vec-

tor that encodes the relevant context on the input side

(i.e., {x(1), . . . ,x(N)}) and si is a hidden state for time

i that represents the context on the output side (i.e.,

y<i).

The hidden state si is calculated by a recurrent neu-

ral network (RNN) using the LSTM unit[26]:

si = f(si−1, yi−1, ci),

where f(·) is a non-linear function.



752 J. Comput. Sci. & Technol., July 2017, Vol.32, No.4

3.2 Calculating Attention Scores

On the input side, for each sequence x(n) that has

J (n) tokens, we follow Bahdanau et al.[27] to use bidi-

rectional RNNs to concatenate forward and backward

states to obtain annotations {h
(n)
j }J

(n)

j=1 . The method

of calculating the context vector ci, however, is signifi-

cantly different from that of Bahdanau et al.[27] because

the input is a list of sequences rather than a single se-

quence. Therefore, we propose two approaches to cal-

culating attention as well as the context vector.

3.2.1 Local Attention

Taking multiple sequences as input in the encoder-

decoder framework has been investigated in machine

translation[28-29]. Zoph and Knight[28] proposed a

method to integrate locally normalized attention for

multi-source neural machine translation.

As shown in Fig.2(a), we follow Zoph and Knight[28]

to calculate local attention for each input sequence

x(n):

α
(n)
ij =

exp
(

a(si−1,h
(n)
j )

)

∑J(n)

j′=1 exp
(

a(si−1,h
(n)
j′ )

)

,

where a(·) is an alignment matrix.

The corresponding local context vector c
(n)
i is com-

puted as a weighted sum of annotations:

c
(n)
i =

J(n)
∑

j=1

α
(n)
ij h

(n)
j .

Then, the global context vector ci can be obtained

by averaging local context vectors:

ci =
1

N

N
∑

n=1

c
(n)
i .

3.2.2 Global Attention

Inspired by [29] that introduces a single attention

mechanism shared across all language pairs in multi-

way, multilingual neural machine translation, we pro-

pose an approach to directly compute global attention

for all input sequences:

α
(n)
ij =

exp
(

a(si−1,h
(n)
j )

)

∑N

n=1

∑J(n)

j′=1 exp
(

a(si−1,h
(n)
j′ )

)

.

The global context vector ci is given by

ci =
N
∑

n=1

J(n)
∑

j=1

α
(n)
ij h

(n)
j .

3.3 Training and Parsing

In training, we use the standard maximum likeli-

hood criterion to find optimal model parameters:

θ̂ = argmax
θ

{

P (y|x(1), . . . ,x(N); θ)

}

.

Given trained model parameters, we use a beam

search algorithm[27] to find a linearized parse that ap-

proximately maximizes the conditional probability:

ŷ = argmax
y

{

P (y|x(1), . . . ,x(N); θ̂)

}

.

h
↼↽


h
↼↽

J↼↽
h
↼N↽

J↼N ↽h
↼N↽


x
↼↽
 x

↼N↽


x
↼↽

J↼↽
x
↼N↽

J↼N ↽

↼↽
i

↼↽

iJ↼↽
↼N↽

iJ↼N ↽

↼N↽
i

Input

Input Hidden State

Local Attention

Local Context

Output Hidden State

Output

c
↼↽
i c

↼N↽
i

Global Context

h
↼↽


h
↼↽

J↼↽
h
↼N↽

J↼N ↽h
↼N↽


x
↼↽
 x

↼N↽


x
↼↽

J↼↽
x
↼N↽

J↼N ↽

↼↽
i

↼↽

iJ↼↽
↼N↽

iJ↼N ↽

↼N↽
i

Input

Input Hidden State

Global Attention

Global Context

Output Hidden State

Output

yi֓

si֓

yi

... ...

...

... ...

... ...

...

...

...

si

ci

si֓ si

ci

yi֓ yi

(a) (b)

Fig.2. (a) Local attention. (b) Global attention. While local attention is normalized within each candidate parse, global attention is
distributed among all candidate parses.



