
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 10/10 pp112–134
DOI: 10 .26599 /TST.2020 .9010029
Volume 26, Number 3, August 2021

C The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Enriching the Transfer Learning with Pre-Trained Lexicon Embedding
for Low-Resource Neural Machine Translation

Mieradilijiang Maimaiti, Yang Liu�, Huanbo Luan, and Maosong Sun

Abstract: Most State-Of-The-Art (SOTA) Neural Machine Translation (NMT) systems today achieve outstanding

results based only on large parallel corpora. The large-scale parallel corpora for high-resource languages is easily

obtainable. However, the translation quality of NMT for morphologically rich languages is still unsatisfactory, mainly

because of the data sparsity problem encountered in Low-Resource Languages (LRLs). In the low-resource NMT

paradigm, Transfer Learning (TL) has been developed into one of the most efficient methods. It is difficult to train

the model on high-resource languages to include the information in both parent and child models, as well as the

initially trained model that only contains the lexicon features and word embeddings of the parent model instead of the

child languages feature. In this work, we aim to address this issue by proposing the language-independent Hybrid

Transfer Learning (HTL) method for LRLs by sharing lexicon embedding between parent and child languages without

leveraging back translation or manually injecting noises. First, we train the High-Resource Languages (HRLs) as the

parent model with its vocabularies. Then, we combine the parent and child language pairs using the oversampling

method to train the hybrid model initialized by the previously parent model. Finally, we fine-tune the morphologically

rich child model using a hybrid model. Besides, we explore some exciting discoveries on the original TL approach.

Experimental results show that our model consistently outperforms five SOTA methods in two languages Azerbaijani

(Az) and Uzbek (Uz). Meanwhile, our approach is practical and significantly better, achieving improvements of up to

4:94 and 4:84 BLEU points for low-resource child languages Az! Zh and Uz! Zh, respectively.

Key words: artificial intelligence; natural language processing; neural network; machine translation; low-resource

languages; transfer learning

1 Introduction

The end-to-end framework is a common Neural
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Network (NN) architecture. Neural Machine Translation
(NMT), which uses neural networks to model the
translation process of natural languages in an end-to-
end manner, has attracted intense attention from the
community[1–4]. Excelling in learning representations
and capturing long-distance dependencies by exploiting
gating[5, 6], attention[2] mechanisms, and pre-training[7]

method, NMT has shown significant superiority over
conventional Statistical Machine Translation (SMT)[8–10]

for a number of natural languages[11]. The noticeable
performance increases over traditional SMT on many
language pairs. NMT has recently made an attractive
approach for real-world Machine Translation (MT)
systems.
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Training the NMT model on Low-Resource
Languages (LRLs) is a challenge because LRLs
frequently bring a data scarcity issue. Therefore, we
consider this problem and aim to enrich the performance
of NMT for LRLs in our proposed model. The primary
issue of the NMT is the model quality which heavily
relies on the accessibility of large amounts of parallel
data, which is frequently hard to obtain. Reference [12]
showed that if the NMT models are trained without
large-scale parallel corpora, i.e., less than one million
sentence pairs, it is hard to significantly outperform
SMT since neural network tends to learn badly on
low-resource events.

NMT requires large amounts of parallel corpora, and
it normally learns poorly on LRLs. Training the NMT
model on low-resource corpora is a challenge because
LRLs are highly agglutinative[13], and hence can add
various affixes at the beginning or the end of words, to
form a new word. In MT approaches, morphologically
rich low-resource language pairs frequently bring about a
data scarcity issue[14]. Many LRLs are Morphologically
Rich Languages (MRLs)[15], but suffer from their
prominent data sparsity. Therefore, we can maintain that
in the low-resource NMT data sparsity issue is one of
the difficult tasks. The primary issue of the NMT is the
model quality which heavily relies on the accessibility of
large amounts of parallel data, which is frequently hard
to obtain for many language pairs. For instance, among
the 20 language pairs of the Europarl dataset, only the
French-English parallel corpus includes more than two
million sentence pairs[16]. However, in the Europarl
dataset, the corpus size of only ten language pairs
contains less than one million sentence pairs. Reference
[12] showed that if the NMT models are trained without
large-scale parallel corpora, i.e., less than one million
sentence pairs, it is hard to significantly outperform SMT
since NN tends to learn the model parameters poorly on
low-resource events.

In MT scenario, the translation of LRLs is one of
the most challenging tasks. Intrinsically, the difficulty
of obtaining large amounts of high-quality parallel
data with good coverage constrains the performance
of NMT. Nevertheless, various methods that may help
to reduce these complexities have been presented.
Such as “teacher-student network” which was proposed
in Refs. [17] and [18] is also motivated by zero-
shot learning. Additionally, the “semi-supervised”[19]

and “pivot-based”[20] models have also attracted some
attentions in this field. In the MT community of

LRLs, Transfer Learning (TL) has become one of the
main and most efficient methods[12, 21–23]. The TL is
one of the essential elements for coping with the data
sparsity problem in low-resource NMT. Reference [12]
obtained better translation quality of NMT systems by
leveraging TL on a low-resource NMT task. Reference
[24] explored how different choices of parent models
affect the performance of child models. Reference [23]
trained the parent languages number of iterations and
switched the training corpus to the child language pairs
for the rest of training by using of TL in NMT.

