
Adaptive Graph Encoder for Attributed Graph Embedding
Ganqu Cui1,2,3, Jie Zhou1,2,3, Cheng Yang4∗, Zhiyuan Liu1,2,3∗
1Department of Computer Science and Technology, Tsinghua University

2Institute for Artificial Intelligence, Tsinghua University
3Beijing National Research Center for Information Science and Technology

4School of Computer Science, Beijing University of Posts and Telecommunications
{cgq19,zhoujie18}@mails.tsinghua.edu.cn, albertyang33@gmail.com, liuzy@tsinghua.edu.cn

ABSTRACT
Attributed graph embedding, which learns vector representations
from graph topology and node features, is a challenging task for
graph analysis. Recently, methods based on graph convolutional
networks (GCNs) have made great progress on this task. However,
existing GCN-based methods have three major drawbacks. Firstly,
our experiments indicate that the entanglement of graph convolu-
tional filters and weight matrices will harm both the performance
and robustness. Secondly, we show that graph convolutional filters
in these methods reveal to be special cases of generalized Laplacian
smoothing filters, but they do not preserve optimal low-pass char-
acteristics. Finally, the training objectives of existing algorithms are
usually recovering the adjacency matrix or feature matrix, which
are not always consistent with real-world applications. To address
these issues, we propose Adaptive Graph Encoder (AGE), a novel
attributed graph embedding framework. AGE consists of two mod-
ules: (1) To better alleviate the high-frequency noises in the node
features, AGE first applies a carefully-designed Laplacian smooth-
ing filter. (2) AGE employs an adaptive encoder that iteratively
strengthens the filtered features for better node embeddings. We
conduct experiments using four public benchmark datasets to vali-
date AGE on node clustering and link prediction tasks. Experimental
results show that AGE consistently outperforms state-of-the-art
graph embedding methods considerably on these tasks.

KEYWORDS
attributed graph embedding, graph convolutional networks, Lapla-
cian smoothing, adaptive learning

ACM Reference Format:
GanquCui1,2,3, Jie Zhou1,2,3, Cheng Yang4∗, Zhiyuan Liu1,2,3∗. 2020. Adaptive
Graph Encoder for Attributed Graph Embedding. In Proceedings of the 26th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’20), August 23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3394486.3403140

∗ Cheng Yang and Zhiyuan Liu are corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403140

H

W1H W2H

Filter

Graph

GCN encoder

Reconstruction
decoder

Feature 𝐗

Figure 1: The architecture of graph autoencoder [15]. The
components we argue about are marked in red blocks: En-
tanglement of the filters and weight matrices, design of the
filters, and the reconstruction loss.

1 INTRODUCTION
Attributed graphs are graphs with node attributes/features and are
widely applied to represent network-structured data in social net-
works [12], citation networks [16], recommendation systems [37],
etc. For tasks analyzing attributed graphs, including node classi-
fication, link prediction and node clustering, plenty of machine
learning techniques are developed. However, because of the com-
plex high-dimensional non-Euclidean graph structure and various
node features, this task imposes the challenge of jointly capturing
structure and feature information on machine learning approaches.

Representation learning methods on graphs, also known as
graph embedding methods, have emerged as general approaches
in graph learning area. This kind of approaches aims to learn low-
dimensional representations to encode graph structural informa-
tion. Early graph embedding approaches are based on Laplacian
eigenmaps [21], matrix factorization [3, 19, 34, 36], and random
walks [10, 25]. However, these methods are also limited because of
their shallow architecture.

More recently, there has been a surge of approaches that focus
on deep learning on graphs. Specifically, approaches from the fam-
ily of graph convolutional networks (GCNs) [16] have made great

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

976

https://doi.org/10.1145/3394486.3403140
https://doi.org/10.1145/3394486.3403140

progress in many graph learning tasks [39] and strengthen the
representation power of graph embedding algorithms. In this paper,
we will study the attributed graph embedding problem, which is
one of the most important problems in deep graph learning and
GCN-based methods have also made great progress on it. Among
these methods, most of them are based on graph autoencoder (GAE)
and variational graph autoencoder (VGAE) [15]. As shown in Fig-
ure 1, they comprise a GCN encoder and a reconstruction decoder.
Nevertheless, these GCN-based methods have three major draw-
backs:

Firstly, a GCN encoder consists of multiple graph convolutional
layers, and each layer contains a graph convolutional filter (H in
Figure 1), a weight matrix (W1,W2 in Figure 1) and an activa-
tion function. However, previous work [35] demonstrates that the
entanglement of the filters and weight matrices provides no per-
formance gain for semi-supervised graph representation learning,
and even harms training efficiency since it deepens the paths of
back-propagation. In this work, we further extend this conclusion
to unsupervised scenarios by controlled experiments, showing that
our disentangled architecture performs better and more robust than
entangled models (Section 5.3).

Secondly, considering the graph convolutional filters, previous
research [18] shows in theory that they are actually Laplacian
smoothing filters [28] applied on the feature matrix for low-pass
denoising. But we show that existing graph convolutional filters
are not optimal low-pass filters since they can not filter out noises
in some high-frequency intervals. Thus, they can not reach the best
smoothing effect (Section 3.3.3).

Thirdly, we also argue that training objectives of these algorithms
(either reconstructing the adjacency matrix [23, 31] or feature ma-
trix [24, 32]) are not compatible with real-world applications. To
be specific, reconstructing adjacency matrix literally sets the adja-
cency matrix as the ground truth pairwise similarity, while it is not
proper for the lack of feature information. Recovering the feature
matrix, however, will force the model to remember high-frequency
noises in features, and thus be inappropriate as well.

Motivated by such observations, we propose Adaptive Graph En-
coder (AGE), a unified framework for attributed graph embedding.
To disentangle the filters and weight matrices, AGE consists of two
modules: (1) A well-designed non-parametric Laplacian smooth-
ing filter to perform low-pass filtering in order to get smoothed
features. (2) An adaptive encoder to learn more representative
node embeddings. To replace the reconstruction training objec-
tives, we employ adaptive learning [6] in this step, which selects
training samples from the pairwise similarity matrix and finetunes
the embeddings iteratively. The code and data are available on
https://github.com/thunlp/AGE.