Lin-Er Yang et al.: Neural Parse Combination 753

4 Experiments

4.1 Setup

We evaluate our approach on the Penn English

Treebank 2○ using the standard split: sections 02∼21

as the training set (39 832 sentences), section 22 as the

development set (1 700 sentences), and section 23 as

the test set (2 416 sentences). We tag the training data

using Stanford POS tagger[30] with 10-way jackknifing

(accuracy ≈ 97.3%).

The following two constituency parsers are used in

our parse combination experiments:

1)Berkeley[5]: a state-of-the-art generative parser

using latent-variable PCFGs in which non-terminals are

refined by a split-merge procedure;

2) ZPar[31]: a state-of-the-art discriminative parser

using global discriminative training and shift-reduce

parsing with beam search.

Following Collins and Koo[32], we run both parsers

on a 10-fold cross-validated training set. The origi-

nal training set is divided into 10 equalized folds (i.e.,

around 3 983 sentences in each fold on average). The

parses for each fold are generated by Berkeley and

ZPar trained on the trees in the other folds. Then,

the development and test sets are parsed using the two

“out-of-the-box” parsers.

We compare the following two parse combination

approaches:

1) ReParsing[20]: a state-of-the-art parse hy-

bridization approach that reparses with weighted con-

stituents (see Section 2);

2) NeuralComb: the proposed approach that ex-

ploits the attention-based encoder-decoder framework

to combine candidate parses.

NeuralComb uses a training set consisting of two

parts: the candidate parses produced by Berkeley

and ZPar as input and the ground-truth parses in the

treebank as output. We implement our approach us-

ing TensorFlow. In our experiments, we use a model

with three LSTM layers and 256 units in each layer.

The vocabulary size is set to 132. We use the Adam

optimizer[33] for stochastic optimization with an initial

learning rate of 0.001. We also apply dropout[34] with

probability 0.5 to LSTM layers and gradient clipping[35]

when the norm of gradients exceeds 5. We train our

model on a single GPU (GeForce GTX TITAN X) for

up to 120 000 epochs, with a rough runtime of 30 min-

utes per 1 000 epochs. The beam size for searching the

optimal combined parse in the decoder is set to 10. The

model that achieves the highest accuracy on the develo-

pment set is selected for evaluation on the test set.

4.2 Complementariness of Individual Parsers

Our work is based on the assumption that two indi-

vidual parsers are complementary. To validate this hy-

pothesis, we plot the F1 scores achieved by Berkeley

and ZPar on the development set, as shown in Fig.3.

For each point that denotes a sentence in the develo-

pment set, the horizontal axis denotes the F1 score of

Berkeley on the sentence and the vertical axis denotes

the F1 score of ZPar on the same sentence. We observe

that Berkeley achieves the same F1 score with Zpar

on 1 032 sentences, better on 644 sentences, and worse

on 740 sentences. This finding suggests that two parsers

are complementary and combining them can potentially

yield better parses.

75

100

95

90

85

80

75
80 85

Z
P

A
R

BERKELEY

90 95 100

Fig.3. Plots of F1 scores of Berkeley and ZPar on the develo-
pment set.

4.3 Local and Global Attention

We first compare local and global attention models

on the development set. As shown in Table 1, using

local attention achieves surprisingly much higher preci-

sion, recall and F1 than using global attention. We con-

jecture that it is more difficult to model global attention

because the concatenated sequence is much longer than

individual sequences. Therefore, we use local attention

in the following experiments.

2○https://catalog.ldc.upenn.edu/LDC99T42, June 2017.



754 J. Comput. Sci. & Technol., July 2017, Vol.32, No.4

Table 1. Comparison Between Local and Global

Attention on the Development Set

Attention Precision Recall F1

Local 91.34 90.39 90.88

Global 90.04 89.60 89.82

4.4 Effect of Beam Size

We investigate the effect of beam size on the develo-

pment set. As shown in Table 2, with the increase of

beam size, the precision, the recall, and F1 rise signifi-

cantly. However, a larger beam size also results in

longer parsing time. To achieve a balance between ac-

curacy and efficiency, we set the beam size to 10 in the

following experiments.

