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Abstract—Heterogeneous information network (HIN) embedding aims to learn the low-dimensional representations of nodes while
preserving structures and semantics in HINs. Although most existing methods consider heterogeneous relations and achieve promising
performance, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of HIN
embedding. In this paper, we argue that heterogeneous relations have different structural characteristics, and propose a novel Relation
structure-aware HIN Embedding model, called RHINE. By exploring four real-world networks with thorough analysis, we present two
structure-related measures which consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and
Interaction Relations (IRs). To respect the distinctive structural characteristics of relations, in RHINE, we propose different models
specifically tailored to handle ARs and IRs, which can better capture the structures in HINs. Finally, we combine and optimize these
models in a unified manner. Furthermore, considering that nodes connected via heterogeneous relations may have multi-aspect
semantics and each relation focuses on one aspect, we introduce relation-specific projection matrices to learn node and relation
embeddings in separate spaces rather than a common space, which can better preserve the semantics in HINs, referring to a new
model RHINE-M. Experiments on four real-world datasets demonstrate that our models significantly outperform the state-of-the-art
methods in four tasks.

Index Terms—Heterogeneous information network, Network embedding, Social network analysis.
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1 INTRODUCTION

N ETWORK embedding aims to embed nodes into a
low-dimensional space, while preserving the network

structures and properties, which has shed a light on the
analysis of networks and become a focal point of study
interests in both academic and industrial domains [1], [2],
[3]. Recent works on network embedding have achieved
promising performance in many data mining tasks, such
as classification [4], [5], [6], [7], recommendation [8], [9] and
link prediction [10], [11], [12], [13], etc. However, most of
these methods generally focus on homogeneous networks
which only contain one single type of nodes and edges.

In reality, many real-life information networks consist
of multiple types of nodes and edges, widely known as
heterogeneous information networks (HINs) [14], [15]. Due
to its flexibility in modeling heterogeneous data, HIN has
been proposed as a powerful information modeling method.
As shown in Figure 1(a), we present an example of HIN,
i.e., the DBLP network. We can see that the DBLP network
contains four types of nodes: Author (A), Paper (P), Con-
ference (C) and Term (T), and multiple types of relations:
writing/written relations, and publish/published relations,
etc. In addition, there are composite relations represented
by meta-paths [14], [16] such as APA (co-author relation)
and APC (authors write papers published in conferences),
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Fig. 1. The illustration of an HIN and the comparison between conven-
tional methods and our method (non-differentiated relations v.s. differ-
entiated relations).

which are widely used to exploit rich semantics in HINs.
Thus, compared to homogeneous networks, HINs fuse more
information and contain richer semantics. HIN embedding,
which provides a new perspective for heterogeneous data
analysis, has thus attracted considerable research attention.
A natural and straightforward idea to embed an HIN is to
directly apply homogeneous network embedding models
for heterogeneous data, but this will inevitably lead to
reduced performance in downstream tasks.

Some researchers have been working on exploring meth-
ods for HIN embedding [17], [18], [19], [20], [21], [22], and
have demonstrated the effectiveness of HIN embedding in
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HIN analysis applications. Roughly speaking, some meth-
ods employ meta-path based random walk to generate node
sequences for optimizing the similarity between nodes [21],
[23], [24]. Some methods decompose the HIN into simple
networks and then optimize the proximity between nodes
in each sub-network [17], [22], [25]. There are also some
neural network based methods that learn non-linear map-
ping functions for HIN embedding [19], [20], [26], [27]. Also,
some methods are designed for specific tasks, such as link
prediction [28] and recommendation [22]. Although these
methods are designed for heterogeneous networks and have
achieved performance improvement to some extent, they
usually have an assumption that one single model can
handle all relations and nodes, through keeping the rep-
resentations of two nodes close to each other, as illustrated
in Figure 1(b).

However, various heterogeneous relations in an HIN
have significantly different structural characteristics, which
should be carefully handled with different models. Let’s see
a toy example in Figure 1(a). The relations in the network
include atomic relations (e.g., AP and PC) and composite
relations (e.g., APA and APC). Intuitively, AP relation and
PC relation reveal rather different characteristics in struc-
ture. That is, some authors write some papers in the AP
relation, which shows a peer-to-peer structure. While that
many papers are published in one conference in the PC
relation reveals the structure of one-centered-by-another.
Similarly, APA and APC indicate peer-to-peer and one-
centered-by-another structures respectively. The intuitive
examples clearly illustrate that relations in an HIN indeed
have different structural characteristics.

It is non-trivial to consider different structural character-
istics of relations for HIN embedding, due to the following
challenges: (1) How to distinguish the structural character-
istics of relations in an HIN? Various relations (atomic rela-
tions or meta-paths) with different structures are involved
in an HIN. Quantitative and explainable criteria are desired
to explore the structural characteristics of relations and dis-
tinguish them. (2) How to capture the distinctive structural
characteristics of different categories of relations? Since the
various relations have different structures, modeling them
with one single model may lead to some loss of information.
We need to specifically design appropriate models which are
able to capture their distinctive characteristics. (3) The differ-
ent models for the differentiated relations should be easily
and smoothly combined to ensure simple optimization in a
unified manner.

In this paper, we first present a Relation structure-
aware HIN Embedding method, called RHINE, which is
capable of capturing the distinctive structural character-
istics of relations in HINs. In specific, we first explore
the structural characteristics of heterogeneous relations in
HINs with intuitive observations and thorough quantitative
analysis. Intuitively, we find a huge difference between
the degree distributions of nodes w.r.t. various relations,
which indicates the distinctive structural characteristics of
relations in HINs. From four real datasets, we systemat-
ically analyze the structural characteristics of relations in
HINs, and present two structure-related measures which
can consistently distinguish the various relations into two
categories: Affiliation Relations (ARs) with one-centered-

by-another structures and Interaction Relations (IRs) with
peer-to-peer structures. In order to capture the distinctive
structural characteristics of the relations, we then propose
two specifically designed models. For ARs where the nodes
share similar properties [29], [30], we calculate Euclidean
distance as the proximity between nodes, so as to make the
nodes directly close in the low-dimensional space. On the
other hand, for IRs which bridge two compatible nodes, we
model them as translations between the nodes and calculate
translation-based distance as the proximity between nodes.
Since the Euclidean distance and translation-based distance
are consistent in terms of mathematical form, they can
be optimized in a unified and elegant way. Furthermore,
considering that nodes connected via heterogeneous rela-
tions may have multi-aspect semantics and each relation
focuses on one aspect, we introduce relation-specific pro-
jection matrices into the above two models to learn node
and relation embeddings in separate spaces rather than a
common space. We denote the extended model as RHINE-
M. With the simultaneous projection and united training,
RHINE-M ensures the unified measure of two proximities
between nodes (i.e., the Euclidean distance and translation-
based distance) in the specific space.

It is worthwhile to highlight our contributions as fol-
lows:

• To the best of our knowledge, we make the first attempt to
explore the different structural characteristics of relations
in HINs and present two structure-related criteria which
can consistently distinguish heterogeneous relations into
ARs and IRs.

• We propose a novel relation structure-aware HIN embed-
ding model (RHINE) and its extended version RHINE-M,
which fully respects the distinctive structural characteris-
tics of ARs and IRs by exploiting appropriate models and
combining them in a unified and elegant manner.