However, many existing approaches which take
advantages of TL suffer from a core disadvantage: they
are incapable of containing lexicon information as well
as lexicon embeddings of low-resource child languages.
The core idea of Ref. [12] has the drawback of only
exploiting the vocabulary of one high-resource model
(parent) to enhance one low-resource model (child) at
a time, rather than using the lexicon information of the
child model. By contrast, as we train the parent model
on a combined training set with shared vocabularies, we
leverage both the vocabulary of the parent and child,
which may produce a better translation performance of
the child model.

In this paper, in contrast with the aforementioned
approaches we focus on addressing the problem of
lexicon embedding and vocabulary information of MRLs
(child) in the training step. In order to make our model
stronger, we regard that the parent model is more helpful
for the child model if it contains more information
about the child pairs before initializing. If the parent
model can be trained on the combined training set that
combines parent and child language pairs, instead of only
using the parent pair, the child model will work better
than the aforementioned TL method. We introduce a
practical and straightforward method of Hybrid Transfer
Learning (HTL) for the LRLs in NMT. Our basic idea
aims at sharing lexicon features between the parent
and child model before fine-tuning. As illustrated in
Fig.1, firstly, we train our parent model on a large-
scale training set, then prepare a combined corpus to
train the hybrid model rather than directly initialize the
child model without using both the back translation
and artificially injecting any noises[25]. Secondly, we
combine the large-scale parent pairs and small-scale
child pairs using an oversampling method[26]. We build
a shared vocabulary based on a combined dataset and
train hybrid model. Finally, we initialize the child
model with the hybrid model, which was trained using
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Fig. 1 (a) SOTA NMT model transformer and (b) illustration of HTL. Here the dotted rectangle denotes the training of hybrid
model and the red rectangle represents pre-trained model. Here, N represents the number of identical layers.

shared vocabularies in the combined training corpus via
an oversampling technique. Our hybrid model should
include more lexicon information before fine-tuning the
child model so that it can help the child model to achieve
better improvements than five baseline systems. Our
main contributions are as follows:
� We offer a solution for the disadvantages of the

original TL, which is unable to learn the lexicon features
of the child model before fine-tuning.
� We propose an efficient and simple HTL training

approach for MRLs in NMT.
� We provide a model transparent training approach

for any NMT architecture.
� We made interesting discoveries by taking

advantage of the original TL.

2 Background
2.1 Neural machine translation

Obviously, we can regard X as a source language
sentence and Y as a target language sentence.
Given a source sentence x D x1; : : : ; xi ; : : : ; xI and
a target sentence y D y1; : : : ; yj ; : : : ; yJ , standard
NMT models[1–3] usually factorize the sentence-level
translation probability as a product of word-level
probabilities:

P.yjxI �/ D

JY
jD1

P.yj jx; y<j I �/ (1)

where � is a set of model parameters, and y<j is a partial
translation.

Let hX; Y i D fhx.n/; y.n/igNnD1 be a training corpus.
The log-likelihood of the training parallel data is
maximized by the standard training objective:

O� D argmax�
n NX
nD1

logP.y.n/jx.n/I �/
o

(2)

Given learned model parameters O� , the translation
decision rule for unseen source sentence x is given by

Oy D argmaxyfP.yjxI O�/g (3)

Meanwhile, calculating the highest probability Oy D
Oy1; : : : ; Oyj ; : : : ; OyJ of the target sentence can be
separated at the word level:

Oyj D argmaxyfP.yjx; Oy<j I O�/g (4)

2.2 Transfer learning

As described in the Machine Learning (ML) community,
TL[27] contains the concepts of a domain and a task. A
domain D comprises a feature space X and marginal
probability distribution P.X/ over the feature space,
where X D x1; : : : ; xn 2 X : TL exploits knowledge[28]

from the existing model to improve the performance
of related work. TL varies from ML in that it learns
from learned-models, while ML learns from data. In
both image processing[29] and Domain Adaptation (DA)
tasks[30], TL has been widely used in Computer Vision
(CV). The main point of the TL is to pre-train the NN
or to pre-initialize the weights of the NN. The weight
updating process after training the child language pair
datasets is called fine-tuning.

As illustrated in Fig. 2, we take L3 ! L2 as a parent
pair High-Resource Languages (HRLs) and L1 ! L2
as a child pair Low-Resource Languages (LRLs). L3
and L1 are source languages of parent and child pairs,
respectively, while L2 is the target language for both.
Moreover, we set the dataset of parent pair as DL3;L2

,
while the dataset of the child pair is DL1;L2

. We also set
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Fig. 2 Architecture of the original TL for NMT.

ML3!L2
as the parent model which has been learned

using its own dataset DL3;L2
. Generally, we initialize

the child model ML1!L2
using a parent model, and a

corresponding parameter of the parent model ML3!L2
:

�L3;L2
D fheL3

; W; eL2
ig (5)

where eL3
and eL2

are both source and target
embeddings, and W is the model parameter. We
also encourage the training objective to maximize the
likelihood of the dataset DL3;L2

:

O�L3!L2
D argmax�L3!L2

(
L.DL3;L2

; �L3;L2
/

)
(6)

Then, the child model ML1!L2
will be fine-tuned using

the parent model ML3!L2
:

�L1!L2
D f . O�L3!L2

/ (7)

where O�L3!L2
denotes the learned parameters of the

parent model ML3!L2
that are transferred to child

model ML1!L2
using the initialization function f .