Table 2. Effect of Beam Size on the Development Set

Beam Size Precision Recall F1

1 91.34 90.39 90.88

5 91.68 90.80 91.24

10 91.82 90.83 91.32

4.5 Comparison with Parse Hybridization

Table 3 shows the F1 scores achieved by individual

and combined parsers on the development and test sets.

Berkeley and ZPar achieve similar results around

89.7. ReParsing achieves an F1 score of 90.35 by

reparsing with weighted constituents collected from the

parses produced by the two individual parsers. Our ap-

proach NeuralComb improves over individual parsers

by +1.1% and ReParsing by 0.3%. All the differences

are statistically significant.

Table 3. Comparison of F1 Scores Between

Individual and Combined Parsers

Type Parser Development Set Test Set

Individual Berkeley[5] 90.13 89.77

ZPar[31] 90.34 89.73

Combined ReParsing[20] 90.41 90.35

NeuralComb 91.32 90.86

4.6 F1 Scores over Sentence Lengths

A key limitation of ReParsing is that the con-

stituents used in reparsing are restricted to the set of

constituents from Berkeley and ZPar parses.

We find that 2 488 constituents in the ground-truth

parses are not included in the candidate constituent set

on the test set. In contrast, NeuralComb is capable

of recovering 504 such unseen constituents thanks to

the attention-based encoder-decoder architecture.

Fig.4 shows the F1 scores of Berkeley and ZPar

on the test set with respect to sentence lengths. We

find that our approach generally outperforms Berke-

ley, ZPar, and ReParsing on all sentence lengths.

The margin seems to rise with the increase of sentence

lengths. However, slight oscillation is observed for sen-

tences longer than 50 words. One possible reason is that

it is difficult for LSTMs and the attention mechanism

to handle very long sentences. Note that the length of

a linearized parse is usually much longer than that of

the corresponding sentence.

10 20 30

Sentence Length

40 50 60 70

NEURALCOMB

REPARSING

BERKELEY

ZPAR

100

95

90

85

80

75

70

F
1
 S

c
o
re

Fig.4. F1 scores on the test set over various sentence lengths.

4.7 Comparison of Constituent Precision

To measure how precise a parser predicts a con-

stituent label, we compute constituent precision as fol-

lows:

Precisionℓ

=

∑K

k=1

∑

〈ℓ′,i,j〉∈T̃ (k)Jℓ′ = ℓ ∧ 〈ℓ′, i, j〉 ∈ T (k)K
∑K

k=1

∑

〈ℓ′,i,j〉∈T̃ (k)Jℓ′ = ℓK
,

where ℓ is a constituent label (e.g., NP), K is the num-

ber of sentences in a dataset, T̃ (k) is the k-th parse pro-

duced by the parser, and T (k) is the k-th ground-truth

parse.

Table 4 shows constituent precision for all four

parsers. We can reconfirm that Berkeley and ZPar

are complementary: while Berkeley excels at pre-

dicting “FRAG”, “S”, “NP”, “VP”, and “WHNP”,

ZPar is superior on “CONJP”, “LST”, “NAC”, “NX”,

and “PP”. Clearly, our approach improves precision for

most labels, especially for high-frequency labels such as

“NP”, “VP”, “S”, “PP”, and “SBAR”.