• We conduct comprehensive experiments to evaluate the
performance of our models. Experimental results demon-
strate that our models significantly outperform state-of-
the-art network embedding models in various tasks.

Please notice that the preliminary work has been ac-
cepted for oral presentation at the Thirty-Third AAAI Con-
ference on Artificial Intelligence (AAAI-19) [31]. Based on
the conference paper, we substantially extend the original
work from the following four aspects: (1) Considering that
nodes connected via heterogeneous relations may have mul-
tifaceted semantics and various relations focus on different
aspects, we extend the original RHINE into a novel RHINE-
M model with relation-specific projection matrices. RHINE-
M learns node embeddings with respect to different rela-
tions in separate latent spaces, rather than a common space.
Besides, in five data mining tasks, we demonstrate the
superior performance of RHINE-M on four datasets. (2) In
order to more intuitively illustrate the difference in various
relations, we further analyze the distinctive structural char-
acteristics of heterogeneous relations in HINs and conduct
qualitative analysis from the perspective of the node degree
distribution on four real-world HINs. (3) To further verify
the effectiveness of the proposed models, we significantly
enrich experiments with two new baselines (i.e., HERec
and JUST), a new dataset (i.e., Amazon) and a new tasks
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(i.e., node recommendation). Concretely, we evaluate our
proposed RHINE and RHINE-M on the new dataset, and
our methods consistently achieve outstanding performances
in five tasks. Compared with two new baselines (i.e., HERec
and JUST), our methods also perform better than them.
(4) A comprehensive survey of related work is provided
in our paper, ranging from general network embedding to
HIN embedding. Besides, we carefully polish our paper and
improve the language quality.

The rest of the paper is organized as follows. In Section
2, we summarize and compare the related works. Section
3 describes notations used in the paper and presents some
preliminary knowledge. Then, we describe four real-world
HINs and analyze the structural characteristics of relations
in Section 4. Section 5 presents our proposed models, i.e.,
RHINE and RHINE-M in detail. Extensive experiments are
done to validate the proposed models in Section 6. Finally,
we conclude the paper in Section 7.

2 RELATED WORK

In this section, we first introduce the related methods of
general network embedding, and then discuss the recent
works on HIN embedding.

2.1 Network Embedding
The goal of network embedding is to project a network into
a low-dimensional vector space under the principle of pre-
serving the original structural information and properties
in networks [1], [2], [3]. Hence, network embedding can
be traced back to the dimensionality reduction techniques.
Traditional dimensionality reduction techniques typically
learn the latent low-dimensional vectors for nodes or edges
by decomposing a network [32], [33]. Graph factorization
[34] represents a graph as a matrix where matrix elements
correspond to edges between nodes, and then learns a
low-dimensional representation of a graph through matrix
factorization. However, decomposition-based models are in-
flexible and not scalable. They suffer from the computational
cost of decomposing a large-scale matrix, making them
neither practical nor effective for addressing data mining
tasks in large networks.

Recently, rapid development on deep learning has shed
a light on network representation learning and significant
effort has been devoted to designing neural network-based
representation learning models [4], [5], [6], [7], [10], [11],
[13], [35], [36]. Inspired by word2vec [37], [38], Perozzi et al.
propose DeepWalk [4] based on truncated random walks
and Skip-gram model. DeepWalk views node sequences
generated from random walks as “sentences”, and nodes as
“words”, and then maximizes the co-occurrence probability
among nodes. Based on DeepWalk, Grover et al. propose
node2vec [10] which obtains nodes’ neighbors by employ-
ing breadth-first and depth-first sampling on homogeneous
networks. In addition, to learn representation of large-scale
network, Tang et al. present LINE [5] which captures both
the first-order and second-order proximities in networks.
However, DeepWalk, node2vec and LINE only focus on
learning the representation of nodes in homogeneous infor-
mation networks, leading to the fact that they could not be
directly applied for HIN embedding.

2.2 HIN Embedding

As a newly emerging network model, HINs can naturally
model complex objects and their rich relations. HIN embed-
ding, which aims to embed multiple types of nodes into
a low-dimensional space, has received growing attention.
Considerable researches have been done on representation
learning for HINs [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28]. Broadly speaking, the existing works on
HIN embedding can be categorized into four types: random
walk based methods [21], [23], [24], decomposition based
methods [17], [22], [25], deep neural network based methods
[19], [20], [26], [27] and task-specific methods [18], [20], [22],
[27], [28].

2.2.1 Random Walk based Methods

Random walk based methods are inspired by word2vec [37],
[38], where a node vector should be able to reconstruct
the vectors of its neighborhood nodes which are defined
by co-occurrence rate. Typically, metapath2vec [24] formal-
izes meta-path based random walks to construct heteroge-
neous neighborhoods of a node and leverages Skip-gram
of word2vec [38] to learn the representation of networks.
HIN2Vec [21] conducts random walk and learns latent
vectors of nodes and meta-paths by conducting multiple
prediction training tasks jointly. Shang et al. propose ESim
[23] to perform random walks based on user-defined meta-
paths on HINs, and learn the vector representation of nodes
appearing in the instance by maximizing the probability of
meta-path instances.

2.2.2 Decomposition based Methods

Decomposition based methods separate an HIN into multi-
ple simple homogeneous networks, and respectively embed
these networks into low-dimensional spaces. As an exten-
sion of LINE, PTE [17] is proposed to suit HIN embedding.
It decomposes a HIN to a set of edgewise bipartite networks
and then performs network embedding individually by
using LINE. EOE [25] decomposes the complex academic
heterogeneous network into a word co-occurrence network
and an author cooperative network, and simultaneously
performs representation learning on node pairs in sub-
networks.

2.2.3 Deep Neural Network based Methods

Deep neural network based methods benefit from the pow-
erful modeling capabilities of deep models, which employ
different deep neural models, such as MLP, CNN and Au-
toencoder, etc. to model heterogeneous data. For instance,
HNE [19] utilizes CNN and MLP to extract the features of
text and image data respectively, and then projects different
types of data into the same space through the transfer matrix
to overcome the challenges of modeling heterogeneous data.
SHINE [20] uses the autoencoder to encode and decode
the heterogeneous information in the social network, the
emotional network and the portrait network respectively
to obtain the feature representation, and then fuses these
representations through an aggregate function to obtain the
final node embeddings.
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2.2.4 Task-specific Methods
Task-specific methods mainly focus on solving a specific
task (e.g., link prediction or recommendation) with repre-
sentation learning on HINs. In order to predict links be-
tween nodes with different types in HINs, PME [28] projects
different types of nodes into the same relation space and
conducts heterogeneous link prediction. For recommenda-
tion in e-commerce, HERec [22] integrates matrix factoriza-
tion with HIN embedding and predicts ratings for items.
Fan et al. [39] proposes a embedding model metagraph2vec,
where both the structures and semantics are maximally
preserved for malware detection.

To sum up, all the above mentioned models deal
with various relations without distinguishing their different
properties and handle them with one single model. In this
paper, we explore and distinguish the structural character-
istics of relations with thorough qualitative and quantitative
analysis. For relations with distinct structural and semantic
characteristics, we propose to handle them with specifically
designed models.