Our contributions can be summarized as follows:

• Analysis: We make a detailed analysis of the mechanism of
graph convolutional filters from the perspective of signal
smoothing on graphs and Laplacian smoothing. The analysis
helps us design a proper Laplacian smoothing filter to better
alleviate high-frequency noises.
• Model:We propose AGE, a general model for attributed graph
embedding. Our two-fold model disentangles the filters and
weight matrices. The filters we adopt preserve the optimal

low-pass properties. Furthermore, instead of the reconstruc-
tion loss, we apply a novel adaptive learning strategy to train
node embeddings.
• Experiment: We conduct extensive experiments on node clus-
tering and link prediction tasks with real-world benchmark
datasets. The results demonstrate that AGE outperforms
state-of-the-art attributed graph embedding methods.

2 RELATEDWORK
2.1 Conventional Graph Embedding
Early researches on graph embedding merely focus on finding
node similarity with graph structure. Methods based on dimension
reduction aim to project the high-dimensional adjacency matrix to
low-dimensional latent embedding space. Laplacian eigenmaps [21]
and matrix factorization [3] are two widely used algorithms for
these methods. Another line of researches manages to learn node
embeddings with a particular objective function. [10, 25] learn node
embeddings by generating random walks and input the sequences
into SkipGram model [17], assuming that similar nodes tend to co-
occur in same sequences. Other models [4, 27, 33] can be concluded
by an encoder-decoder framework [11], while they differ from
model structure and training objectives.

Taking node features into account, there are several works make
adjustments to encode structural and content information simul-
taneously. [19, 34, 36] are matrix factorization extensions that add
feature-related regularization terms. [2, 5] model features as latent
variables in Bayesian networks.

2.2 GCN-based Graph Embedding
As mentioned in the introduction, due to the strong representation
power of graph convolutional networks (GCNs) [16], there are
several GCN-based approaches for attributed graph embedding
and they have achieved state-of-the-art. For unsupervised graph
embedding that lacks label information, GCN-based methods can
be categorized into two groups by their optimization objectives.

Reconstruct the adjacency matrix. This kind of approaches
forces the learned embeddings to recover their localized neighbor-
hood structure. Graph autoencoder (GAE) and variational graph
autoencoder (VGAE) [15] learn node embeddings by using GCN as
the encoder, then decode by inner product with cross-entropy loss.
As variants of GAE (VGAE), [23] exploits adversarially regularized
method to learn more robust node embeddings. [31] further em-
ploys graph attention networks [30] to differentiate the importance
of the neighboring nodes to a target node.

Reconstruct the feature matrix. This kind of models is au-
toencoders for the node feature matrix while the adjacency matrix
merely serves as a filter. [32] leverages marginalized denoising
autoencoder to disturb the structure information. To build a sym-
metric graph autoencoder, [24] proposes Laplacian sharpening as
the counterpart of Laplacian smoothing in the encoder. The au-
thors claim that Laplacian sharpening is a process that makes the
reconstructed feature of each node away from the centroid of its
neighbors to avoid over-smoothing. However, as we will show in
the next section, there exists high-frequency noises in raw node
features, which harm the quality of learned embeddings.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

977

https://github.com/thunlp/AGE

3 PROPOSED METHOD
In this section, we first formalize the embedding task on attributed
graphs. Then we present our proposed Adaptive Graph Encoder
(AGE) algorithm. Specifically, we first design an effective graph
filter to perform Laplacian smoothing on node features. Given
the smoothed node features, we further develop a simple node
representation learning module based on adaptive learning [6].
Finally, the learned node embeddings are used for downstream
tasks such as node clustering and link prediction.

3.1 Problem Formalization
Given an attributed graphG = (V, E,X), whereV = {𝑣1, 𝑣2, · · · , 𝑣𝑛}
is the vertex set with 𝑛 nodes in total, E is the edge set, and X =

[x1, x2 . · · · , x𝑛]𝑇 is the feature matrix. The topology structure of
graph G can be denoted by an adjacency matrix A = {𝑎𝑖 𝑗 } ∈ R𝑛×𝑛 ,
where 𝑎𝑖 𝑗 = 1 if (𝑣𝑖 , 𝑣 𝑗) ∈ E, indicating there is an edge from node
𝑣𝑖 to node 𝑣 𝑗 . D = diag(𝑑1, 𝑑2, · · · , 𝑑𝑛) ∈ R𝑛×𝑛 denotes the degree
matrix of A, where 𝑑𝑖 =

∑
𝑣𝑗 ∈V 𝑎𝑖 𝑗 is the degree of node 𝑣𝑖 . The

graph Laplacian matrix is defined as L = D − A.
The purpose of attributed graph embedding is to map nodes to

low-dimensional embeddings. We take Z as the embedding matrix
and the embeddings should preserve both the topological structure
and feature information of graph G.

For downstream tasks, we consider node clustering and link
prediction. The node clustering task aims to partition the nodes into
𝑚 disjoint groups {𝐺1,𝐺2, · · · ,𝐺𝑚}, where similar nodes should
be in the same group. The link prediction task requires the model
to predict whether there is a potential edge existing between two
given nodes.

3.2 Overall Framework
The framework of our model is shown in Figure 2. It consists of
two parts: a Laplacian smoothing filter and an adaptive encoder.
• Laplacian Smoothing Filter: The designed filter H serves
as a low-pass filter to denoise the high-frequency compo-
nents of the feature matrix X. The smoothed feature matrix
X̃ is taken as input of the adaptive encoder.
• Adaptive Encoder: To get more representative node em-
beddings, this module builds a training set by adaptively
selecting node pairs which are highly similar or dissimilar.
Then the encoder is trained in a supervised manner.

After the training process, the learned node embedding matrix Z is
used for downstream tasks.