Lin-Er Yang et al.: Neural Parse Combination 755

Table 4. Comparison of Constituent Precision

Label Berkeley ZPar ReParsing NeuralComb

Count Precision Count Precision Count Precision Count Precision

ADJP 626 77.28 617 77.61 662 73.15 649 82.99

ADVP 1 186 85.82 1 180 88.92 1 241 83.51 1 218 90.49

CONJP 18 69.23 10 83.33 16 72.73 17 77.27

FRAG 9 28.13 3 15.79 9 27.27 10 83.33

INTJ 8 66.67 5 71.43 9 69.23 10 90.91

LST 4 50.00 1 100.00 4 50.00 1 100.00

NAC 20 74.07 19 82.61 18 66.66 21 95.45

NP 17 027 91.58 17 161 91.51 17 509 89.54 17 288 93.05

NX 19 48.72 15 78.95 21 52.50 32 71.11

PP 4 707 85.09 4 832 87.49 4 819 85.79 4 880 88.42

PRN 117 72.67 111 82.22 125 71.84 112 86.15

QP 437 88.46 439 88.33 438 87.95 444 90.24

S 5 125 90.95 5 109 90.52 5 180 90.04 5 200 92.66

SBAR 1 518 88.46 1 553 87.79 1 563 87.81 1 588 91.58

SBARQ 7 70.00 4 57.14 7 70.00 6 66.67

SINV 145 90.63 130 90.28 146 90.12 141 90.97

SQ 11 61.11 11 84.62 12 63.16 16 84.21

UCP 9 39.13 7 53.85 9 37.50 8 80.00

VP 8 013 91.31 7 950 90.94 8 126 90.00 8 148 93.09

WHADJP 2 100.00 3 100.00 2 100.00 2 100.00

WHADVP 120 96.00 124 96.88 124 95.28 124 97.64

WHNP 413 95.60 412 95.15 416 93.69 416 95.19

WHPP 24 96.00 25 100.00 24 100.00 25 100.00

X 2 40.00 4 57.14 4 40.00 4 100.00

5 Related Work

Our work is inspired by two lines of research: 1)

parser combination, and 2) attention-based encoder-

decoder framework.

5.1 Parser Combination

Previous work on parser combination can be di-

vided into two categories: parse combination at the

post-processing phase[17,20] and model combination at

the learning phase[19,24]. Our approach falls into the

first category. While previous parse combination ap-

proaches focus on picking single parses[17,23] or re-

combining constituents[20-21], our approach adopts the

attention-based encoder-decoder framework[27] to di-

rectly transform multiple linearized parses. One major

advantage is that our approach is capable of guiding

the model to learn to directly produce ground-truth

parses, which are usually ruled out by conventional

parse combination approaches. Another difference is

that we leverage the attention mechanism to automati-

cally select relevant parts from candidate parses rather

than to assign constituents weights by voting.

5.2 Attention-Based Encoder-Decoder

Framework

Our work extends the standard attention-based

encoder-decoder framework[27] by taking multiple se-

quences as input. We are also inspired by [12] that

linearizes a parse into a sequence and introduces the

first sequence-to-sequence parsing model. Our local at-

tention model is similar to the multi-source attention

proposed by Zoph and Knight[28] except that we use

standard content-based attention instead of position-

aware attention. Our global attention model is inspired

by the shared attention mechanism described by Firat

et al.[29] The difference is that parse combination only

needs to yield one sequence while Firat et al.[29] focused

on generating multiple sequences.

6 Conclusions

We presented a neural network based approach to

parse combination. The central idea is to treat lin-

earized parses as sequences and use the attention-based

encoder-decoder architecture to directly transform mul-

tiple candidate parses into a single parse. One major



756 J. Comput. Sci. & Technol., July 2017, Vol.32, No.4

advantage of our approach is that the model learns how

to directly yield ground-truth parses at the training

phase. Experiments on Penn English Treebank showed

that our approach significantly improves over the state-

of-the-art reparsing approach.

In the future, we will investigate novel attention

models to better capture combination regularities be-

tween input and output. It is also interesting to adopt

the minimum risk training[36] to optimize our model di-

rectly with respect to F1 score. As our framework can

be applied to arbitrary sequences, we plan to verify its

effectiveness on more natural language processing tasks.

References

[1] Collins M. Three generative, lexicalised models for statisti-

cal parsing. In Proc. ACL, July 1997, pp.16-23.

[2] Charniak E. A maximum-entropy-inspired parser. In Proc.

NAACL, April 29-May 4, 2000, pp.132-139.