3 PRELIMINARIES

In this section, we introduce some basic concepts and for-
malize the problem of HIN embedding.
Definition 1. Heterogeneous Information Network (HIN)
[15]. An HIN is defined as a graph G = (V,E, T, φ, ϕ), in
which V and E are the sets of nodes and edges, respectively.
Each node v and edge e are associated with their type
mapping functions φ : V → TV and ϕ : E → TE ,
respectively. TV and TE denote the sets of node and edge
types, where |TV |+ |TE | > 2, and T = TV ∪ TE .

In HINs, two objects can be connected via different se-
mantic paths, called meta-paths, which describe composite
relations between objects. We define the concept of meta-
paths and node-relation triples as follows.
Definition 2. Meta-path [14]. Given an HIN G =
(V,E, T, φ, ϕ), a meta-path m ∈ M is defined as a se-
quence of node types tvi

or edge types tej in the form of

tv1

te1−→ tv2
...

tel−→ tvl+1
(abbreviated as tv1

tv2
...tvl+1 ), which

describes a composite relation between v1 and vl+1.
Definition 3. Node-Relation Triple. In an HIN G, relations
R include atomic relations (e.g., links) and composite rela-
tions (e.g., meta-paths). A node-relation triple 〈u, r, v〉 ∈ P ,
describes that two nodes u and v are connected by a relation
r ∈ R. Here P represents the set of all node-relation triples.

Example 1. As shown in Figure 1(a), a meta-path A
write−→

P
Published−→ C (abbreviated as APC) describes a composite

relation between authors and conferences, which indicates
that ‘authors write papers published in conferences’. In Figure
1(a), both 〈a1, AP, p1〉 and 〈a2, APC, c2〉 are node-relation
triples of DBLP.
Definition 4. Heterogeneous Information Network Em-
bedding. Given an HIN G = (V , E, T , φ, ϕ) , the goal
of HIN embedding is to project nodes into a latent low-
dimensional representation space while preserving the net-
work structure and properties. Formally, we aim to develop
a mapping function f : V → Rd that projects each node
v ∈ V to a low-dimensional vector in Rd, where d� |V |.

4 STRUCTURAL CHARACTERISTICS ANALYSIS OF
RELATIONS

In this section, we first describe four real-world HINs and
analyze the structural characteristics of relations in HINs.
Then we present two structure-related measures which can
consistently distinguish various relations quantitatively.

4.1 Dataset Description
Before analyzing the structural characteristics of relations,
we first briefly introduce four datasets used in this paper,
including DBLP1, Yelp2, AMiner3 [40] and Amazon 4. The
detailed statistics of these datasets are illustrated in Table 1.

DBLP is an academic network, which contains four types
of nodes: author (A), paper (P), conference (C) and term
(T). We extract node-relation triples based on the set of
relations {AP, PC, PT, APC, APT}. Yelp is a social network,
which contains five types of nodes: user (U), business (B),
reservation (R), service (S) and star level (L). We consider the
relations {BR, BS, BL, UB, BUB}. AMiner is also an academic
network, which contains four types of nodes, including
author (A), paper (P), conference (C) and reference (R). We
consider the relations {AP, PC, PR, APC, APR}. Amazon is a
product purchasing dataset, from which we extract a subset
that contains four types of nodes, including user (U), item
(I), brand (B) and tag (T). We consider the relations {UI,
IB, IT, UIB, UIT}. Notice that we can actually analyze all
the relations based on meta-paths. However, not all meta-
paths have a positive effect on embeddings [41], [42] and
the selection of meta-path is still an open question [43]. In
addition, our work focuses on the exploration of structural
characteristics of various relations in HINs, rather than the
selection of meta-paths. Hence, following previous works
[23], [24], we choose the popular and meaningful meta-paths
in this work.

4.2 Affiliation Relations and Interaction Relations
In order to explore the structural characteristics of relations,
we present mathematical analysis on the above datasets.

4.2.1 Data Observation
Since the degree of nodes can well reflect the structures of
networks [44], we first conduct some data observation with
respect to node degree distributions on four datasets. To
be specific, given a relation r, we have the node types at
both ends of the relation r, denoted as tu and tv . Then,
we calculate two distributions of node degree under the
relation r, denoted as Dis(tu|r) and Dis(tv|r). Here, we
plot the degree distribution of some typical relations on
four datasets due to similar trends of other relations. For
DBLP dataset, we show the degree distributions of nodes
with type A and type C with respect to APC in Figure 2(a),
and the degree distributions of nodes with type A and type
T with respect to APT in Figure 2(d). For Yelp and AMiner,
we show the degree distributions of nodes in Figure 2(b)(e)
and Figure 2(c)(f), respectively.

1. https://dblp.uni-trier.de
2. https://www.yelp.com/dataset/
3. https://www.aminer.cn/citation
4. http://snap.stanford.edu/data/index.html
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TABLE 1
Statistics of the four datasets. tu denotes the type of node u, 〈u, r, v〉 is a node-relation triple.

Datasets Nodes Number of Relations Number of Avg. Degree Avg. Degree Measures Relation
Nodes (tu ∼ tv) Relations of tu of tv D(r) S(r) Category

DBLP

Term (T)
Paper (P)

Author (A)
Conference (C)

8,811
14,376
14,475

20

PC
APC
AP
PT

APT

14,376
24,495
41,794
88,683
260,605

1.0
2.9
2.9
6.2
18.0

718.8
2089.7

2.9
10.7
29.6

718.8
720.6
1.0
1.7
1.6

0.05
0.085
0.0002
0.0007
0.002

AR
AR
IR
IR
IR

Yelp

User (U)
Service (S)

Business (B)
Star Level (L)

Reservation (R)

1,286
2

2,614
9
2

BR
BS
BL
UB

BUB

2,614
2,614
2,614
30,838
528,332

1.0
1.0
1.0
23.9
405.3

1307.0
1307.0
290.4
11.8
405.3

1307.0
1307.0
290.4
2.0
1.0

0.5
0.5
0.1

0.009
0.07

AR
AR
AR
IR
IR

AMiner

Paper (P)
Author (A)

Reference (R)
Conference (C)

127,623
164,472
147,251

101

PC
APC
AP
PR

APR

127,623
232,659
355,072
392,519

1,084,287

1.0
2.2
2.2
3.1
7.1

1263.6
3515.6

2.8
2.7
7.9

1263.6
1598.0

1.3
1.1
1.1

0.01
0.01

0.00002
0.00002
0.00004

AR
AR
IR
IR
IR

Amazon

Tag (T)
Item (I)
User (U)
Brand (B)

22,140
8,493
15,619

22

IB
UIB
UI
IT

UIT

8,493
16,789
23,493
39,528
117,618

1.0
1.5
1.5
4.6
7.8

386.1
1067.9

2.7
1.8
5.5

386.1
711.9
1.8
2.6
1.4

0.05
0.05

0.0002
0.0002
0.0003

AR
AR
IR
IR
IR
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(a) Degree distribution w.r.t. APC
on DBLP
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(b) Degree distribution w.r.t. BL on
Yelp
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(c) Degree distribution w.r.t. APC
on AMiner
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(d) Degree distribution w.r.t. UIB
on Amazon
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(e) Degree distribution w.r.t. APT
on DBLP
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(f) Degree distribution w.r.t. UB on
Yelp
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(g) Degree distribution w.r.t. APR
on AMiner
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(h) Degree distribution w.r.t. UIT
on Amazon

Fig. 2. Degree distribution of nodes connected via different relations on four datasets.