2.3 Transformer

The transformer is one of the most popular neural
machine translation architectures in the NMT community.
The architecture of the transformer also consists of two
parts, such as encoder and decoder. There are stacks
of N identical layers in the encoder. Each of them is
composed of two sub-layers, such as the multi-head self-
attention layer and the simple feed-forward network. The
self-attention sub-layer first runs to interact information
between different words. It employs h attention heads,
which allows the model to jointly attend to capturing
features from different representation subspaces and
different positions. A single attention head is calculated
on a query Q, a key K, and a value V :

Attention.Q;K; V / D Softmax

 
QKT

p
dk

!
V (8)

After that, the self-attention layer concatenates h
different representations of .Q;K; V / and maps the
concatenation by using a feed-forward layer to generate

the output:
MultiHead.Q;K; V /DConcat.head1; : : : ; headh/W O

(9)

where each head in MultiHead is noted as below:
headiDAttention.QW Q

i ; KW
K
i ; V W

V
i / (10)

Moreover, the feed-forward sub-layer connected
behind the self-attention mechanism runs as the
following way:

FFN.x/Dmax.0; xW1 C b1/W2 C b2 (11)

We also utilize a residual connection[31] between
each of the two sub-layers, following the idea of
layer normalization[32]. Consequently, the output which
is generated from each sub-layer is LayerNorm.x C
Sublayer.x//, where Sublayer.x/ is representation
implemented by the sub-layer itself.

3 Methodology

Hybrid transfer learning. As depicted in Fig.1, we
take L1 ! L2 as the child LRLs, while L1 and L2
represent the source language and target language.
DL1!L2

is a dataset of the child pairs, while �L1!L2

is the model parameter, eL1
and eL2

are the source
and target side embeddings, respectively. Similarly,
all of the corpora L3 ! L2, : : :, LkC1 ! L2 act as
parent language pairs, and DL3!L2

, : : :, DLkC1!L2

are datasets.
Reference [12] proposed the idea of transferring

parameters of ML3!L2
to ML1!L2

, as well as
initialized the child with parent parameters directly.
Generally, the parameters of ML3!L2

are composed
of embeddings eL3

and eL2
and the matrices W

(see Eq. (5)). We maximize the log-likelihood of the
DL3!L2

as the objective of the standard training
process (see Eq. (6)). ML3!L2

fine-tunes ML1!L2

using DL3!L2
refer to Eq. (7), where f is the

initialization function, which helps the ML1!L2
to

transfer the already learned parameters O�L3!L2
from

the parent model ML3!L2
.

The proposed model is one of the revised versions
of the original TL. We were motivated by the domain
adaptation problem in the computer vision field. As
shown in Algorithm 1, we do not directly fine-tune the
child model using a pre-trained parent model. Instead,
we focus on vocabulary sharing between the parent and
child models and combine the dataset after oversampling
the LRLs. First, we oversample the child language pairs
by duplicating each sentence of the child pair (it was
updated from DL1!L2

to D0L1!L2
). Then, we combine
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Algorithm 1 Hybrid transfer learning
Input: high-resource dataset DL3!L2

D f.x.n/; y.n//gN
nD1

and low-resource dataset DL1!L2
D f.x.m/; y.m//gM

mD1
;

Output: translation results y on a low-resource testset;
1: Read the high-resource dataset DL3!L2

;
2: Read the low-resource dataset DL1!L2

;
3: D

0

L1!L2
is the over-sampled version of DL1!L2

;
4: cps-sizehigh  the corpus size of the DL3!L2

; F Calculate corpus size
5: cps-sizelow  the corpus size of the DL1!L2

;
6: for each sen-pair in DL3!L2

do
7: Train the parent model ML3!L2

on DL3!L2
; F Pre-train the parent model on the high-resource dataset

8: end for
9: smpnum D cps-sizehigh = cps-sizelow; F Get oversampling size

10: for each sen-pair in DL1!L2
do

11: Duplicate each sentences smpnum times; F Copy each sentence
12: cps-sizelow  update the corpus size of DL1!L2

;
13: end for
14: DL1!L2

 DL1!L02
; F Obtain oversampled data

15: DLm!L2
D DL3!L2

CDL1!L02
F Build combined data

16: Vocshared  build shared vocabulary on DLm!L2
;

17: MLm!L2
 initialize the hybrid model with ML3!L2

; F Train the hybrid model
18: for each sen-pair in DLm!L2

do
19: Train the MLm!L2

on DLm!L2
with Vocshared;

20: end for
21: M 0

Lm!L2
 MLm!L2

; F Update the hybrid model
22: ML1!L2

 initialize the child model with M 0
Lm!L2

;
23: for each sen-pair in DL1!L2

do
24: Train the ML1!L2

after fine-tuned by M 0
Lm!L2

;
25: end for
26: Translate the testset by fine-tuned ML1!L2

;

DL3!L2
with oversampling of D0L1!L2

, and train the
new hybrid model on the new datasetDLm!L2

with new
shared vocabulary. Namely, the main difference between
the shared and non-shared vocabulary is building the
vocabulary on merged and without merged training
data. However, the hybrid model was also initialized
using the previously pre-trained parent model ML3!L2

on D0L1!L2
CDL3!L2

. The parameters of the hybrid
model would then conform to

�Lm!L2
D fheLm

; W; eL2
ig (12)

where m stands for the hybrid model, with the source
side embeddings eLm

and the target side embeddings
eL2

. The standard training objective is to maximize the
log-likelihood of the training data DLm!L2

, as well as
the combined dataset originating from the oversampled
low-resource and high-resource datasets:
O�Lm!L2

D argmax
�Lm!L2

fL.DLm!L2
; �Lm!L2

/g (13)

We then initialize the ML1!L2
after it was using the

hybrid model MLm!L2
on its own dataset, instead of

oversampled the big data DL1!L2
.