3.3 Laplacian Smoothing Filter
The basic assumption for graph learning is that nearby nodes on
the graph should be similar, thus node features are supposed to
be smooth on the graph manifold. In this section, we first explain
what smooth means. Then we give the definition of the generalized
Laplacian smoothing filter and show that it is a smoothing operator.
Finally, we answer how to design an optimal Laplacian smoothing
filter.

3.3.1 Analysis of Smooth Signals. We start with interpreting smooth
from the perspective of graph signal processing. Take x ∈ R𝑛 as a
graph signal where each node is assigned with a scalar. Denote the

Laplacian Smoothing

MLP

Select training pairs

Supervised learningSimilarity matrix

Adaptive Encoder

Filter 𝐇"

Raw feature 𝐗

Smoothed feature 𝐗$
Graph

similarity

1 0

Figure 2: Our AGE framework. Given the raw feature ma-
trix X, we first perform 𝑡-layer Laplacian smoothing using
filter H𝑡 to get the smoothed feature matrix X̃ (Top). Then
the node embeddings are encoded by the adaptive encoder
which utilizes the adaptive learning strategy: (1) Calculate
the pairwise node similarity matrix. (2) Select positive and
negative training samples of high confidence (red and green
squares). (3) Train the encoder by a supervised loss (Bottom).

filter matrix as H. To measure the smoothness of graph signal x, we
can calculate the Rayleigh quotient [13] over the graph Laplacian L
and x:

𝑅(L, x) = x⊺Lx
x⊺x

=

∑
(𝑖, 𝑗) ∈E (𝑥𝑖 − 𝑥 𝑗)2∑

𝑖∈V 𝑥2
𝑖

. (1)

This quotient is actually the normalized variance score of x. As
stated above, smooth signals should assign similar values on neigh-
boring nodes. Consequently, signals with lower Rayleigh quotient
are assumed to be smoother.

Consider the eigendecomposition of graph Laplacian L = UΛU−1,
whereU ∈ R𝑛×𝑛 comprises eigenvectors andΛ = diag(_1, _2, · · · , _𝑛)

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

978

is a diagonal matrix of eigenvalues. Then the smoothness of eigen-
vector u𝑖 is given by

𝑅(L, u𝑖) =
u⊺
𝑖

Lu𝑖
u⊺
𝑖

u𝑖
= _𝑖 . (2)

Eq. (2) indicates that smoother eigenvectors are associated with
smaller eigenvalues, which means lower frequencies. Thus we de-
compose signal x on the basis of L based on Eq. (1) and Eq. (2):

x = Up =

𝑛∑
𝑖=1

𝑝𝑖u𝑖 . (3)

where 𝑝𝑖 is the coefficient of eigenvector u𝑖 . Then the smoothness
of x is actually

𝑅(L, x) = x⊺Lx
x⊺x

=

∑𝑛
𝑖=1 𝑝

2
𝑖
_𝑖∑𝑛

𝑖=1 𝑝
2
𝑖

. (4)

Therefore, to get smoother signals, the goal of our filter is filter-
ing out high-frequency componentswhile preserving low-frequency
components. Because of its high computational efficiency and con-
vincing performance, Laplacian smoothing filters [28] are often
utilized for this purpose.

3.3.2 Generalized Laplacian Smoothing Filter. As stated by [28],
the generalized Laplacian smoothing filter is defined as

H = I − 𝑘L, (5)
where 𝑘 is real-valued. Employ H as the filter matrix, the filtered
signal x̃ is present by

x̃ = Hx = U(I − 𝑘Λ)U−1Up =

𝑛∑
𝑖=1
(1 − 𝑘_𝑖)𝑝𝑖u𝑖 =

𝑛∑
𝑖=1

𝑝′𝑖u𝑖 . (6)

Hence, to achieve low-pass filtering, the frequency response func-
tion 1−𝑘_ should be a decrement and non-negative function. Stack-
ing up 𝑡 Laplacian smoothing filters, we denote the filtered feature
matrix X̃ as

X̃ = H𝑡X. (7)
Note that the filter is non-parametric at all.

3.3.3 The Choice of 𝑘 . In practice, with the renormalization trick
Ã = I + A, we employ the symmetric normalized graph Laplacian

L̃𝑠𝑦𝑚 = D̃−
1
2 L̃D̃−

1
2 , (8)

where D̃ and L̃ are degree matrix and Laplacian matrix correspond-
ing to Ã. Then the filter becomes

H = I − 𝑘L̃𝑠𝑦𝑚 . (9)
Notice that if we set 𝑘 = 1, the filter becomes the GCN filter.

For selecting optimal 𝑘 , the distribution of eigenvalues Λ̃ (ob-
tained from the decomposition of L̃𝑠𝑦𝑚 = ŨΛ̃Ũ−1) should be care-
fully discovered.

The smoothness of x̃ is

𝑅(L, x̃) = x̃⊺Lx̃
x̃⊺x̃

=

∑𝑛
𝑖=1 𝑝′2𝑖 _𝑖∑𝑛
𝑖=1 𝑝′2𝑖

. (10)

Thus 𝑝′2
𝑖
should decrease as _𝑖 increases. We denote the maximum

eigenvalue as _𝑚𝑎𝑥 . Theoretically, if 𝑘 > 1/_𝑚𝑎𝑥 , the filter is not
low-pass in the (1/𝑘, _𝑚𝑎𝑥] interval because 𝑝′2𝑖 increases in this
interval; Otherwise, if 𝑘 < 1/_𝑚𝑎𝑥 , the filter can not denoise all

the high-frequency components. Consequently, 𝑘 = 1/_𝑚𝑎𝑥 is the
optimal choice.

It has been proved that the range of Laplacian eigenvalues is
between 0 and 2 [7], hence GCN filter is not low-pass in the (1, 2]
interval. Some work [31] accordingly chooses 𝑘 = 1/2. However,
our experiments show that after renormalization, the maximum
eigenvalue _𝑚𝑎𝑥 will shrink to around 3/2, which makes 1/2 not
optimal as well. In experiments, we calculate _𝑚𝑎𝑥 for each dataset
and set 𝑘 = 1/_𝑚𝑎𝑥 . We further analyse the effects of different 𝑘
values (Section 5.5).