Observing the degree distribution of nodes connected
via different relations on the same dataset (i.e., compare
the up and down figures in Figure 2), we can find that
different relations have obviously distinct structural charac-
teristics. Taking the DBLP dataset as an example, we can
observe from Figure 2(a)(d) that the degree distributions
of nodes with respect to relation APC and APT are quite
different. In terms of the relation APC (i.e. Figure 2(a)),
we find that the degree distribution of nodes with type A
is significantly different from that of nodes with type C.
This fact implies that two types of nodes connected via
relation APC are extremely unbalanced, and such relation
means an inequivalent structure. On the other hand, the

two degree distributions of nodes with respect to relation
APT are almost identical, which shows that the similar and
compatible structural roles of two types of nodes connected
via relation APT. With the above analysis in terms of the
degree distribution of nodes, we find that different relations
in an HIN have quite distinctive structural characteristics,
which should be carefully analyzed and considered for HIN
embedding.

4.2.2 Quantitative Analysis

Data observation only gives us an intuitive understanding,
and more accurate and reasonable quantitative analysis is
a must. Hence, we define a degree-based measure D(r)
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(e) Node embeddings

(c)  RHINE

Fig. 3. The overall architecture of the proposed models. (a) An HIN can be abstracted as a network schema describing various relations in the
network. (b) Analysis of structural characteristics clearly divides heterogeneous relations into ARs and IRs in an HIN. (c) The proposed RHINE
individually handles ARs and IRs with two carefully designed models. (d) The proposed RHINE-M extends RHINE with relation-specific projection
matrices. (e) RHINE and RHINE-M derive node embeddings, respectively.

to explore the distinction of various relations in an HIN.
Specifically, we compare the average degrees of two types of
nodes connected with the relation r, via dividing the larger
one by the smaller one (D(r) ≥ 1). Formally, given a relation
r with nodes u and v (i.e., node relation triple 〈u, r, v〉), tu
and tv are the node types of u and v, we define D(r) as
follows:

D(r) =
max [d̄tu , d̄tv ]

min [d̄tu , d̄tv ]
, (1)

where d̄tu and d̄tv are the average degrees of nodes of the
types tu and tv respectively.

A large value of D(r) indicates quite inequivalent struc-
tural roles of two types of nodes connected via the rela-
tion r (one-centered-by-another), while a small value of
D(r) means compatible structural roles (peer-to-peer). In
other words, relations with a large value of D(r) show
much stronger affiliation relationships. Nodes connected
via such relations share much more similar properties [29].
While relations with a small value of D(r) implicate much
stronger interaction relationships. Therefore, we call the
two categories of relations as Affiliation Relations (ARs) and
Interaction Relations (IRs), respectively.

In order to better understand the structural difference
between various relations, we take the DBLP network as
an example. As shown in Table 1, for the relation PC with
D(PC) = 718.8, the average degree of nodes with type P
is 1.0 while that of nodes with type C is 718.8. It shows
that papers and conferences are structurally inequivalent.
Papers are centered by conferences. While D(AP ) = 1.1
indicates that authors and papers are compatible and peer-
to-peer in structure. This is consistent with our common
sense. Semantically, the relation PC means that ‘papers are
published in conferences’, indicating an affiliation relationship.
Differently, AP means that ‘authors write papers’, which ex-
plicitly describes an interaction relationship.

In fact, we can also define some other measures to
capture the structural difference. For example, we compare

the relations in terms of sparsity, which can be defined as:

S(r) =
Nr

Ntu ×Ntv

, (2)

where Nr represents the number of relation instances fol-
lowing r. Ntu and Ntv mean the number of nodes with type
tu and tv , respectively. The measure can also consistently
distinguish the relations into two categories: ARs and IRs.
The detailed statistics of all the relations in the four HINs
are shown in Table 1.

Evidently, Affiliation Relations and Interaction Relations
exhibit rather distinct characteristics: (1) ARs indicate one-
centered-by-another structures, where the average degrees
of the types of end nodes are extremely different. They
imply an affiliation relationship between nodes. (2) IRs
describe peer-to-peer structures, where the average degrees
of the types of end nodes are compatible. They suggest an
interaction relationship between nodes.

5 RELATION STRUCTURE-AWARE HIN EMBED-
DING

In this section, we present a novel Relation structure-aware
HIN Embedding model (RHINE), which individually han-
dles two categories of relations (ARs and IRs) with different
models in order to preserve their distinct structural charac-
teristics, as illustrated in Figure 3.

5.1 Basic Idea
Through our exploration with thorough mathematical anal-
ysis, we find that the heterogeneous relations can be typ-
ically divided into ARs and IRs with different structural
characteristics. In order to respect their distinct character-
istics, we need to specifically design different while appro-
priate models for the different categories of relations.

For ARs, we propose to take Euclidean distance as a
metric to measure the proximity of the connected nodes
in the low-dimensional space. There are two motivations
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behind this: (1) First of all, ARs show affiliation structures
between nodes, which indicate that nodes connected via
such relations share similar properties [29], [30]. Hence,
nodes connected via ARs could be directly close to each
other in the vector space, which is also consistent with
the optimization of Euclidean distance [45]. (2) Addition-
ally, one goal of HIN embedding is to preserve the high-
order proximity. Euclidean distance can ensure that both
first-order and second-order proximities are preserved as it
meets the condition of the triangle inequality [46].

Different from ARs, IRs indicate strong interaction re-
lationships between compatible nodes, which themselves
contain important structural information of two nodes.
Thus, we propose to explicitly model an IR as a translation
between nodes in the low-dimensional vector space. Addi-
tionally, the translation based distance is consistent with the
Euclidean distance in the mathematical form [47]. Therefore,
they can be smoothly combined in a unified and elegant
manner.

5.2 Different Models for ARs and IRs
In this subsection, we introduce two different models ex-
ploited in RHINE for ARs and IRs, as shown in Figure 3(c).

5.2.1 Euclidean Distance for Affiliation Relations
Nodes connected via ARs share similar properties [29],
therefore nodes could be directly close to each other in
the vector space. We take the Euclidean distance as the
proximity measure of two nodes connected by an AR.

Formally, given an affiliation node-relation triple
〈p, s, q〉 ∈ PAR where s ∈ RAR is the relation between p
and q with weight wpq , the distance between p and q in the
latent vector space is calculated as follows:

f(p, q) = wpq||xp − xq||22, (3)

in which xp ∈ Rd and xq ∈ Rd are the embedding vectors
of p and q, respectively. As f(p, q) quantifies the distance
between p and q in the low-dimensional vector space, we
aim to minimize f(p, q) to ensure that nodes connected by
an AR should be close to each other. Hence, we define the
margin-based loss [47] function as follows:

LEuAR =
∑

s∈RAR

∑
〈p,s,q〉∈PAR∑

〈p′,s,q′〉∈P ′
AR

max[0, γ + f(p, q)− f(p′, q′)],
(4)

where γ > 0 is a margin hyperparameter. PAR is the set of
positive affiliation node-relation triples, while P ′AR is the set
of negative affiliation node-relation triples.