�L1!L2
D f . O�Lm!L2

/ (14)

where f is the same initialization function as in the
previous step, which helps the child model ML1!L2

transfer the already learned parameters O�Lm!L2
from

the hybrid model MLm!L2
.

4 Experiment

4.1 Setup

4.1.1 Data preparation
Both the parent and child languages are MRLs. The data
were sourced from open source platforms, and all of
the training corpora which were used in our experiment
are publicly available on Open Subtitle2016�, Tanzil
corpora�, and Chinese-LDC (CLDC) corpus�. The
previous two corpora are the free resources, we can
use the academic research without any charge, but the
last one is not free and we can buy this corpus from
the given urls. The specifications of corpora are listed
in Table 1. In the experiment, we set the target side to
Chinese, while the source sides differed from each other

�http://opus.nlpl.eu/OpenSubtitles2016.php
�http://opus.nlpl.eu/Tanzil.php
�http://www.chineseldc.org/resource˙info.php?rid=156
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Table 1 Characteristics of our corpora. “Dev.” indicates the development set, “Word Type” and “Word Token” indicate
vocabulary (non-repeated) and all tokens (includes repeated), respectively. Here, K represents 103 and M represents 106.

Language Train Dev. Test
Source Target

Word type Word token Word type Word token
Ar! Zh 5:1M 2:0K 2:0K 1:0M 32:2M 0:5M 37:4M
Fa! Zh 1:4M 2:0K 1:0K 0:2M 10:4M 0:2M 10:0M
Az! Zh 20:1K 0:5K 0:5K 25:1K 0:6M 0:2M 10:0M
Tr! Zh 4:4M 2:0K 1:0K 0:7M 30:6M 0:5M 35:9M
Ug! Zh 10:9K 0:5K 0:5K 18:3K 0:4M 12:5K 0:4M
Uz! Zh 10:5K 0:5K 0:5K 26:5K 0:5M 16:3K 0:3M

and included low-resource parent or child languages.
The parent language pairs Arabic (Ar)!Zh, Farsi (Fa)!
Zh, and Turkish (Tr)! Zh were obtained from the Open
Subtitle2016 corpora, while another parent pair, Uyghur
(Ug)!Zh is gained from Chinese-LDC (CLDC), and
the child pairs Azerbaijani (Az)!Zh and Uzbek
(Uz)!Zh were originated from Tanzil corpora, same as
the parent language Tr!Zh. We also preprocessed our
datasets in this step using the preprocessing script� to
clean up the data and to eliminate some invalid Chinese
sentences from our target sides in the original corpus. We
also provide several pre-processing scripts for both the
source and the target side. Each of these scripts works
for parent and child language pairs and the Chinese
corpus.

Moreover, we filter some language pairs from both
the parent and child after removing illegal symbols,
double-checked non-Chinese characters, and designed
a converter that interconverts simplified and traditional
Chinese. Furthermore, we take advantage of the open
source Chinese word stemmer system THULAC‘ [33].
We exploit the tokenizer toolkit‖[9] which was provided
with the State-Of-The-Art (SOTA) phrase-based SMT
system MOSES[9] for word tokenization. The results
from all experiment have not used any UNK-replacement
techniques[34]. We also leveraged the BPE�� method[35]

for both the source and target sides of the parent and
child language pairs. Analogously, the latinization of our
parent languages Ar��, Fa��, and the child language Uz��

were conduct based on their corresponding comparison
tables, publicly available on Wikipedia.

Additionally, we use the open-source toolkit

�http://www.nlplab.com/niuplan/NiuTrans.YourData.html
‘https://github.com/thunlp/THULAC-Python
‖https://github.com/moses-smt/mosesdecoder/tree/master/scripts/

tokenizer/tokenizer.perl
��https://github.com/rsennrich/subword-nmt
��https://en.wikipedia.org/wiki/Romanization of Arabic
��https://en.wikipedia.org/wiki/Romanization of Persian
��https://en.wikipedia.org/wiki/Uzbek alphabet

THUMT[36] for the NMT system‘‘, together with the
TRANSFORMER architecture to train and evaluate all
the models. The reason we used the TRANSFORMER

is that the proposed HTL method is model transparent
and it is the SOTA architecture in NMT, and we can
also use any other NMT model architecture, even newer
architectures. Likewise, we ran all the experiments
(including fine-tuning) for less than 3 days on 4

GPUs (TITAN X) with default parameters of THUMT,
whereby we slightly modified some of dimensions
(see Table 2). While building multilingual models,
we exploited oversampling and so that data from all
language pairs will be the same size as that of the largest
language pair, ensuring an equal amount of data per
language pair. During the evaluation, we used the case-
insensitive BLEU��� scores[37]. We will release the
corresponding components in the future, i.e., all the
datasets after preprocessing and all the scripts used for
preprocessing and romanization.