3.4 Adaptive Encoder
Filtered by 𝑡-layer Laplacian smoothing, the output features are
smoother and preserve abundant attribute information.

To learn better node embeddings from the smoothed features, we
need to find an appropriate unsupervised optimization objective. To
this end, we manage to utilize pairwise node similarity inspired by
Deep Adaptive Learning [6]. For attributed graph embedding task,
the relationship between two nodes is crucial, which requires the
training targets to be suitable similarity measurements. GAE-based
methods usually choose the adjacency matrix as true labels of node
pairs. However, we argue that the adjacency matrix only records
one-hop structure information, which is insufficient. Meanwhile,
we address that the similarity of smoothed features or trained em-
beddings are more accurate since they incorporate structure and
features together. To this end, we adaptively select node pairs of
high similarity as positive training samples, while those of low
similarity as negative samples.

Given filtered node features X̃, the node embeddings are encoded
by linear encoder 𝑓 :

Z = 𝑓 (X̃;W) = X̃W, (11)

where W is the weight matrix. We then scale the embeddings to
the [0, 1] interval by min-max scaler for variance reduction. To
measure the pairwise similarity of nodes, we utilize cosine function
to implement our similarity metric. The similarity matrix S is given
by

S =
ZZ⊺

∥Z∥22
. (12)

Next, we describe our training sample selection strategy in detail.

3.4.1 Training Sample Selection. After calculating the similarity
matrix, we rank the pairwise similarity sequence in the descending
order. Here 𝑟𝑖 𝑗 is the rank of node pair (𝑣𝑖 , 𝑣 𝑗). Then we set the
maximum rank of positive samples as 𝑟𝑝𝑜𝑠 and the minimum rank
of negative samples as 𝑟𝑛𝑒𝑔 . Therefore, the generated label of node
pair (𝑣𝑖 , 𝑣 𝑗) is

𝑙𝑖 𝑗 =

1 𝑟𝑖 𝑗 ≤ 𝑟𝑝𝑜𝑠

0 𝑟𝑖 𝑗 > 𝑟𝑛𝑒𝑔

None otherwise
. (13)

In this way, a training set with 𝑟𝑝𝑜𝑠 positive samples and 𝑛2 − 𝑟𝑛𝑒𝑔
negative samples is constructed. Specially, for the first time we
construct the training set, since the encoder is not trained, we

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

979

directly employ the smoothed features for initializing S:

S =
X̃X̃⊺

∥X̃∥22
. (14)

After construction of the training set, we can train the encoder
in a supervised manner. In real-world graphs, there are always
far more dissimilar node pairs than positive pairs, so we select
more than 𝑟𝑝𝑜𝑠 negative samples in the training set. To balance
positive/negative samples, we randomly choose 𝑟𝑝𝑜𝑠 negative sam-
ples in every epoch. The balanced training set is denoted by O.
Accordingly, our cross entropy loss is given by

L =
∑

(𝑣𝑖 ,𝑣𝑗) ∈O
−𝑙𝑖 𝑗 log(𝑠𝑖 𝑗) − (1 − 𝑙𝑖 𝑗) log(1 − 𝑠𝑖 𝑗) . (15)

3.4.2 Thresholds Update. Inspired by the idea of curriculum learn-
ing [1], we design a specific update strategy for 𝑟𝑝𝑜𝑠 and 𝑟𝑛𝑒𝑔 to
control the size of training set. At the beginning of training process,
more samples are selected for the encoder to find rough cluster
patterns. After that, samples with higher confidence are remained
for training, forcing the encoder to capture refined patterns. In
practice, 𝑟𝑝𝑜𝑠 decreases while 𝑟𝑛𝑒𝑔 increases linearly as the train-
ing procedure goes on. We set the initial threshold as 𝑟𝑠𝑡𝑝𝑜𝑠 and
𝑟𝑠𝑡𝑛𝑒𝑔 , together with the final threshold as 𝑟𝑒𝑑𝑝𝑜𝑠 and 𝑟𝑒𝑑𝑛𝑒𝑔 . We have
𝑟𝑒𝑑𝑝𝑜𝑠 ≤ 𝑟𝑠𝑡𝑝𝑜𝑠 and 𝑟𝑒𝑑𝑛𝑒𝑔 ≥ 𝑟𝑠𝑡𝑛𝑒𝑔 . Suppose the thresholds are updated 𝑇
times, we present the update strategy as

𝑟 ′𝑝𝑜𝑠 = 𝑟𝑝𝑜𝑠 +
𝑟𝑒𝑑𝑝𝑜𝑠 − 𝑟𝑠𝑡𝑝𝑜𝑠

𝑇
, (16)

𝑟 ′𝑛𝑒𝑔 = 𝑟𝑛𝑒𝑔 +
𝑟𝑒𝑑𝑛𝑒𝑔 − 𝑟𝑠𝑡𝑛𝑒𝑔

𝑇
. (17)

As the training process goes on, every time the thresholds are
updated, we reconstruct the training set and save the embeddings.
For node clustering, we perform Spectral Clustering [22] on the
similarity matrices of saved embeddings, and select the best epoch
by Davies–Bouldin index [8] (DBI), which measures the clustering
quality without label information. For link prediction, we select the
best performed epoch on validation set. Algorithm 1 presents the
overall procedure of computing the embedding matrix Z.

4 EXPERIMENTAL SETTINGS
We evaluate the benefits of AGE against a number of state-of-the-art
graph embedding approaches on node clustering and link prediction
tasks. In this section, we introduce our benchmark datasets, baseline
methods, evaluation metrics, and parameter settings.

4.1 Datasets
We conduct node clustering and link prediction experiments on
four widely used network datasets (Cora, Citeseer, Pubmed [26]
and Wiki [36]). Features in Cora and Citeseer are binary word
vectors, while in Wiki and Pubmed, nodes are associated with tf-idf
weighted word vectors. The statistics of the four datasets are shown
in Table 1.