5.2.2 Translation-based Distance for Interaction Relations
Interaction Relations demonstrate strong interactions be-
tween nodes with compatible structural roles. Thus, dif-
ferent from ARs, we explicitly model IRs as translations
between nodes.

Formally, given an interaction node-relation triple
〈u, r, v〉 where r ∈ RIR with weight wuv , we define the
score function as:

g(u, v) = wuv||xu + yr − xv||, (5)

Algorithm 1: The Optimization Model Algorithm

Input: An HIN G = (V,E, T, φ, ϕ), AR set RAR, IR set
RIR , interaction triple batch size
batch sizeIR, affiliation triple batch size
batch sizeAR, margin γ, embedding
dimension d, negative samples k, epochs I

Output: Node embedding matrix X ∈ R|V |×d and
relation embedding matrix Y|R|×d.

Initialize
X ∈ R|V |×d and Y|R|×d with uniform distribution;
Interaction node-relation triples PIR ← ∅;
Affiliation node-relation triples PAR ← ∅.
for each interaction relation r in RIR do

PIR.add(GenerateTriples(r))
end
for each affiliation relation s in RAR do

PAR.add(GenerateTriples(s))
end
X, Y = RHINE(PIR, PAR)
return X, Y ;

RHINE(PIR, PAR)
iter ← 0
repeat

Sample(PIR, batch sizeIR);
Compute gradients; Update node embeddings X

and relation embeddings Y;
Sample(PAR, batch sizeIR);
Compute gradients; Update node embeddings X;
iter ← iter + 1;

until iteration >= I ;
return X, Y ;

where xu and xv are the node embeddings of u and v
respectively, and yr is the embedding of the relation r. Intu-
itively, this score function penalizes deviation of (xu + yr)
from the vector xv .

For each interaction node-relation triple 〈u, r, v〉 ∈ PIR,
we define the margin-based loss function as follows:

LTrIR =
∑

r∈RIR

∑
〈u,r,v〉∈PIR∑

〈u′,r,v′〉∈P ′
IR

max[0, γ + g(u, v)− g(u′, v′)]
(6)

where PIR is the set of positive interaction node-relation
triples, while P ′IR is the set of negative interaction node-
relation triples.

5.3 A Unified Model for HIN Embedding
Finally, we smoothly combine the two models for different
categories of relations by minimizing the following loss
function:

L = LEuAR + LTrIR (7)

=
∑

s∈RAR

∑
〈p,s,q〉∈PAR

∑
〈p′,s,q′〉∈P ′

AR

max[0, γ + f(p, q)− f(p′, q′)]

+
∑

r∈RIR

∑
〈u,r,v〉∈PIR

∑
〈u′,r,v′〉∈P ′

IR

max[0, γ + g(u, v)− g(u′, v′)].
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5.3.1 Sampling Strategy
As shown in Table 1, the distributions of ARs and IRs
are quite unbalanced. Additionally, the proportion of re-
lations are unbalanced within ARs and IRs. Traditional
edge sampling may suffer from under-sampling for rela-
tions with a small amount or over-sampling for relations
with a large amount. To address the problems, we draw
positive samples according to their probability distributions.
As for negative samples, we follow previous work [47],
[48] to construct a set of negative node-relation triples
P ′(u,r,v) = {(u′, r, v)|u′ ∈ V } ∪ {(u, r, v′)|v′ ∈ V } for the
positive node-relation triple (u, r, v), where either the head
or tail is replaced by a random node, but not both at the
same time.

5.3.2 Optimization Algorithm
With the objective function (i.e., Eq. 7), we adopt stochastic
gradient descent algorithm for optimization. We optimize
Euclidean Distance based model and Translation-based dis-
tance model, step by step. To be specific, we first initialize
node embedding matrix X and relation embedding matrix
Y with uniform distribution. Then we sample positive and
negative interaction node-relation triples, and update X and
Y correspondingly. In the same way, we sample positive and
negative affiliation node-relation triples, and only update X.
Finally, the node embedding matrix X and relation embed-
ding matrix Y are returned. The detail of the optimization
algorithm is illustrated in Algorithm 1. The code of our
model is publicly available at website 1.

5.4 The Extended Model RHINE-M
The proposed RHINE takes into account the structural char-
acteristics of heterogeneous relations for HIN embedding,
which embeds various nodes and relations in a common
low-dimension latent space. However, nodes of the same
type connected via heterogeneous relations may have multi-
aspect semantics and each relation focus on one aspect. For
instance, an author (i.e., a node of type A) may indicate a
writer or participant, depending on whether he/she is in
the AP relation or APC relation. Hence, we need to project
node embeddings into a relation-specific representation
space. Following this idea, we extend the original RHINE
to RHINE-M with relation-specific projection matrices, as
shown in Figure 3(d).

In specific, we introduce a relation-specific projection
matrix Mr ∈ Rd×d to project nodes from the node rep-
resentation space to corresponding relation-specific spaces.
The projection matrix makes it much more effective to
measure proximities between nodes in the relation-specific
space, thus RHINE-M is capable of capturing structures and
semantics in an HIN at a finer-grained manner. Hence, we
redefine Eq. (3) as follows:

f(p, q) = wpq||Msxp −Msxq||22, (8)

where Ms is the relation s-specific projection matrix. With
the above definition, we can directly enable nodes connected
via ARs closer and push nodes without ARs farther in the
certain relation space.

1. https://github.com/rootlu/RHINE

Similarly, we leverage projection matrices to enhance the
embeddings learned with translation-based distance. Thus,
we reformulate Eq. (5) as follows:

g(u, v) = wuv||Mrxu + yr −Mrxv||, (9)

where Mr is also a projection matrix corresponding to the
relation r.

Notice that here we apply the relation-specific projection
matrix for both the Euclidean distance and the translation-
based distance, which not only enables node proximities to
be measured in the unified space, but also ensures that our
RHINE-M can be jointly trained. Assuming that we only
apply the transformation matrix to the Euclidean distance,
the node proximity measured in our model will not be in
the same space. That is, the node proximity based on the
Euclidean distance is measured in the node space, while the
node proximity of the translation-based distances is mea-
sured in the relation-specific space, which is inconsistent
with our motivation.

With the above definition, we can project nodes from
node space to relation-specific space, which makes nodes
that actually hold the relation close with each other, oth-
erwise far away. By replacing Eqs. (3) (5) with Eqs. (8) (9)
in Eq. (7), we initialize RHINE-M with node embeddings
learned using RHINE and optimize RHINE-M in the same
way as RHINE. At last, we can learn the node embeddings
for downstream tasks.

5.5 Discussion of RHINE and RHINE-M

By taking the structural characteristics of heterogeneous
relations into consideration, the proposed RHINE specifi-
cally tailors the Euclidean distance and translation-based
distance to respect the distinctive structural characteristics
of relations in HINs. With the Euclidean distance for ARs,
nodes connected via affiliation relations, i.e., one centered
by another, are directly pushed close in the latent low-
dimensional space. On the other hand, translation-based
distance bridges two compatible nodes with relation rep-
resentations. Jointly training the Euclidean distance and
translation-based distance ensures that our RHINE can cap-
ture the structural characteristics of heterogeneous relations.

