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Abstract

Knowledge graphs typically undergo open-ended growth of
new relations. This cannot be well handled by relation ex-
traction that focuses on pre-defined relations with sufficient
training data. To address new relations with few-shot in-
stances, we propose a novel bootstrapping approach, Neu-
ral Snowball, to learn new relations by transferring seman-
tic knowledge about existing relations. More specifically, we
use Relational Siamese Networks (RSN) to learn the met-
ric of relational similarities between instances based on ex-
isting relations and their labeled data. Afterwards, given a
new relation and its few-shot instances, we use RSN to ac-
cumulate reliable instances from unlabeled corpora; these in-
stances are used to train a relation classifier, which can fur-
ther identify new facts of the new relation. The process is
conducted iteratively like a snowball. Experiments show that
our model can gather high-quality instances for better few-
shot relation learning and achieves significant improvement
compared to baselines. Codes and datasets are released on
https://github.com/thunlp/Neural-Snowball.

Introduction

Knowledge graphs (KGs) such as WordNet (Miller 1995),
Freebase (Bollacker et al. 2008) and Wikidata (Vrandečić
and Krötzsch 2014) have multiple applications in informa-
tion retrieval, question answering and recommender sys-
tems. Such KGs consist of relation facts with triplet format
(eh, r, et) representing a relation r between entities eh and
et. Though existing KGs have acquired large amounts of
facts, they still have huge growth space compared to real-
world data. To enrich KGs, relation extraction (RE) is inves-
tigated to extract relation facts from plain text.

One challenge of RE is that novel relations emerge rapidly
in KGs, yet most RE models cannot handle those new rela-
tions well since they rely on RE datasets with only a lim-
ited number of predefined relations. One of the largest RE
dataset, FewRel (Han et al. 2018), only has 100 relations,
yet there were already 920 relations in Wikidata in 2014
(Vrandečić and Krötzsch 2014), let alone it contains nearly
6,000 relations now.
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Figure 1: An illustration of how Neural Snowball utilizes
three different kinds of data to learn new relations.

To extract relation facts of novel relations, many exist-
ing approaches have studied bootstrapping RE, which ex-
tracts triplets for a new relation with few seed relation facts.
Brin (1998) proposes to extract author-book facts with a
small set of (author, book) pairs as input. It iteratively finds
mentions of seed pairs from the web, and then extracts sen-
tence patterns from those mentions and finds new pairs by
pattern matching. Agichtein and Gravano (2000) further im-
prove this method and name it as Snowball, for that relation
facts and their mentions accumulate like a snowball.

However, most existing bootstrapping models confine
themselves to only utilize seed relation facts and fail to take
advantage of available large-scale labeled datasets, which
have been proved to be a valuable resource. Though data
of existing relations might have a very different distribution
with new relations, it still can be used to train a deep learn-
ing model that extracts abstract features at the higher lev-
els of the representation, suiting both historical and unseen
relations (Bengio 2012). This technique, named as transfer
learning, has been widely adopted in image few-shot tasks.
Previous work has investigated transferring metrics (Koch,
Zemel, and Salakhutdinov 2015) to measure similarities be-
tween objects and meta-information (Ravi and Larochelle
2017) to fast adapt to new tasks.
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Based on bootstrapping and transfer learning, we present
Neural Snowball for learning to classify new relations with
insufficient training data. Given seed instances with relation
facts of a new relation, Neural Snowball finds reliable men-
tions of these facts. Then they are used to train a relation
classifier, which aims at discovering reliable instances with
new relation facts. These instances then serve as the inputs
of the new iteration.

We also apply Relational Siamese Networks (RSN) to
select high-confidence new instances. Siamese networks
(Bromley et al. 1994) usually contain dual encoders and
measure similarities between two objects by learning a met-
ric. Wu et al. (2019) designed RSN, utilizing neural siamese
networks to determine whether two sentences express the
same relation. In conventional bootstrapping systems, pat-
terns are used to select new instances. Since neural networks
bring better generalization than patterns, we use RSN to se-
lect high-confidence new instances by comparing candidates
with existing ones.