Algorithm 1 Adaptive Graph Encoder
Input: Adjacency matrix A, feature matrix X, filter layer number

𝑡 , iteration number𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 and threshold update times 𝑇
Output: Node embedding matrix Z
1: Obtain graph Laplacian L̃𝑠𝑦𝑚 from Eq. (8);
2: 𝑘 ← 1/_𝑚𝑎𝑥 ;
3: Get filter matrix H from Eq. (9);
4: Get smoothed feature matrix X̃ from Eq. (7);
5: Initialize similarity matrix S and training set O by Eq. (14);
6: for 𝑖𝑡𝑒𝑟 = 1 to𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
7: Compute Z with Eq. (11);
8: Train the adaptive encoder with loss in Eq. (15);
9: if 𝑖𝑡𝑒𝑟 mod (𝑚𝑎𝑥_𝑖𝑡𝑒𝑟/𝑇) == 0 then
10: Update thresholds with Eq. (16) and (17);
11: Calculate the similarity matrix S with Eq. (12);
12: Select training samples from S by Eq. (13);
13: end if
14: end for

Table 1: Dataset statistics

Dataset # Nodes # Edges # Features # Classes
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Wiki 2,405 17,981 4,973 17
Pubmed 19,717 44,338 500 3

4.2 Baseline Methods
For attributed graph embedding methods, we include 5 baseline
algorithms in our comparisons:

GAE and VGAE [15] combine graph convolutional networks
with the (variational) autoencoder for representation learning.

ARGA and ARVGA [23] add adversarial constraints to GAE and
VGAE respectively, enforcing the latent representations to match a
prior distribution for robust node embeddings.

GALA [24] proposes a symmetric graph convolutional autoen-
coder recovering the feature matrix. The encoder is based on Lapla-
cian smoothing while the decoder is based on Laplacian sharpening.

On the node clustering task, we compare our model with 8 more
algorithms. The baselines can be categorized into three groups:

(1) Methods using features only. Kmeans [20] and Spectral
Clustering [22] are two traditional clustering algorithms. Spectral-F
takes the cosine similarity of node features as input.

(2) Methods using graph structure only. Spectral-G is Spec-
tral Clustering with the adjacency matrix as the input similarity
matrix. DeepWalk [25] learns node embeddings by using SkipGram
on generated random walk paths on graphs.

(3) Methods using both features and graph. TADW [36] in-
terprets DeepWalk as matrix factorization and incorporates node
features under the DeepWalk framework. MGAE [32] is a denoising
marginalized graph autoencoder. Its training objective is recon-
structing the feature matrix. AGC [38] exploits high-order graph
convolution to filter node features. The number of graph convolu-
tion layers are selected for different datasets. DAEGC [31] employs

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

980

Table 2: Experimental results of node clustering.

Methods Input Cora Citeseer Wiki Pubmed
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

Kmeans F 0.503 0.317 0.244 0.544 0.312 0.285 0.417 0.440 0.151 0.580 0.278 0.246
Spectral-F F 0.347 0.147 0.071 0.441 0.203 0.183 0.491 0.464 0.254 0.602 0.309 0.277
Spectral-G G 0.342 0.195 0.045 0.259 0.118 0.013 0.236 0.193 0.017 0.528 0.097 0.062
DeepWalk G 0.484 0.327 0.243 0.337 0.089 0.092 0.385 0.324 0.173 0.543 0.102 0.088
TADW F&G 0.560 0.441 0.332 0.455 0.291 0.228 0.310 0.271 0.045 0.511 0.244 0.217
GAE F&G 0.611 0.482 0.302 0.456 0.221 0.191 0.379 0.345 0.189 0.632 0.249 0.246
VGAE F&G 0.592 0.408 0.347 0.467 0.261 0.206 0.451 0.468 0.263 0.619 0.216 0.201
MGAE F&G 0.681 0.489 0.436 0.669 0.416 0.425 0.529 0.510 0.379 0.593 0.282 0.248
ARGA F&G 0.640 0.449 0.352 0.573 0.350 0.341 0.381 0.345 0.112 0.681 0.276 0.291
ARVGA F&G 0.638 0.450 0.374 0.544 0.261 0.245 0.387 0.339 0.107 0.513 0.117 0.078
AGC F&G 0.689 0.537 0.486 0.670 0.411 0.419 0.477 0.453 0.343 0.698 0.316 0.319
DAEGC F&G 0.704 0.528 0.496 0.672 0.397 0.410 0.482 0.448 0.331 0.671 0.266 0.278
GALA F&G 0.746 0.577 0.532 0.693 0.441 0.446 0.545 0.504 0.389 0.694 0.327 0.321
LS F&G 0.638 0.493 0.373 0.677 0.419 0.433 0.515 0.534 0.317 0.656 0.300 0.315
LS+RA F&G 0.742 0.580 0.545 0.658 0.410 0.403 0.552 0.566 0.382 0.652 0.291 0.301
LS+RX F&G 0.647 0.479 0.423 0.674 0.416 0.424 0.553 0.543 0.365 0.645 0.285 0.251
AGE F&G 0.768 0.607 0.565 0.702 0.448 0.457 0.612 0.597 0.440 0.711 0.316 0.334

graph attention network to capture the importance of the neighbor-
ing nodes, then co-optimize reconstruction loss and KL-divergence-
based clustering loss.

For representation learning algorithms including DeepWalk,
TADW, GAE and VGAEwhich do not specify on the node clustering
problem, we apply Spectral Clustering on their learned represen-
tations. For other works that conduct experiments on benchmark
datasets, the original results in the papers are reported.

AGE variants. We consider 4 variants of AGE to compare var-
ious optimization objectives. The Laplacian smoothing filters in
these variants are the same, while the encoder of LS+RA aims at
reconstructing the adjacency matrix. LS+RX, respectively, recon-
structs the feature matrix. LS only preserves the Laplacian smooth-
ing filter, the smoothed features are taken as node embeddings.
AGE is our proposed model with adaptive learning.