RHINE assumes embeddings of nodes and relations
being in the same latent low-dimensional space. However,
nodes connected via heterogeneous relations may have mul-
tifaceted semantics and various relations focus on different
aspects. Hence, it is intuitive that heterogeneous nodes
and relations in HINs should be embedded in distinct
spaces. Inspired by TransH [49] and TransR [48], we in-
troduce a relation-specific projection matrix to map nodes
from the node space to the corresponding relation-specific
space. Different from TransR modeling knowledge graph
with translation mechanism, we not only apply relation-
specific matrix for translation-based distance but also the
Euclidean distance. As mentioned before, with the simulta-
neous projection and united training, RHINE-M ensures the
unified measure of two proximities between nodes (i.e., the
Euclidean distance and translation-based distance) in the
specific space.
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6 EXPERIMENTS

In this section, we conduct extensive experiments to demon-
strate the effectiveness of our model RHINE.

6.1 Datasets

As described in Subsection 4.1, we conduct experiments on
four datasets, including DBLP, Yelp, AMiner and Amazon.
The statistics of them are summarized in Table 1.

• DBLP is an academic dataset in computer science, con-
sisting of 14,456 authors, 14,375 papers, 8,811 terms and
20 conferences. In DBLP, 200 papers are labeled with their
research areas such as data mining. We conduct clustering
and classification on papers.

• Yelp is a social media dataset provided by Yelp Challenge.
We extract information related to restaurants of three
sub-categories: ”American (New) Food”, ”Fast Food” and
”Sushi Bars” [42], and construct a HIN, which includes
1,286 users, 2,614 businesses, 9 star levels, 2 service types
and 2 reservation types. We conduct clustering and classi-
fication on businesses.

• AMiner is also an academic network in computer science,
which is much larger than DBLP, including 164,472 au-
thors, 127,623 papers, 147,251 references and 101 confer-
ences. We take 10 domains related to computer science as
labels of papers, and perform clustering and classification
on papers.

• Amazon is a product purchasing dataset. We extract in-
formation and construct a HIN, which contains 15,619,
users, 8,493 items, 22,140 tags and 22 brands. We take 9
categories as labels of items (e.g., sports, electronics, etc),
and perform clustering and classification on items.

6.2 Baseline Methods

We compare our proposed model with seven state-of-the-
art network embedding methods, the first two of which
are designed for homogeneous networks and the rest are
capable of modeling heterogeneous information networks.
We use codes of the baseline methods provided by their
authors.

• DeepWalk [4] 2 performs a random walk on networks and
then learns low-dimensional node vectors via the skip-
gram model.

• LINE [5] 3 considers first-order and second-order proximi-
ties in networks. We denote the model that only uses first-
order or second-order proximity as LINE-1st or LINE-2nd,
respectively.

• PTE [17] 4 decomposes an HIN to a set of bipartite net-
works and then learns the low-dimensional representation
of the network.

• ESim [23] 5 takes a given set of meta-paths as input to
learn a low-dimensional vector space. For a fair compar-
ison, we use the same meta-paths with equal weights in
Esim and our model RHINE.

2. https://github.com/phanein/deepwalk
3. https://github.com/tangjianpku/LINE
4. https://github.com/mnqu/PTE
5. https://github.com/shangjingbo1226/ESim

• HIN2Vec [21] 6 learns the latent vectors of nodes and
meta-paths in an HIN by conducting multiple prediction
training tasks jointly.

• Metapath2vec [24] 7 leverages meta-path based random
walks and skip-gram model to perform node embedding.
We leverage the meta-paths APCPA, UBSBU and APCPA
in DBLP, Yelp and AMiner respectively, which perform
best in the evaluations.

• HERec [22] 8 designs a type constraint strategy to filter
the node sequence and utilizes Skip-gram to embed the
heterogeneous information network.

• JUST [50] 9 is a heterogeneous graph embedding tech-
nique using random walks with jump and stay strategies
to learn node embeddings in an more efficient manner.

6.2.1 Parameter Settings
For a fair comparison, we set the embedding dimension d =
100 and the size of negative samples k = 3 for all models.
For DeepWalk, HIN2Vec, metapath2vec and JUST based on
random walk, we set the number of walks per node w =
10, the walk length l = 100 and the window size τ = 5.
For our models RHINE and RHINE-M, margin γ is set to 1
and learning rate α = 0.005. We set the batch size and the
number of epochs to 128 and 400, respectively.

6.3 Node Clustering

We conduct node clustering experiments to illustrate how
the latent representations learned by embedding methods
can benefit the node clustering task in HINs [51], [52].

6.3.1 Experimental Setting
In this task, we learn the representations of nodes using
network embedding methods mentioned above. Based on
the learned node embeddings, we leverage the K-means
algorithm to cluster the nodes and evaluate the clustering
results in terms of normalized mutual information (NMI)
[53]. All clustering experiments are conducted 10 times. We
report the average performance in Table 2.

6.3.2 Results
As shown in Table 2, our model RHINE significantly out-
performs all the compared methods. (1) Compared with the
best competitors, the clustering performance of our model
RHINE improves by 18.79%, 6.15%, 7.84%, 6.12% on DBLP,
Yelp, AMiner and Amazon, respectively. It demonstrates
the effectiveness of our model RHINE by distinguishing
the various relations with different structural characteristics
in an HIN. In addition, it also validates that we utilize
appropriate models for different categories of relations. (2)
In all baseline methods, homogeneous network embedding
models achieve the lowest performance, because they ignore
the heterogeneity of relations and nodes. (3) RHINE and
RHINE-M significantly outperform existing HIN embed-
ding models (i.e., ESim, HIN2Vec, metapath2vec, HERec
and JUST) on all datasets. We believe the reason is that

6. https://github.com/csiesheep/hin2vec
7. https://ericdongyx.github.io/metapath2vec/m2v.html
8. https://github.com/librahu/HERec
9. https://github.com/eXascaleInfolab/JUST
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TABLE 2
Performance Evaluation of Node Clustering.

Methods DBLP Yelp AMiner Amazon

DeepWalk
LINE-1st
LINE-2nd

0.3884
0.2775
0.4675

0.3043
0.3103
0.3593

0.5427
0.3736
0.3862

0.7062
0.5997
0.6709

PTE
ESim

HIN2Vec
metapath2vec

HERec
JUST

0.3101
0.3449
0.4256
0.6065
0.5893
0.5634

0.3527
0.2214
0.3657
0.3507
0.3313
0.3516

0.4089
0.3409
0.3948
0.5586
0.5123
0.5021

0.6692
0.6403
0.6794
0.7145
0.6878
0.6894

RHINE
RHINE-M

0.7204
0.7323

0.3882
0.3934

0.6024
0.6152

0.7435
0.7582

our proposed methods with appropriate models for differ-
ent categories of relations can better capture the structural
and semantic information of HINs. Furthermore, RHINE-
M performs slightly better than RHINE due to the separate
relation-specific representation spaces.

6.4 Link Prediction
Link prediction aims to estimate the likelihood of the exis-
tence of a link between two nodes in a network. Formally,
given a node pair 〈u, v〉, we aim to predict whether there
exists a relation r between them in the network [54].