Experiment results show that Neural Snowball achieves
significant improvements on learning novel relations in few-
shot scenarios. Further experiments demonstrate the effi-
ciency of Relational Siamese Networks and the snowball
process, proving that they have the ability to select high-
quality instances and extract new relation facts.

To conclude, our main contributions are threefold:

• We propose Neural Snowball, a novel approach to bet-
ter train neural relation classifiers with only a handful of
instances for new relations, by iteratively accumulating
novel instances and facts from unlabeled data with prior
knowledge of existing relations.

• For better selecting new supporting instances for new
relations, we investigate Relational Siamese Networks
(RSN) to measure relational similarities between candi-
date instances and existing ones.

• Experiment results and further analysis show the effi-
ciency and robustness of our models.

Related Work

Supervised RE Early work for fully-supervised RE uses
kernel methods (Zelenko, Aone, and Richardella 2003) and
embedding methods (Gormley, Yu, and Dredze 2015) to
leverage syntactic information to predict relations. Recently,
neural models like RNN and CNN have been proposed to
extract better features from word sequences (Socher et al.
2012; Zeng et al. 2014). Besides, dependency parsing trees
have also been proved to be efficient in RE (Xu et al. 2015;
Liu et al. 2015).

Distant Supervision Supervised RE methods rely on
hand-labeled corpora, which usually cover only a limited
number of relations and instances. Mintz et al. (2009) pro-
pose distant supervision to automatically generate relation
labels by aligning entities between corpora and KGs. To al-
leviate wrong labeling, Riedel, Yao, and McCallum (2010)
and Hoffmann et al. (2011) model distant supervision as a
multi-instance multi-label task.

RE for New Relations Bootstrapping RE can fast adapt
to new relations with a small set of seed facts or sentences.
Brin (1998) first proposes to extract relation facts by iterative
pattern expansion from web. Agichtein and Gravano (2000)
propose Snowball to improve such iterative mechanism with
better pattern extraction and evaluation methods. Based on
that, Zhu et al. (2009) adopt statistical methods for bet-
ter pattern selection. Batista, Martins, and Silva (2015) use
word embeddings to further improve Snowball. Many sim-
ilar bootstrapping ideas have been widely explored for RE
(Pantel and Pennacchiotti 2006; Rozenfeld and Feldman
2008; Nakashole, Theobald, and Weikum 2011).

Compared to distant supervision, bootstrapping expands
relation facts iteratively, leading to higher precision. More-
over, distant supervision is still limited to predefined re-
lations, yet bootstrapping is scalable for open-ended re-
lation growth. Many other semi-supervised methods can
also be adopted for RE (Rosenberg, Hebert, and Schneider-
man 2005; French, Mackiewicz, and Fisher 2017; Lin et al.
2019), yet they still require sufficient annotations and mainly
aim at classifying predefined relations rather than discover-
ing new ones. Thus, we do not further discuss these methods.

Inspired by the fact that people can grasp new knowl-
edge with few samples, few-shot learning to solve data
deficiency appeals to researchers. The key point of few-
shot learning is to transfer task-agnostic information from
existing data to new tasks (Bengio 2012). Vinyals et
al. (2016), Snell, Swersky, and Zemel (2017) and Zhang et
al. (2018) explore learning a distance distribution to clas-
sify new classes in a nearest-neighbour-style strategy. Ravi
and Larochelle (2017), Munkhdalai and Yu (2017) and Finn,
Abbeel, and Levine (2017) propose meta-learning to un-
derstand how to fast optimize models with few samples.
Qiao et al. (2018) propose learning to predict parameters for
classifiers of new tasks. Existing few-shot learning models
mainly focus on vision tasks. For exploiting it on text, Han et
al. (2018) release FewRel, a large-scale few-shot RE dataset.

OpenRE Both bootstrapping and few-shot learning han-
dle new tasks with minimal human participation. Open re-
lation extraction (OpenRE), on the other hand, aims at ex-
tracting relations from text without predefined types. One
kind of OpenRE systems focuses on finding relation men-
tions (Banko et al. 2007), while others exploit to form re-
lation types automatically by clustering semantic patterns
(Shinyama and Sekine 2006; Yao et al. 2011; ElSahar et al.
2017). It is a different and challengeable view on RE com-
pared to conventional methods and remains to be explored.