4.3 Evaluation Metrics & Parameter Settings
Tomeasure the performance of node clusteringmethods, we employ
three metrics: Accuracy (ACC), Normalized Mutual Information
(NMI), and Adjusted Rand Index (ARI) [9]. For link prediction, we
partition the datasets following GAE, and report Area Under Curve
(AUC) and Average Precision (AP) scores. For all the metrics, a
higher value indicates better performance.

For the Laplacian smoothing filter, we find the maximum eigen-
values of the four datasets are all around 3/2. Thus we set 𝑘 = 2/3
universally. For the adaptive encoder, we train the MLP encoder for
400 epochs with a 0.001 learning rate by the Adam optimizer [14].
The encoder consists of a single 500-dimensional embedding layer,
and we update the thresholds every 10 epochs. We tune other hyper-
parameters including Laplacian smoothing filter layers 𝑡 , 𝑟𝑠𝑡𝑝𝑜𝑠 , 𝑟𝑒𝑑𝑝𝑜𝑠 ,

𝑟𝑠𝑡𝑛𝑒𝑔 and 𝑟𝑒𝑑𝑛𝑒𝑔 based on DBI. The detailed hyperparameter settings
are reported in Appendix.

5 EXPERIMENTAL RESULTS
In this section, we show and analyse the results of our experiments.
Besides the main experiments, we also conduct auxiliary experi-
ments to answer the following hypotheses:

H1: Entanglement of the filters and weight matrices has no
improvement for embedding quality.

H2: Our adaptive learning strategy is effective compared to re-
construction losses, and each mechanism has its own contribution.

H3: 𝑘 = 1/_𝑚𝑎𝑥 is the optimal choice for Laplacian smoothing
filters.

5.1 Node Clustering Results
The node clustering results are presented in Table 2, where bold
and underlined values indicate the highest scores in all methods
and all baselines respectively. Our observations are as follows:

Algorithms using both feature and graph information usually
achieve better performance than methods leveraging information
from single source. This investigation demonstrates that features
and graph structure contribute to clustering from different perspec-
tives.

AGE shows superior performance to baseline methods by a con-
siderable margin, especially on Cora and Wiki datasets. Competing
with the strongest baseline GALA, our model outperforms it by
2.95%, 5.20% and 6.20% on Cora, by 12.29%, 18.45% and 13.11% on
Wiki with respect to ACC, NMI and ARI. Such results show strong
evidence advocating our proposed framework. For Citeseer and
Pubmed, we give further analysis in section 5.5.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

981

Figure 3: Controlled experiments comparing GAE and LS+RA

Table 3: Experimental results of link prediction.

Methods Cora Citeseer
AUC AP AUC AP

GAE 0.910 0.920 0.895 0.899
VGAE 0.914 0.926 0.908 0.920
ARGA 0.924 0.932 0.919 0.930
ARVGA 0.924 0.926 0.924 0.930
GALA 0.921 0.922 0.944 0.948
AGE 0.957 0.952 0.964 0.968

Compared with GCN-based methods, AGE has simpler mecha-
nisms than those in baselines, such as adversarial regularization or
attention. The only trainable parameters are in the weight matrix
of the 1-layer perceptron, which minimizes memory usage and
improves training efficiency.

5.2 Link Prediction Results
In this section, we evaluate the quality of node embeddings on the
link prediction task. Following the experimental settings of GALA,
we conduct experiments on Cora and Citeseer, removing 5% edges
for validation and 10% edges for test. The training procedure and
hyper-parameters remain unchanged. Given the node embedding
matrix Z, we use a simple inner product decoder to get the predicted
adjacency matrix

Â = 𝜎 (ZZ⊺) (18)
where 𝜎 is the sigmoid function.

The experimental results are reported in Table 3. Compared with
state-of-the-art unsupervised graph representation learningmodels,
AGE outperforms them on both AUC and AP. It is worth noting that
the training objectives of GAE/VGAE and ARGA/ARVGA are the
adjacency matrix reconstruction loss. GALA also adds reconstruc-
tion loss for the link prediction task, while AGE does not utilize
explicit links for supervision.

5.3 GAE v.s. LS+RA
We use controlled experiments to verify hypothesis H1, evaluating
the influence of entanglement of the filters and weight matrices.
The compared methods are GAE and LS+RA, where the only dif-
ference between them is the position of the weight matrices. GAE,
as we show in Figure 1, combines the filter and weight matrix in
each layer. LS+RA, however, moves weight matrices after the filter.

Specifically, GAE has multiple GCN layers where each one contains
a 64-dimensional linear layer, a ReLU activition layer and a graph
convolutional filter. LS+RA stacks multiple graph convolutional
filters and after which is a 1-layer 64-dimensional perceptron. Both
embedding layers of the two models are 16-dimensional. Rest of
the parameters are set to the same.

We report the NMI scores for node clustering on the four datasets
with different number of filter layers in Figure 3. The results show
that LS+RA outperforms GAE under most circumstances with fewer
parameters. Moreover, the performance of GAE decreases signifi-
cantly as the filter layer increases, while LS+RA is relatively stable.
A reasonable explanation to this phenomenon is stacking multiple
graph convolution layers makes it harder to train all the weight
matrices well. Also, the training efficiency will be affected by the
deep network.

5.4 Ablation Study
To validate H2, we first compare the four variants of AGE on the
node clustering task. Our findings are listed below:

(1) Compared with raw features (Spectral-F), smoothed features
(LS) integrate graph structure, thus perform better on node cluster-
ing. The improvement is considerable.

(2) The variants of our model, LS+RA and LS+RX, also show
powerful performances compared with baseline methods, which
results from our Laplacian smoothing filter. At the same time, AGE
still outperforms the two variants, demonstrating that the adaptive
optimization target is superior.