4.1.2 Baseline
It stands to reason to compare our proposed method with
highly similar approaches. Therefore, we select similar
approaches highly as follows:
� TRANSFORMER: The state-of-the-art NMT system

which is introduced in Ref. [3]; in this work, we take
it as strong baseline without transfer from any parent
models.
� MANY-to-ONE: Training a many-to-one model by

Table 2 Hyper-parameter settings.
Parameter Value Parameter Value

Iter time 200K Word length 50:0

Word embedding 620 Beam size 4:0

Hidden state 1000 Dropout 0:1

Vocabulary size 30K Learning rate 1:0

Batch size 80

‘‘https://github.com/thumt/THUMT
���https://github.com/moses-smt/mosesdecoder/blob/master/scripts/

generic/multi-bleu.perl
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taking advantage of several parent language datasets,
which was proposed by Google[26]. In the training
procedure they do not transfer from any parent models,
however, their model is a trained multilingual model
with many source languages to one target language.
� ORIGINAL-TL: A general TL method for low-

resource NMT[12]. It trains a parent model without
considering the lexicon embedding of the child language
pair in training.
� REVISED-TL: This method also follows the key

idea of ORIGINAL-TL. It is a revised TL method for
LRLs NMT[21]. Precisely, it exploits the different domain
data in the same parent languages by employing Ref.
[12] without sharing lexicon.
� TRIVIAL-TL: The key idea of this approach also

further validates the major idea of Ref. [12], and trains
the parent languages number of iterations by using the
TL in NMT between low-resource languages[23]. Exactly,
this approach is also similar to TL proposed in Ref. [12],
but uses the shared vocabulary whose main novelty is
that they remove the restrictions of language relatedness.

In the zero-shot multilingual field, Google provides
the MANY-TO-ONE approach which aims to train
a multilingual model with several source languages
to one target language. It works well with a zero-
shot or few-shot approach. However, it ignores the
lexicon features of the child languages. It focuses on
leveraging various source languages without considering
similar lexicon features among these languages, which
are used in both training and testing. Reference [12]
presented the initializing TL method, with the idea of
choosing a bigger parent model and then training the
model on selected parent languages using only parent
vocabulary. By contrast, Ref. [21] also introduced the
similar TL method, REVISED-TL, by following the
work of ORIGINAL-TL. While we can take REVISED-
TL as the revised version of ORIGINAL-TL. The main
contributions of REVISED-TL are the substitution of
word stem and double fine-tuning with various sizes of
the same parent language pairs. Both of the TL methods
(ORIGINAL-TL and REVISED-TL) have achieved good
results, but both of them have their disadvantages: they
neglect the shared lexicon between the parent pairs and
child pairs.

We were also motivated by the work of ORIGINAL-
TL and REVISED-TL, but we regard that no matter if
initializing the child model directly with one parent
language or with a different size corpus of the

same parent language twice sequentially, most parent
languages are HRLs, and the child languages are LRLs
in which they are MLRs. Therefore, we can feed some
lexicon features into training the parent model before
initializing the child model, by sharing the vocabulary
which was built from parent and child language pairs.
If we design an intermediate model that was trained on
a combined corpus with a shared vocabulary similar to
the DA task, we can obtain more adaptable knowledge
from out-domain to in-domain. We also hope that this
approach will work well among adaptation tasks such as
the transfer learning NMT from HRLs to LRLs.

4.2 Effect of shared lexicon to hybrid TL

As shown in Table 3, we compare our HTL method using
two different modes: shared vocabulary and non-shared
vocabulary. The parent languages Ar and Fa are similar
to the child language Uz, while the parent language
sets Tra (2:4M) and Trb (4:4M) whose corpus size is
different but have the same language family, language
group, and language branch with the child language
Az, such as the same syntactic order “SOV”, the same
language unit “word”, and the same language inflection
“moderate”. The various parents were chosen for the
two-child languages because only Tr has two different
sources in our dataset, and we followed the idea of
REVISED-TL choosing Tra and Trb as parents for Az.
Furthermore, we pre-trained the HRL parent models
on an own dataset (see Fig. 1), and then created the
combined corpus and built the vocabulary on a combined
corpus. Finally, we fine-tune the child models using
pre-trained hybrid models. Obviously, the HTL with

Table 3 Effect of shared lexicon to Hybrid TL. Tra and
Trb represent the different corpus size of 2.4M and 4.4M
for Tr. “shared” and “Non-shared” denote with and without
shared lexicon. “++” indicates a significantly better than
TRANSFORMER (p<<<0.01).

Method Parent Child BLEU

TRANSFORMER[3] N/A
Az! Zh 43:68

Uz! Zh 40:99

HYBRID-TLNon-shared

Tra ! Zh Az! Zh 45:97CC

Fa! Zh Uz! Zh 42:15CC

Trb ! Zh Az! Zh 46:81CC

Ar! Zh Uz! Zh 42:64CC

HYBRID-TLshared

Tra ! Zh Az! Zh 46:44CC

Fa! Zh Uz! Zh 42:53CC

Trb ! Zh Az! Zh 47:32CC

Ar! Zh Uz! Zh 42:89CC
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the non-shared or the shared hybrid model can help the
child models gain significantly better improvements than
TRANSFORMER (p<0:01).