Siamese Networks Siamese networks measure similari-
ties between two objects with dual encoders and trainable
distance functions (Bromley et al. 1994). They are exploited
for one/few-shot learning (Koch, Zemel, and Salakhutdinov
2015) and measuring text similarities (Mueller and Thya-
garajan 2016). Wu et al. (2019) propose Relational Siamese
Networks (RSN) to learn a relational metric between given
instances. Here we use RSN to select high-confidence in-
stances by comparing candidates with existing ones.
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Figure 2: The framework of Neural Snowball with examples of the relation founder. Candidate set 1 (C1) contains all instances
that have the same entity pairs as extracted. Candidate set 2 (C2) consists of high-confidence instances selected by the relation
classifier. Instances in both candidate sets are filtered by RSN and then added to the selected instance set Sr of the relation r.

Methodology

In this section, we will introduce Neural Snowball, starting
with notations and definitions.

Terminology and Problem Definition

Given an instance x containing a word sequence
{w1, w2, ..., wl} with tagged entities eh and et, RE
aims at predicting the relation label r between eh and et.
Relation mentions are instances expressing given relations.
Entity pair mentions are instances with given entity pairs.
Relation facts are triplets (eh, r, et) indicating there is a
relation r between eh and et. xr indicates x is a relation
mention of the relation r.

Since we emphasize learning to extract a new relation in
a real-world scenario, we adopt a different problem setting
from existing supervised RE or few-shot RE. Given a large-
scale labeled dataset for existing relations and a small set of
instances for the new relation, our goal is to extract instances
of the new relation from a query set containing instances of
existing relations, the new relation and unseen relations.

Inputs of this task contain a large-scale labeled corpus
SN = {xri

j |ri ∈ RN} where RN is a predefined relation
set, an unlabeled corpus T and a seed set Sr with k instances
for the new relation r. We firstly pre-train the neural mod-
ules on SN . Then for the new relation r, we train a binary
classifier g. To be more specific, given an instance x, g(x)
outputs the probability that x expresses the relation r. Dur-
ing the test phase, the classifier g performs classification on
a query setQ containing instances expressing predefined re-
lations in RN , instances with the new relation r and some
instances of other unseen relations, which is a simulation of
the real-world scenario.

Neural Snowball Process

Neural Snowball gathers reliable instances for a new rela-
tion r iteratively with a small seed set Sr as the input. In
each iteration, Sr will be extended with selected unlabeled

instances, and the new Sr becomes the input of the next iter-
ation. Figure 2 illustrates the framework of Neural Snowball.
When a new relation arrives with its initial instances, Neural
Snowball shall process as follows,

Input The seed instance set Sr for the relation r.

Phase 1 Structure the entity pair set,

E = {(eh, et)|Ent(x) = (eh, et), x ∈ Sr}, (1)

where Ent(x) means the entity pair of the instance x. Then,
we get the candidate set C1 from the corpus T with

C1 = {x|Ent(x) ∈ E , x ∈ T }. (2)

Since those instances in C1 share same entity pairs with
those in Sr, we believe that they are likely to express the
relation r. Yet to further alleviate false positive instances,
for each x in C1, we pair it with all instances x′ ∈ Sr that
share the same entity pair with x, and use the Relational
Siamese Network (RSN) to get similarity scores. Averaging
those scores we will get a confidence score of x, noted as
score1(x).

Then, we sort instances in C1 in decreasing order of con-
fidence scores and pick the top-K1 instances as new ones
added to Sr. Since there exists the circumstance that less
than K1 instances really belong to the relation, we add an
external condition that instances with confidence scores less
than a threshold α will be excluded.

After all these steps, we have acquired new instances for
the relation r with high confidence. With the expanded in-
stance set Sr, we can fine-tune the relation classifier g as
described later, for the classifier is needed in the next step.