6.4.1 Experimental Setting
We model the link prediction problem as a binary classi-
fication problem that aims to predict whether a link ex-
ists. In this task, we conduct co-author (A-A) and author-
conference (A-C) link prediction for DBLP and AMiner. For
Yelp and Amazon, we predict user-business (U-B) and user-
item (U-I) links which indicate whether a user reviews a
business/item. We first randomly separate the original net-
work into training network and testing network, where the
training network contains 80% relations to be predicted (i.e.,
A-A, A-C, U-B and U-I) and the testing network contains the
rest. Then, we train the embedding vectors on the training
network and evaluate the prediction performance on the
testing network.

6.4.2 Results
The results of link prediction task are reported in Table 3
with respect to AUC and F1 score. It is clear that both
RHINE and RHINE-M perform better than all baseline
methods on four datasets. The reason behind the improve-
ment is that our models based on Euclidean distance mod-
eling relations can capture both the first-order and second-
order proximities. In addition, our models distinguishes
multiple types of relations into two categories in terms of
their structural characteristics, and thus can learn better
embeddings of nodes, which are beneficial for predicting
complex relationships between two nodes. Since RHINE-
M learn node embeddings in relation-specific spaces, it can
captures much more semantics and structural information.

6.5 Multi-Class Classification
Multi-class classification is a common task to evaluate the
performance of representation learning on networks. In this

task, we use the labeled data to train a classifier and evaluate
the performance on test set [55], [56].

6.5.1 Experimental Setting

In this task, we employ the same labeled data used in the
clustering task. After learning the node vectors, we train
a logistic classifier with 40%, 60% and 80% of the labeled
nodes and test with the remaining data. We use Micro-F1
and Macro-F1 score as the metrics for evaluation [24].

6.5.2 Results

We summarize the results of classification in Table 4. As
we can observe, (1) RHINE and RHINE-M achieve better
performance than all baseline methods on all datasets except
Aminer. It improves the performance of node classification
by about 4% on both DBLP and Yelp averagely. On Amazon
dataset, our models RHINE and RHINE-M continue to per-
form well in most cases. In terms of AMiner, our models per-
form slightly worse than ESim, HIN2vec and metapath2vec.
This may be caused by over-capturing the information of
relations PR and APR (R represents references). Since an
author may write a paper referring to various fields, these
relations may introduce some noise. (2) Although ESim,
HIN2Vec and JUST can model multiple types of relations
in HINs, they fail to perform well in most cases. Our model
RHINE and RHINE-M achieve good performance due to
the respect of distinct characteristics of various relations. (3)
The stable performances of our methods against different
training ratio indicates the robustness of our learned node
embeddings when served as features for node classification.

6.6 Node Recommendation

Node recommendation is a wide application of network
embedding, such as business or item recommendation in
social network (e.g., Yelp and Amazon). Note that the node
recommendation is different from link prediction in several
ways. Specifically, node recommendation can be regarded as
a ranking task while link prediction can be taken as a binary
classification. Additionally, node recommendation evaluates
the performance of network embedding methods from the
node view, which is totally different from link prediction in
terms of edges [8], [22].

6.6.1 Experimental Setting

In this task, we aim to recommend conferences to an author
in DBLP and AMiner networks (i.e., A-C), and we also
perform business and item recommendation for a user in
Yelp network and Amazon network (i.e., U-B and U-I). In
specific, we first divide the original data set into a training
set and test set, as in the link prediction task, and learn node
embeddings on training set. Then, for each node vi in test
set, we calculate the similarity between the embedding of
node vi and those of other nodes in the network, referring
as the ranking score between two nodes. After that, we sort
the ranking scores of node vi against other nodes and derive
the top-k nodes with the highest scores as candidates. At
last, we compare the ground truth with the candidates and
use Hit@k to evaluate the quality of recommendation.
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TABLE 3
Performance Evaluation of Link Prediction.

Methods DBLP (A-A) DBLP (A-C) Yelp (U-B) AMiner (A-A) AMiner (A-C) Amazon (U-I)
AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

DeepWalk 0.9131 0.8246 0.7634 0.7047 0.8476 0.6397 0.9122 0.8471 0.7701 0.7112 0.9045 0.8978
LINE-1st 0.8264 0.7233 0.5335 0.6436 0.5084 0.4379 0.6665 0.6274 0.7574 0.6983 0.8810 0.8619
LINE-2nd 0.7448 0.6741 0.8340 0.7396 0.7509 0.6809 0.5808 0.4682 0.7899 0.7177 0.8879 0.8793

PTE 0.8853 0.8331 0.8843 0.7720 0.8061 0.7043 0.8119 0.7319 0.8442 0.7587 0.9014 0.8991
ESim 0.9077 0.8129 0.7736 0.6795 0.6160 0.4051 0.8970 0.8245 0.8089 0.7392 0.8992 0.8875

HIN2Vec 0.9160 0.8475 0.8966 0.7892 0.8653 0.7709 0.9141 0.8566 0.8099 0.7282 0.9012 0.8981
metapath2vec 0.9153 0.8431 0.8987 0.8012 0.7818 0.5391 0.9111 0.8530 0.8902 0.8125 0.9388 0.9145

HERec 0.9178 0.8523 0.8874 0.8132 0.7923 0.5742 0.9058 0.8514 0.8834 0.8067 0.9295 0.9017
JUST 0.9018 0.8103 0.8174 0.7532 0.7711 0.5932 0.8823 0.8141 0.8045 0.7603 0.8955 0.8912

RHINE 0.9315 0.8664 0.9148 0.8478 0.8762 0.7912 0.9316 0.8664 0.9173 0.8262 0.9561 0.9207
RHINE-M 0.9421 0.8726 0.9218 0.8508 0.8796 0.7994 0.9460 0.8714 0.9207 0.8322 0.9634 0.9371

TABLE 4
Performance Evaluation of Multi-class Classification. Tr.Ra is the training ratio. Ma.-F1 and Mi.-F1 mean Macro-F1 and Micro-F1. D.W. L-1st,

L-2nd, H2Vec and mp2vec represent DeepWalk, LINE-1st, LINE-2nd, HIN2Vec and metapath2vec, respectively.