4.3 Effect of original TL model to hybrid TL

We further confirm the shared hybrid model is better
than the non-shared hybrid model. Therefore, we choose
the shared hybrid model as our HTL model in the
following experiments. As shown in Table 4, the
performance of HTL is better than TRANSFORMER

and ORIGINAL-TL. Our models MTra!Ch and MTrb!Ch

with shared vocabulary yield better results than both the
baselines of TRANSFORMER (p < 0:01) and ORIGINAL-
TL(p < 0:05) on the child language pairs Az!Zh.
While, the models MAr!Zh and MFa!Ch yield better
results than TRANSFORMER (p < 0:01). We also
investigate some interesting settings, such as transliterate
both the child pair Uz! Zh and the parent pairs Ar!
Zh and Fa! Zh into the roman script before training
all the models. Namely, before training the original
pre-training model MAr!Zh (with its vocabularies) or
training the hybrid pre-training model (with a shared
vocabulary) on a combined corpus, we convert both
the two-parent languages and the child language into
a roman version. Then we repeated the previous steps
entirely based on Algorithm 1. We found that the HTL
with roman versions and use of shared vocabularies
achieve a better result than without romanization.

4.4 Effect of revised TL model to hybrid TL

As shown in Table 5, based on the main idea of
REVISED-TL, we try to exploit our HTL method
in different manners with shared vocabularies and

Table 4 Effect of the original TL to hybrid mode. The
subscript “shared+latin” represents exploit shared lexicon
and roman form. “*” significantly better than original TL
(p <<< 0.05).

Method Parent Child BLEU

ORIGINAL-TL[12]

Tra ! Zh Az! Zh 45:82CC

Fa! Zh Uz! Zh 42:03CC

Trb ! Zh Az! Zh 46:49CC

Ar! Zh Uz! Zh 42:51CC

HYBRID-TLshared

Tra ! Zh Az! Zh 46:44CC�

Fa! Zh Uz! Zh 42:53CC

Trb ! Zh Az! Zh 47:32CC�

Ar! Zh Uz! Zh 42:89CC

HYBRID-TLsharedClatin

Tra ! Zh Az! Zh 46:44CC�

Fa! Zh Uz! Zh 42:82CC�

Trb ! Zh Az! Zh 47:32CC�

Ar! Zh Uz! Zh 43:11CC�

Table 5 Effect of the revised TL to hybrid model. “�”
indicates a significantly better result than revised TL (p <<<
0.05).

Method Parent Child BLEU

REVISED-TL[21] Trb;a ! Zh
Az! Zh 47:55CC

Uz! Zh 44:21CC

HYBRID-TLshared

Trb;a ! Zh

Az! Zh 48:62CC

Uz! Zh 45:41CC

HYBRID-TLsharedClatin
Az! Zh 48:62CC�

Uz! Zh 45:83CC�

roman shape to train various models. Furthermore,
we explore whether HTL can enable the performance
of child models to outperform the baselines of
TRANSFORMER and REVISED-TL. Clearly, our HTL
method yields significantly better results than baseline
systems. Both models MTra!Zh and MTrb!Zh have been
trained with REVISED-TL yielded results better than
TRANSFORMER. Contrarily, We also ran the model
repeatedly and the HTL also obtain even significantly
better results than both the baselines TRANSFORMER

(p < 0.01) and REVISED-TL (p < 0.05). Besides, we
also explore the performance of the model training on
a combined roman corpus for the MUz!Zh. Since, as
given in Table 4, we have not converted the Az! Zh
into Latin script, the results from HTL with or without
roman shape were identical.

4.5 Comparison of different TL methods

In the LRLs MT community, several methods have
been proposed, and some baseline studies share
significant similarities with this work. As shown in
Table 6, our baselines TRANSFORMER, MANY-to-
ONE, ORIGINAL-TL, REVISED-TL, and REVISED-
TL obtained remarkably better results. Therefore, in
this experiment, we further confirm their qualities
and explore the effectiveness of our HTL method on
child pairs Az!Zh and Uz!Zh. Precisely, the model
trained on the combined corpus using the oversampling
approach also yields better results than TRANSFORMER

(p<0:01 and p<0:05) and ORIGINAL-TL (p<0:05/.
The strategy for building a combined corpus of MANY-
to-ONE is somewhat similar to our work, but it trains
the parent model on the combined corpus first using
the oversampling method, and then directly initializes
the target languages without considering relatedness
or lexicon features between the parent and child pairs.
The model MTrb;a!Ch significantly outperformed both
the two baselines of TRANSFORMER and ORIGINAL-
TL with p < 0:01 on the two models MAz!Zh and
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Table 6 Comparison of different TL methods. “?”:
significantly better than Ref. [12] (p <<< 0.01), “˘̆̆” and “�”:
significantly better than Ref. [21] with p<<<0.05 and p<<< 0.01,
respectively.

Method Parent Child BLEU

TRANSFORMER[3]

N/A

Az! Zh 43:68

Uz! Zh 40:99

MANY-to-ONE[26] Az! Zh 46:74CC

Uz! Zh 43:67CC�

ORIGINAL-TL[12]

Tra ! Zh Az! Zh 45:82CC

Fa! Zh Uz! Zh 42:03CC

Trb ! Zh Az! Zh 46:49CC

Ar! Zh Uz! Zh 42:51CC

REVISED-TL[21] Trb;a ! Zh
Az! Zh 47:55CC?˘

Uz! Zh 44:21CC?˘

TRIVIAL-TL[23] Trb;a ! Zh
Az! Zh 47:91CC?˘

Uz! Zh 44:73CC?˘

HYBRID-TLshared

Trb;a ! Zh

Az! Zh 48:62CC?��

Uz! Zh 45:41CC?�

HYBRID-TLshared+latin
Az! Zh 48:62CC?��

Uz! Zh 45:83CC?��

MUz!Zh. Likewise, it is better than another baseline
MANY-to-ONE with p < 0:05. We also investigate the
effectiveness of HTL in a different manner, by training
the combined model with or without a roman shape.