(3) Comparing the two reconstruction losses, reconstructing
the adjacency matrix (LS+RA) performs better on Cora, Wiki and
Pubmed, while reconstructing the feature matrix (LS+RX) performs
better on Citeseer. Such difference illustrates that structure infor-
mation and feature information are of different importance across
datasets, therefore either of them is not optimal universally. Further-
more, on Citeseer and Pubmed, the reconstruction losses contribute
negatively to the smoothed features.

Then, we conduct ablation study on Cora to manifest the efficacy
of four mechanisms in AGE. We set five variants of our model for
comparison.

All five variants cluster nodes by performing Spectral Clustering
on the cosine similarity matrix of node features or embeddings.
“Raw features" simply performs Spectral Clustering on raw node
features; “+Filter" clusters nodes using smoothed node features;
“+Encoder" initializes training set from the similarity matrix of
smoothed node features, and learns node embeddings via the fixed
training set; “+Adaptive" selects training samples adaptively with

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

982

0.0 0.5 1.0 1.5
Eigenvalue

0.0

0.5

1.0

1.5

2.0

2.5

Fr
eq

ue
nc

y

Cora
 λmax= 1.48

0.0 0.5 1.0 1.5
Eigenvalue

0

1

2

3

4

5

Fr
eq

ue
nc

y

Citeseer
 λmax= 1.50

0.0 0.5 1.0 1.5
Eigenvalue

0

1

2

3

Fr
eq

ue
nc

y

Wiki
 λmax= 1.40

0.0 0.5 1.0 1.5
Eigenvalue

0

2

4

6

8

10

Fr
eq

ue
nc

y

Pubmed
 λmax= 1.65

Figure 4: The eigenvalue distributions of benchmark datasets. _𝑚𝑎𝑥 is the maximum eigenvalue.

0.45

0.55

0.65

0.75

0.85

1/3 1/2 2/3 5/6 1
k

ACC

cora citeseer wiki pubmed

0.25

0.35

0.45

0.55

0.65

1/3 1/2 2/3 5/6 1
k

NMI

cora citeseer wiki pubmed

0.25

0.35

0.45

0.55

0.65

1/3 1/2 2/3 5/6 1
k

ARI

cora citeseer wiki pubmed

Figure 5: Influence of 𝑘 on the three metrics.

fixed thresholds; “+Thresholds Update" further adds thresholds
update strategy and is exactly the full model.

In Table 4, it is obviously noticed that each part of our model
contributes to the final performance, which evidently states the
effectiveness of them. Additionally, we can observe that model
supervised by the similarity of smoothed features (“+Encoder")
outperforms almost all the baselines, giving verification to the
rationality of our adaptive learning training objective.

Table 4: Ablation study.

Model Variants Cora
ACC NMI ARI

Raw features 0.347 0.147 0.071
+Filter 0.638 0.493 0.373
+Encoder 0.728 0.558 0.521
+Adaptive 0.739 0.585 0.544
+Thresholds Update 0.768 0.607 0.565

5.5 Selection of 𝑘
As stated in section 3.3.3, we select 𝑘 = 1/_𝑚𝑎𝑥 while _𝑚𝑎𝑥 is
the maximum eigenvalue of the renormalized Laplacian matrix.
To verify the correctness of our hypothesis (H3), we first plot the
eigenvalue distributions of the Laplacian matrix for benchmark
datasets in Figure 4. Then, we perform experiments with different

𝑘 and the results are report in Figure 5. From the two figures,we
can make the following observations:

(1) The maximum eigenvalues of the four datasets are around
3/2, which supports our selecting 𝑘 = 2/3.

(2) In Figure 5, it is clear that filters with 𝑘 = 2/3 work best for
Cora and Wiki datasets, since all three metrics reach the highest
scores at 𝑘 = 2/3. For Citeseer and Pubmed, there is little difference
for various 𝑘 .

(3) To further explain why some datasets are sensitive to 𝑘 while
some are not, we can look back into Figure 4. Obviously, there
are more high-frequency components in Cora and Wiki than Cite-
seer and Pubmed. Therefore, for Citeseer and Pubmed, filters with
different 𝑘 achieve similar effects.

Overall, for Laplacian smoothing filters, we can conclude that
𝑘 = 1/_𝑚𝑎𝑥 is the optimal choice for Laplacian smoothing filters
(H3).

5.6 Visualization
To intuitively show the learned node embeddings, we visualize the
node representations in 2D space using 𝑡-SNE algorithm [29]. The
figures are shown in Figure 6 and each subfigure corresponds to a
variant in the ablation study. From the visualization, we can see that
AGE can well cluster the nodes according to their corresponding
classes. Additionally, as the model gets complete gradually, there
are fewer overlapping areas and nodes belong to the same group
gather together.

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

983

(a) Raw features (b) +Filter (c) +Encoder (d) +Adaptive (e) Full model

Figure 6: 2D visualization of node representations on Cora using 𝑡-SNE. The different colors represent different classes.

6 CONCLUSION
In this paper we propose AGE, a unified unsupervised graph rep-
resentation learning model. We investigate the graph convolution
operation in view of graph signal smoothing, and then design a
non-parametric Laplacian smoothing filter which preserves opti-
mal denoising properties to filter out high-frequency noises. In the
encoder part, we find adaptive learning is more appropriate for
embedding. Experiments on standard benchmarks demonstrate our
model has outperformed state-of-the-art baseline algorithms.

For future work, an intriguing direction is to improve the com-
putational efficiency of adaptive learning by avoiding the full com-
putation of the pairwise similarity matrix.

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Develop-
ment Program of China (No. 2018YFB1004503) and the National Nat-
ural Science Foundation of China (NSFC No. 61772302, 61732008).

REFERENCES
[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.

Curriculum learning. In Proceedings of ICML. 41–48.
[2] Aleksandar Bojchevski and Stephan Günnemann. 2018. Bayesian robust attrib-

uted graph clustering: Joint learning of partial anomalies and group structure. In
Proceedings of AAAI. 2738–2745.

[3] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-
sentations with global structural information. In Proceedings of CIKM. 891–900.

[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep neural networks for
learning graph representations. In Proceedings of AAAI. 1145–1152.