Phase 2 In the last phase, we expand Sr, yet the entity
pair set remains the same. So in this phase, our goal is to
discover instances with new entity pairs for the relation r.
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We construct the candidate set for this phase by using the
relation classifier g,

C2 = {x|g(x) > θ, x ∈ T }, (3)

where θ is a confidence threshold. Then each candidate in-
stance x is paired with each x′ in Sr as input of RSN, and
the confidence score score2(x) is the mean of all the sim-
ilairy scores of those pairs. Instances having top-K2 scores
and with score2 larger than threshold β are added to Sr.

After one iteration of the process, we go back to phase 1,
and another round starts. As the system runs, the instance
set Sr grows bigger and the performance of the classifier in-
creases until it reaches the peak. Best choices of the number
of iterations and parameters mentioned above are discussed
in the experiment section.

Neural Modules

Neural Snowball contains two key components: (1) the Re-
lational Siamese Network (RSN), which aims at select-
ing high-quality instances from unlabeled data by measuring
similarities between candidate instances and existing ones,
and (2) the Relation Classifier, which classifies whether an
instance belongs to the new relation.

Relational Siamese Network (RSN) s(x, y) It takes two
instances as input and outputs a value between 0 and 1 in-
dicating the probability that those two instances share the
same relation type. Figure 3 shows the structure of our pro-
posed Relational Siamese Network, which consists of two
encoders fs sharing parameters and a distant function. With
instances as input, those encoders output the representation
vectors for them. Then we compute the similarity score be-
tween the two instances with the following formula,

s(x, y) = σ
(
wT

s (fs(x)− fs(y))
2 + bs

)
, (4)

where the square notation refers to squaring each dimen-
sion of the vector instead of the dot production of the vector,
and σ(·) refers to sigmoid function. This distance function
can be considered as a weighted L2 distance with trainable
weights ws and bias bs. A higher score indicates a higher
possibility that the two sentences express the same relation
(ws will be negative to make this possible).

Relation Classifier g(x) The classifier is composed of a
neural encoder f , which transfers the raw instance x into a
real-valued vector, and a linear layer with parameters w and
b to get the probability that the input instance belongs to a
relation r. It can be described by the following expression,

g(x) = σ
(
wT f(x) + b

)
, (5)

where g(x) is the output probability and σ(·) is sigmoid
function to constrain the output between 0 and 1. Note that
it is a binary classifier so g(x) is just one real value, instead
of a vector in the N-way classification scenario.

The reason to set it as a binary classifier instead of train-
ing an N-way classifier and utilizing softmax to constrain the
outputs is that real-world relation extraction systems need to

Encoder

Instance A
Lady Gaga was born in 1986. 

Instance B
Bradley Cooper, born in 1975, is …

EncoderSharing Parameters

Similarity Score 0.995

Distance Function

Figure 3: The architecture of Relational Siamese Network
(RSN). The encoders produce the representations of in-
stances, and then RSN measures the similarity between them
with certain distance function.

deal with negative samples, which express unknown rela-
tions and occupy a large proportion in corpora. These nega-
tive representations are not clusterable and considering them
as “one class” is inappropriate. Another reason is that by us-
ing binary classifiers, we can handle the emergence of new
relations by adding new classifiers, while the N-way classi-
fier has to be retrained and data unbalance may lead to worse
results for both new and existing relations.

With N binary classifiers, we can do N-way classification
by comparing the output of each classifier, and the one with
the highest probability wins. When no output exceeds a cer-
tain threshold, the sentence will be regarded as “negative”,
which means it does not express any of the existing relations.

Pre-training and Fine-tuning To measure instance simi-
larities on a new relation and to fast adapt the classifier to a
new task, we need to pre-train the two neural modules. With
the existing labeled dataset SN , we can perform a supervised
N-way classification to pre-train the hidden representations
of the classifier. As for RSN, we randomly sample instance
pairs with the same or different relations from SN and train
the model with a cross entropy loss.