Moreover, our HTL method with a romanized model
also significantly outperforms all the five baselines.
Obviously, the motivation for developing our HTL
method with or without training on a combined roman
corpus is to share more lexicon features between hybrid
parent models and child models, the improvements on
child model MUz!Zh with the hybrid model “HYBRID-
TLsharedClatin” yield better results than the hybrid model
“HYBRID-TLshared”. Overall, the proposed HTL method,
no matter if trained in the same manner with or without
the roman shape form of the combined corpus, achieves
comparable and significantly improved results compared
to all five baselines on the two-child low-resource
MRLs Az and Uz. Consequently, this experiment also
further validates, and the results demonstrate that HTL
is effective in MRLs NMT.

4.6 Discoveries related to the child models of HTL

Unexpectedly, as given in Table 7, we find some
interesting discoveries by switching the position of
parent and child models. The corpus size of the child
language pair Uz!Zh is 10:5K, and we select another
smaller child pair (Ug!Zh) which has a similar corpus
size (10:9K), it also stems from Tanzil corpora. They
have sane language features and same as Uz!Zh. Both

Table 7 Discovery on child models. “?” denotes significantly
better than Ref. [3] (p <<< 0.05).

Method Parent Child BLEU

TRANSFORMER[3] N/A
Az! Zh 43:68

Ug! Zh 21:70

Uz! Zh 40:99

HYBRID-TLmutual
Uz! Zh Ug! Zh 22:12?

Ug! Zh Uz! Zh 41:68?

HYBRID-TLinverted Uz! Zh Az! Zh 44:04?

Ug!Zh and Uz!Zh belong to the same language
family, group, and branch, so that both of them can
improve quality by mutual initializing (see Fig. 3a), we
take this as MUTUAL TRANSFER. This demonstrates
that LRLs can also improve each other in the same
domain, and with similar corpus size.

Besides, we discover that low-resource language pairs
can also be used to improve the quality of HRL models
(see Fig. 3b). Here, the corpus size of the parent pair
Uz! Zh is smaller than that of the child pair Az! Zh
(20:1K), but it was able to improve the quality of the
Az! Zh. This shows that even a smaller model can also
be used to improve the quality of bigger child models.
We regard this as INVERTED TRANSFER. As long as low-
resource languages share similar syntactic and semantic
features, share many common words, and belong to the
same domain. Smaller parent model also helps the child
model, which is trained on even bigger corpus size than
the parent model trained on smaller corpus size.

5 Case Study

As given in Table 8, we can illustrate how the proposed
HTL method improves translation quality by leveraging
an example. The result obtained from the SOTA baseline
TRANSFORMER merely translated a few words from
the source sequence and skipped several words. At the
beginning of first sub-sentence, the word “fanzuizhe”
(perpetrators) translated into “fanzui” (offend), the
previous one is a name and the next one is the verb.
Besides, the pronoun “tamen” (their), the name “e’fa”
(forelock), and the adverb “jiang” (in the future) are
dropped. The second baseline MANY-to-ONE obtained
better result, but still dropped the word “yin” (because)
and “bei” (by) in the sub-sentence. Besides, it translated
the word “xingji” (trail) into “xingwei” (action) and the
clause “bei renshi” (be known) into “bei xielou” (be
revealed).

ORIGINAL-TL also obtains even better result, but still
exists some errors that dropped the word “yin” (because)
and “bei” (by). Besides, translate “e’fa” (forelock) into
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Fig. 3 (a) MUTUAL TRANSFER; (b) INVERTED TRANSFER.

Table 8 Translation example of Uz!!! Zh between various methods, while the source sentence was romanized.
Method Translation result

Source jinayot@@?mlar siymalaridan bilinib turur. va ularning pe?ana sa?lari va ayoqlaridan tutilur.

Reference
fanzuizhe jiang yin tamen de xingji er bei renshi , tamen de e’fa jiang bei ji zai jiaozhang shang .
犯罪者将因他们的形迹而被认识，他们的额发将被系在脚掌上。

TRANSFORMER[3] fanzui de xingwei bei renshi, tamen de kun zai jiao shang.
犯罪的行为被认识，他们的困在脚上。

MANY-to-ONE[26] fanren de xingwei jianglai bei xielou, tamen tou jianglai bang zai jiao shang.
犯人的行为将来被泄漏，他们头将来绑在脚上。

ORIGINAL-TL[12] fanzuiren jianglai yinji bei renshi, jianglai tamen tou bang zai tui shang.
犯罪人将来印迹会被认识，将来他们头绑在腿上。

REVISED-TL[21] jianglai fanzuizhe ta de xingji bei renshi chulai, tamen toufa ji zai jiaozhang shang.
将来犯罪者他的形迹被认识出来，他们头发系在脚掌上。

TRIVIAL-TL[23] fanzuizhe jianglai ta de xingji bei renshi chu, tamen toufa bang zai jiao shang.
犯罪者将来他的形迹被认识出，他们头发绑在脚上。

HYBRID-TLshared
jianglai fanzuizhe tamen de xingji bei renshi chu, tamen e’fa jiang ji zai jiaozhang shang.
将来犯罪者他们的形迹被认识出，他们额发将系在脚掌上。

HYBRID-TLshared+latin
jianglai yinwei fanzuizhe tamen de xingji bei renshi, tamen e’fa jianglai ji zai jiaozhang shang.
将来因为犯罪者他们的形迹被认识，他们额发将来系在脚掌上。

“tou” (head). REVISED-TL attained more reasonable
results except for dropping the “yin” (because) and
“jiang” (in the future) in first and second sub-sentence.
By contrast, HTLsh also gained even better and similar
result to reference, but just dropped the word “yin”
(because). HTLshClt achieved highly analogous result
to ground truth, but just translated “yin” into “yinwei”
(because) and “jiang” into “jianglai” (in the future).