[3] Klein D, Manning C D. Accurate unlexicalized parsing. In

Proc. ACL, July 2003, pp.423-430.

[4] McDonald R, Pereira F, Ribarov K, Hajič J. Non-projective

dependency parsing using spanning tree algorithms. In

Proc. EMNLP, October 2005, pp.523-530.

[5] Petrov S, Barrett L, Thibaux R, Klein D. Learning accu-

rate, compact, and interpretable tree annotation. In Proc.

ACL, July 2006, pp.433-440.

[6] Nivre J. Incremental non-projective dependency parsing. In

Proc. HLT-NAACL, April 2007, pp.396-403.

[7] Huang L, Sagae K. Dynamic programming for linear-time

incremental parsing. In Proc. ACL, July 2010, pp.1077-

1086.

[8] Zhang Y, Clark S. Syntactic processing using the general-

ized perceptron and beam search. Computational Linguis-

tics, 2011, 37(1): 105-151.

[9] Socher R, Lin C, Ng A Y, Manning C D. Parsing natural

scenes and natural language with recursive neural networks.

In Proc. ICML, June 28-July 2, 2011, pp.129-136.

[10] Chen D, Manning C D. A fast and accurate dependency

parser using neural networks. In Proc. EMNLP, October

2014, pp.740-750.

[11] Dyer C, Ballesteros M, Ling W, Matthews A, Smith N A.

Transition-based dependency parisng with stack long short-

memory. In Proc. ACL, July 2015, pp.334-343.

[12] Vinyals O, Kaiser L, Koo T, Petrov S, Sutskever I, Hinton

G. Grammar as a foreign language. In Proc. NIPS, Decem-

ber 2015, pp.2773-2781.

[13] Weiss D, Alberti C, Collins M, Petrov S. Structured train-

ing for neural network transition-based parsing. In Proc.

ACL, July 2015, pp.323-333.

[14] Andor D, Alberti C, Weiss D, Severyn A, Presta A,

Ganchev K, Petrov S, Collins M. Globally normalized

transition-based neural networks. In Proc. ACL, August

2016, pp.2442-2452.

[15] Dyer C, Kuncoro A, Ballesteros M, Smith N A. Recur-

rent neural network grammars. In Proc. HLT-NAACL, June

2016, pp.199-209.

[16] Kiperwasser E, Goldberg Y. Simple and accurate depen-

dency parsing using bidirectional LSTM feature represen-

tations. Transactions of the Association for Computational

Linguistics, 2016, 4: 313-327.

[17] Henderson J C, Brill E. Exploiting diversity in natural lan-

guage processing. In Proc. EMNLP, June 1999, pp.187-194.

[18] Charniak E. Statistical parsing with a context-free grammar

and word statistics. In Proc. AAAI, July 1997, pp.598-603.

[19] McDonald R, Nivre J. Analyzing and integrating depen-

dency parsers. Computational Linguistics, 2011, 37(1): 197-

230.

[20] Sagae K, Lavie A. Parser combination by reparsing. In Proc.

HLT-NAACL, June 2006, pp.129-132.

[21] Fossum V, Knight K. Combining constituent parsers. In

Proc. HLT-NAACL, May 31-June 5, 2009, pp.253-256.

[22] Zhang H, Zhang M, Tan C L, Li H. K-best combination of

syntactic parsers. In Proc. EMNLP, August 2009, pp.1552-

1560.

[23] Johnson M, Ural A E. Reranking the Berkeley and Brown

parsers. In Proc. HLT-NAACL, June 2010, pp.665-668.

[24] Narayan S, Cohen S B. Diversity in spectral learning for

natural language parsing. In Proc. EMNLP, September

2015, pp.1868-1878.

[25] Choe D K, McClosky D, Charniark E. Syntactic parse fu-

sion. In Proc. EMNLP, September 2015, pp.1360-1366.

[26] Hochreiter S, Schmidhuber J. Long short-term memory.