[5] Jonathan Chang and David Blei. 2009. Relational topic models for document
networks. In Artificial Intelligence and Statistics. 81–88.

[6] Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong
Pan. 2017. Deep adaptive image clustering. In Proceedings of ICCV. 5879–5887.

[7] Fan RK Chung and Fan Chung Graham. 1997. Spectral graph theory. American
Mathematical Soc.

[8] David L Davies and Donald W Bouldin. 1979. A cluster separation measure. IEEE
transactions on pattern analysis and machine intelligence 2 (1979), 224–227.

[9] Guojun Gan, Chaoqun Ma, and Jianhong Wu. 2007. Data clustering: Theory,
algorithms, and applications. Vol. 20. Siam.

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of SIGKDD. 855–864.

[11] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. IEEE Data(base) Engineering Bulletin 40, 3
(2017), 52–74.

[12] Matthew B Hastings. 2006. Community detection as an inference problem.
Physical Review E 74, 3 (2006), 035–102.

[13] Roger AHorn and Charles R Johnson. 2012.Matrix analysis. Cambridge university
press.

[14] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In Proceedings of ICLR. 15.

[15] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. In NIPS
Workshop on Bayesian Deep Learning. 3.

[16] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In Proceedings of ICLR. 14.

[17] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In Proceedings of ICML. 1188–1196.

[18] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph
convolutional networks for semi-supervised learning. In Proceedings of AAAI.
3538–3545.

[19] Ye Li, Chaofeng Sha, Xin Huang, and Yanchun Zhang. 2018. Community detection
in attributed graphs: an embedding approach. In Proceedings of AAAI. 338–345.

[20] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[21] Mark EJ Newman. 2006. Finding community structure in networks using the
eigenvectors of matrices. Physical review E 74, 3 (2006), 036–104.

[22] Andrew Y Ng, Michael I Jordan, and Yair Weiss. 2002. On spectral clustering:
Analysis and an algorithm. In Proceedings of NIPS. 849–856.

[23] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.
2018. Adversarially regularized graph autoencoder for graph embedding. In
Proceedings of IJCAI. 2609–2615.

[24] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young
Choi. 2019. Symmetric graph convolutional autoencoder for unsupervised graph
representation learning. In Proceedings of ICCV. 6519–6528.

[25] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of SIGKDD. 701–710.

[26] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[27] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of WWW.
1067–1077.

[28] Gabriel Taubin. 1995. A signal processing approach to fair surface design. In
Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques. 351–358.

[29] Laurens Van Der Maaten. 2014. Accelerating t-SNE using tree-based algorithms.
The journal of machine learning research 15, 1 (2014), 3221–3245.

[30] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In Proceedings of ICLR.
8.

[31] ChunWang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi Zhang.
2019. Attributed graph clustering: A deep attentional embedding approach. In
Proceedings of IJCAI. 3670–3676.

[32] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. 2017.
Mgae: Marginalized graph autoencoder for graph clustering. In Proceedings of
CIKM. 889–898.

[33] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-
ding. In Proceedings of SIGKDD. 1225–1234.

[34] Xiao Wang, Di Jin, Xiaochun Cao, Liang Yang, and Weixiong Zhang. 2016. Se-
mantic community identification in large attribute networks. In Proceedings of
AAAI. 265—-271.

[35] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu,
and Kilian Q Weinberger. 2019. Simplifying graph convolutional networks. In
Proceedings of ICML. 6861–6871.

[36] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Chang. 2015.
Network representation learning with rich text information. In Proceedings of
IJCAI. 2111–2117.

[37] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of SIGKDD. 974–983.

[38] Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. 2019. Attributed graph
clustering via adaptive graph convolution. In Proceedings of IJCAI. 4327–4333.

[39] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. 2018. Graph neural networks: A review of
methods and applications. arXiv preprint arXiv:1812.08434 (2018).

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

984

A MORE DETAILS ABOUT THE
EXPERIMENTS

Here we describe more details about the experiments to help in
reproducibility.

A.1 Hardware and Software Configurations
All experiments are conducted on a server under the same environ-
ment.

Hardware:
• Operating System: Ubuntu 18.04.3 LTS
• CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
• GPU: GeForce RTX 2080 Ti

Software:
• Python 3.7.4

• PyTorch 1.3.1
• sklearn 0.21.3

A.2 Hyperparameter Settings
We report our hyperparameter settings in Table 5.

Table 5: Hyperparameter settings, where 𝑛 is number of
nodes in the dataset.

Dataset 𝑡 𝑟𝑠𝑡𝑝𝑜𝑠/𝑛2 𝑟𝑒𝑑𝑝𝑜𝑠/𝑛2 𝑟𝑠𝑡𝑛𝑒𝑔/𝑛2 𝑟𝑒𝑑𝑛𝑒𝑔/𝑛2

Cora 8 0.0110 0.0010 0.1 0.5
Citeseer 3 0.0015 0.0010 0.1 0.5
Wiki 1 0.0011 0.0010 0.1 0.5
Pubmed 35 0.0013 0.0010 0.7 0.8

Research Track Paper KDD '20, August 23–27, 2020, Virtual Event, USA

985

	Abstract
	1 Introduction
	2 Related Work
	2.1 Conventional Graph Embedding
	2.2 GCN-based Graph Embedding

	3 Proposed Method
	3.1 Problem Formalization
	3.2 Overall Framework
	3.3 Laplacian Smoothing Filter
	3.4 Adaptive Encoder

	4 Experimental Settings
	4.1 Datasets
	4.2 Baseline Methods
	4.3 Evaluation Metrics & Parameter Settings

	5 Experimental Results
	5.1 Node Clustering Results
	5.2 Link Prediction Results
	5.3 GAE v.s. LS+RA
	5.4 Ablation Study
	5.5 Selection of k
	5.6 Visualization

	6 Conclusion
	Acknowledgments
	References
	A More Details About The Experiments
	A.1 Hardware and Software Configurations
	A.2 Hyperparameter Settings