6 Related Work

As an essential potential strategy for overcoming the
great problem posed by the shortage of large-scale
parallel corpora, NMT has gained increasing attention
in the machine translation community[3, 12, 35, 36, 38–40].
Several methods have been presented that focus on
handling the deficiency of a parallel training corpora
problem. Most of the present literatures on low-resource
NMT can be classified into transfer learning[12, 30, 41],
domain adaptation[42], pivot learning[20], and zero-shot

learning[17]. To take the advantages of HTL into account,
it is essential to consider rare studies that we investigate
the NMT of LRLs by leveraging shared lexicon features
or shared vocabulary between TL. To some extent,
HTL differs from others, and it uses vocabulary sharing
between the parent model and child model before fine-
tuning the MRLs and child model. The NMT systems
have been developed rapidly in recent years. Reference
[43] improved the performance of the NMT using
word level domain context in the multi-domain scenario.
Besides, Ref. [44] proposed the iterative dual training
method for domain adaptation task in NMT. Moreover,
Ref. [45] commited to distinguishing and exploiting
different word-level domain contexts for multi-domain
NMT, and enriched the NMT model performance by
adopting multi-task learning to jointly model NMT
and monolingual attention-based domain classification
tasks. In the past two years, many researchers proposed
new approaches[46] in the NMT community for LRLs.
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Reference [47] introduced the meta-learning for low-
resource NMT and achieved remarkably better result.
Reference [48] also took advantage of ORIGINAL-TL to
fine-tune the child model MUy!En with MUz!En (Uzbek–
English), which is similar to the ORIGINAL-TL used in
the NMT of LRLs. The main research direction is to
exploit a parent model similar to the child language.
Furthermore, some of the indispensable factors of NN,
as well as some parameters of the encoder, decoder, and
attention were transferred from the parent model to the
child language pairs[49].

We ponder over the key idea to share some parameters
and share some features between the parent models and
the child model. The main differences from existing
literature are (1) we train the parent model on training
dataset with its vocabularies; (2) we compare the
parent and child language pairs, and we made the child
language training corpus the same size as those of the
parent language pairs using the oversampling method;
(3) we combine the original parent and expended child
language pairs to create a combined corpus, then train the
hybrid model using the shared vocabularies after using
the previously trained parent model; (4) we initialize the
child model with a fine-tuned and trained hybrid model,
which is derived from the previous step. One aim of
this work was to make the parent model more efficient.
Another aspect of our work focuses on how to make
the child model learn more parameters and obtain more
lexicon features from the parent model. Although it was
not our direct aim, the method proposed in this work can
be seen as a revised version of REVISED-TL.

Since we also train two models differently to that
of Ref. [21]. By contrast, we do not use the same
language with various corpus sizes, and instead used our
hybrid model that was fine-tuned by the previous model
with shared vocabularies and trained on the combined
corpus. We do not need to consider stem substitution.
However, if the parent and child language pairs do not
belong to the same language branch, this does not work
well as we expected. Therefore, no matter if the parent
and child language pairs belong to the same language
family, group, and branch, as long as we can find some
relatedness (syntactically and semantically), our training
method may make the performance of the child model
better than others. Moreover, Refs. [12, 21, 50] ignored
shared lexicon features of parent models to child models.
In this paper, we further validate the proposed approach
on two morphologically rich LRLs Az and Uz and

achieve a better result than previous studies.

7 Conclusion and Future Perspective

In this paper, we introduce a rather straightforward and
effective method that can feed certain lexicon features
into the TL via shared vocabulary. First, We propose
the HTL method for low-resource languages. Then,
with the intent to make the child model obtain more
lexicon features from the parent model, we design the
hybrid transfer mode to be used before fine-tuning the
child model. It should be noted that we leveraged the
oversampling method, and made the child corpus size
equal to parent corpus size, then shuffled them and
created the bigger mixed corpus, rather than directly
mixed the parent and child language pairs. Besides,
we find sometimes the low-resource child languages
can also help the bigger corpus size language pairs to
achieve a better performance. We named this discovery
INVERTED TRANSFER. Furthermore, another interesting
finding is that both the child and parent models gain a
better generalization when we apply mutual fine-tuning,
sometimes it works unexpectedly well. We named this
finding MUTUAL TRANSFER.

The HTL is transparent to network architectures
and also can be used in other NLP tasks or in the
field of computer vision. Likewise, we also leveraged
this method on another child language pair, which
demonstrated that our training approach is language
independent. At the same time, we address the
disadvantage of TL that it only exploits the original
parent to fine-tune the child model without considering
the lexicon features shared between the parent and child
models. By contrast, our HTL method can cope with this
drawback adequately. In future work, we aim to further
verify the effectiveness of HTL on many NLP tasks
and try to apply it to morphologically poor languages.
Furthermore, it is also useful to apply our approach in
Pos tagging, sentiment analysis, and domain adaptation
tasks.
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