Neural Computation, 1997, 9(8): 1735-1780.

[27] Bahdanau D, Cho K, Bengio Y. Neural machine translation

by jointly learning to align and translate. In Proc. ICLR,

May 2015.

[28] Zoph B, Knight K. Multi-source neural translation. In Proc.

HLT-NAACL, June 2016, pp.30-34.

[29] Firat O, Cho K, Bengio Y. Multi-way, multilingual neural

machine translation with a shared attention mechanism. In

Proc. HLT-NAACL, June 2016, pp.866-875.

[30] Toutanova K, Klein D, Manning C D, Singer Y. Feature-rich

part-of-speech tagging with a cyclic dependency network. In

Proc. HLT-NAACL, May 27-June 1, 2003, pp.173-180.

[31] Zhu M, Zhang Y, Chen W, Zhang M, Zhu J. Fast and accu-

rate shift-reduce constituent parsing. In Proc. ACL, August

2013, pp.434-443.

[32] Collins M, Koo T. Discriminative reranking for natural lan-

guage parsing. Computational Linguistics, 2005, 31(1): 25-

70.

[33] Kingma D, Ba J. Adam: A method for stochastic optimiza-

tion. In Proc. ICLR, May 2015.

[34] Srivastava N, Hinton G, Krizhevsky A, Sutskever I,

Salakhutdinov R. Dropout: A simple way to prevent neu-

ral networks from overfitting. Journal of Machine Learning

Research, 2014, 15(1): 1929-1958.

[35] Pascanu R, Mikolov T, Bengio Y. On the difficulty of train-

ing recurrent neural networks. In Proc. ICML, June 2013,

pp.1310-1318.

[36] Shen S, Cheng Y, He Z, He W, Wu H, Sun M, Liu Y. Mini-

mum risk training for neural machine translation. In Proc.

ACL, August 2016, pp.1683-1692.



Lin-Er Yang et al.: Neural Parse Combination 757

Lin-Er Yang is a Ph.D. student at

the Department of Computer Science

and Technology in Tsinghua University,

Beijing. He received his Bachelor’s

degree in computer science from Beijing

Jiaotong University, Beijing, in 2006.

His current research interests include

representation learning and syntactic

parsing. text text text

Mao-Song Sun is a professor at

the Department of Computer Science

and Technology in Tsinghua University,

Beijing. He received his Ph.D. degree

in computational linguistics from City

University of Hong Kong, Hong Kong,

in 2004. His research interests include

natural language processing, Web

intelligence, and machine learning.

Yong Cheng is a Ph.D. student in

the Institute for Interdisciplinary Infor-

mation Sciences at Tsinghua University,

Beijing. He received his Bachelor’s

degree in information security from

Beijing Jiaotong University, Beijing,

in 2012. His research interests mainly

focus on neural machine translation.

Jia-Cheng Zhang is a master

student at the Department of Computer

Science and Technology in Tsinghua

University, Beijing. He received his

Bachelor’s degree in computer science

from Tsinghua University, Beijing, in

2015. His current research area is

machine translation. text text text text

text text text

Zheng-Hao Liu is a Ph.D. student

at the Department of Computer Science

and Technology in Tsinghua University,

Beijing. He got his Bachelor’s degree

in computer science from Northeast-

ern University, Shenyang, in 2016.

His current research interests include

representation learning and syntactic

parsing. text text

Huan-Bo Luan is the deputy

executive director of NExT Search

Center at both Tsinghua University,

Beijing, and National University of

Singapore, Singapore. He received his

Ph.D. degree in computer science from

Institute of Computing Technology,

Chinese Academy of Sciences, Beijing,

in 2008. His research interests include multimedia infor-

mation retrieval, social media, and big data analysis.

Yang Liu is an associate professor

in the Department of Computer Science

and Technology at Tsinghua University,

Beijing. He received his Ph.D. degree

from Institute of Computing Techno-

logy, Chinese Academy of Sciences,

Beijing, in 2007. His research areas

include natural language processing and

machine translation. text text