Datasets Metrics Tr.Ra D.W. L-1st L-2nd PTE ESim H2Vec mp2vec HERec JUST RHINE RHINE-M

DBLP

Ma.-F1
40% 0.6754 0.7237 0.7488 0.7723 0.8069 0.9073 0.9084 0.9005 0.8612 0.9261 0.9301
60% 0.7283 0.7311 0.7338 0.7768 0.8161 0.8600 0.8941 0.8963 0.8733 0.9257 0.9387
80% 0.7475 0.8091 0.7559 0.8852 0.8867 0.8631 0.8976 0.9101 0.8745 0.9344 0.9445

Mi.-F1
40% 0.6937 0.7250 0.7583 0.7629 0.8000 0.9083 0.9098 0.9000 0.8567 0.9125 0.9237
60% 0.7125 0.7500 0.7375 0.7875 0.8125 0.8625 0.8950 0.8915 0.8654 0.9051 0.9254
80% 0.7500 0.8250 0.7500 0.8750 0.8750 0.8500 0.9000 0.9021 0.8705 0.9250 0.9304

Yelp

Ma.-F1
40% 0.6708 0.4607 0.5393 0.5397 0.6799 0.6104 0.5613 0.5509 0.5583 0.6909 0.6998
60% 0.6717 0.4681 0.5299 0.5407 0.6830 0.6032 0.5478 0.5557 0.5632 0.7021 0.7110
80% 0.6723 0.4872 0.5304 0.5389 0.6836 0.6075 0.5337 0.5517 0.5701 0.7132 0.7205

Mi.-F1
40% 0.6732 0.6680 0.6637 0.7297 0.7247 0.7342 0.7074 0.7265 0.6002 0.7476 0.7523
60% 0.6893 0.6537 0.6857 0.7323 0.7358 0.7189 0.7171 0.7304 0.6201 0.7562 0.7598
80% 0.7012 0.6639 0.7377 0.7342 0.7399 0.7361 0.7208 0.7323 0.6295 0.7572 0.7634

AMiner

Ma.-F1
40% 0.9421 0.9473 0.9392 0.9649 0.9898 0.9955 0.9895 0.9901 0.9535 0.9798 0.9832
60% 0.9423 0.9456 0.9467 0.9736 0.9904 0.9961 0.9912 0.9942 0.9684 09845 0.9893
80% 0.9386 0.9494 0.9468 0.9791 0.9910 0.9962 0.9934 0.9956 0.9745 0.9884 0.9923

Mi.-F1
40% 0.9525 0.9471 0.9397 0.9754 0.9936 0.9958 0.9901 0.9874 0.9684 0.9804 0.9848
60% 0.9533 0.9527 0.9484 0.9813 0.9943 0.9962 0.9916 0.9953 0.9734 0.9845 0.9897
80% 0.9512 0.9569 0.9491 0.9874 0.9948 0.9965 0.9936 0.9948 0.9844 0.9807 0.9912

Amazon

Ma.-F1
40% 0.9618 0.9596 0.9636 0.9657 0.9713 0.9875 0.9814 0.9822 0.9732 0.9958 0.9969
60% 0.9645 0.9601 0.9623 0.9703 0.9759 0.9896 0.9871 0.9814 0.9766 0.9963 0.9972
80% 0.9703 0.9652 0.9679 0.9721 0.9832 0.9982 0.9898 0.9853 0.9801 0.9967 0.9978

Mi.-F1
40% 0.9634 0.9651 0.9658 0.9634 0.9689 0.9759 0.9866 0.9845 0.9699 0.9864 0.9870
60% 0.9691 0.9672 0.9649 0.9678 0.9702 0.9819 0.9856 0.9878 0.9732 0.9961 0.9892
80% 0.9734 0.9721 0.9714 0.9701 0.9734 0.9974 0.9872 0.9882 0.9764 0.9931 0.9939

6.6.2 Results
Figure 4 reports the results of node recommendation on four
datasets. We can observe that our proposed RHINE and
RHINE-M continuously perform better than the compared
methods in terms of Hit@k. We believe that the significant
improvement is due to that our models preserve the higher
order proximities in an HIN. What’s more, the proposed
RHINE and RHINE-M take the distinctive structural charac-
teristics and semantic information into consideration, which
effectively guarantees the embedding accuracy of various
types of nodes connected via heterogeneous relations.

6.7 Comparison of Variant Models
In order to verify the effectiveness of distinguishing the
structural characteristics of relations, we design three vari-
ant models based on RHINE as follows:

• RHINEEu which does not distinguish multiple relations
in HINs, and only leverages Euclidean distance to embed
heterogeneous information networks.

• RHINETr models all nodes and relations in HINs with
translation-based distance, regardless of the different cat-
egories of relations, which is just like TransE [47].

• RHINERe leverages Euclidean distance to model Interac-
tion Relations while translation-based distance for Affilia-
tion Relations.

We set the parameters of variant models as the same as
those of our proposed model RHINE. The results of the three
tasks are shown in Figure 5. It is evident that our model
outperforms RHINEEu and RHINETr, indicating that it
is beneficial for learning the representations of nodes by
distinguishing the heterogeneous relations. Besides, we find
that RHINETr achieves better performance than RHINEEu.
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Fig. 4. Performance Evaluation of Node Recommendation.
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Fig. 6. Visualization of Node Embeddings.

This is due to the fact that there are generally more peer-
to-peer relationships (i.e., IRs) in the networks. Directly
making all nodes close to each other leads to much loss of
information. Compared with the reverse model RHINERe,
RHINE also achieves better performance on all tasks, which

implies that two models for ARs and IRs are well designed
to capture their distinctive characteristics.
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6.8 Visualization
In order to understand the representation of the networks
intuitively, we visualize the vectors of nodes (.e., papers)
in DBLP. To be specific, we utilize t-SNE [57] to layout a
vector in a 2-dimensional space, and report the results of
DeepWalk, metapath2vec and our RHINE in Figure 6.

It is evident that our model RHINE can separate nodes
in different datasets clearly with obvious borders. As we can
see, papers in the latent space are geographically clustered
into four groups, which is consistent with four domains
of papers. Moreover, each group is well separated from
others, which demonstrates that our model learns superior
node embeddings by distinguishing the heterogeneous re-
lations in HINs. In contrast, DeepWalk and LINE barely
split papers into different groups. Since ESim, HIN2Vec and
Metapath2vec are designed for heterogeneous information
network, they perform better than DeepWalk and LINE, but
the boundary is blurry.

6.9 Parameter Analysis
In order to evaluate the influence of different parameters in
our model, we investigate the sensitivity of them on node
clustering task. Specifically, we investigate the sensitivity of
two parameters, including the number of negative samples
and the number of embedding dimension. We vary the
number of embedding dimensions as 10, 50, 100, 200 and
300, and the number of negative samples as 1, 2, 3, 5 and 7.
The results of node clustering are reported in Figure 7.

As shown in Figure 7(a), the performance of our model
improves with the increase of the number of embedding
dimensions, and then tends to be stable once the dimension
of the embeddings reaches around 100. It is evident that our
model are capable to capture rich information of various
relations in HINs using a low-dimensional representation.
Similarly, Figure 7(b) shows that as the number of negative
examples increases, the performance of our model first
grows and then becomes stable when the number reaches
3. Overall, the change trend is smooth, indicating that the
proposed model is not very sensitive to the two parameters.

7 CONCLUSION

In this paper, we make the first attempt to explore and
distinguish the structural characteristics of relations for
HIN embedding. We present two structure-related measures
which can consistently distinguish heterogeneous relations
into two categories: Affiliation Relations and Interaction
Relations. To respect the distinctive structures of relations,

we propose a novel relation structure-aware HIN embed-
ding model (RHINE), which individually handles these two
categories of relations. Considering the heterogeneity of
nodes and relations, we further introduce relation-specific
projection matrices to learn node and relation embeddings
in separate spaces (i.e., RHINE-M), rather than a common
space. Experimental results demonstrate that RHINE and
RHINE-M outperform state-of-the-art baselines in various
tasks. In the future, we will explore other possible measures
to differentiate relations so that we can better capture the
structural information of HINs. In addition, we will exploit
deep neural network based models for different relations.
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