When given a new relation r with its Sr, the parameters
for the whole RSN and the encoder of the relation classifier
are fixed, since they have already learned to extract generic
features during pre-training. Further fine-tuning those parts
with a small number of data might bring noise and bias to
the distribution of the parameters.

Then we optimize the linear layer parameters w and b in
the classifier by sampling minibatches from Sr as positive
samples and from SN as negative samples. Denoting the
positive batch as Sb and the negative batch as Tb, the loss
is as follows,

LSb,Tb
(gw,b) =

∑

x∈Sb

log gw,b(x)

+ μ
∑

x∈Tb

log(1− gw,b(x))
(6)
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where μ is a coefficient of the negative sampling loss.
Though for each batch we can sample positive and nega-
tive set with the same size, the actual numbers of positive
instances and negative instances for the new relation differ
a lot (a few versus thousands). So it is necessary to give the
negative part of loss a smaller weight.

With the sampling strategy and loss function, we can do
gradient-based optimization on parameters w and b. Here
we choose Adam (Kingma and Ba 2015) as our optimizer.
The hyperparameters include the number of training epochs
e, batch size bs, learning rate λ and coefficient of negative
sampling loss μ. Algorithm 1 describes the process.

The fine-tuning process is used as one of our baselines.
We also adopt this algorithm in each step of Neural Snow-
ball after gathering new instances in Sr. Though it is a sim-
ple way to acquire w and b, it is better than metric-based
few-shot algorithms for that it is more adaptive to new rela-
tions while metric-based models usually fix all the parame-
ters during few-shot, and it is more scalable to a large num-
ber of training instances. Negative sampling also enables the
model to improve the precision of extracting new relation.

Neural Encoders

As mentioned above, encoders are parts of our RSN and
classifiers and aim at extracting abstract and generic fea-
tures from raw sentences and tagged entities. In this paper,
we adopt two encoders: CNN (Nguyen and Grishman 2015)
and BERT (Devlin et al. 2019).

CNN We follow the model structure in Nguyen and Gr-
ishman (2015) for our CNN encoder. The model takes word
embeddings and position embeddings (Zeng et al. 2014) as
input. The embedding sequence is then fed into a one-dim
convolutional neural network to extract features. Then those
features are max-pooled to get one real-valued vector as the
instance representation.

BERT Devlin et al. (2019) propose a novel language
model named BERT, which stands for Bidirectional Encoder
Representations from Transformers, and has obtained new
state-of-the-arts on several NLP tasks, far beyond existing
CNN or RNN models. BERT takes tokens of the sentence as
input and after several attention layers outputs hidden fea-
tures for each token. To fit the RE task, we add special marks
at the beginning of the sequence and before and after the en-
tities. Note that marks at the beginning, around the head en-
tities and tail entities are different. Then, we take the hidden
features of the first token as the sentence representation.

Experiments

In this section, we will show that the relation classifiers
trained with our Neural Snowball mechanism achieve signif-
icant improvements compared to baselines in our few-shot
relation learning settings. We also carry out two quantitative
evaluations to further prove the effectiveness of Relational
Siamese Networks and the snowball process.

Algorithm 1: Fine-tuning the Classifier
Input: New instance set Sr, historical relation dataset

SN
Result: Optimized w and b

1 Randomly initialize w and b
2 for i← 1 to e do
3 // Get a sequence of minibatches from Sr
4 Sbatch seq ←batch seq(Sr,bs)
5 for Sb ∈ Sbatch seq do
6 // Sample the negative batch
7 Tb ←sample(SN ,bs)
8 Update w and b w.r.t. LSb,Tb

(gw,b)
9 with learning rate λ

10 end

11 end

Datasets and Evaluation Settings

Our experiment setting requires a dataset with precise hu-
man annotations, large amount of data and also it needs to
be easy to perform distant supervision on. For now the only
qualified dataset is FewRel (Han et al. 2018). It contains 100
relations and 70,000 instances from Wikipedia. The dataset
is divided into three subsets: training set (64 relations), val-
idation set (16 relations) and test set (20 relations). We also
dump an unlabeled corpus from Wikipedia with tagged en-
tities, including 899,996 instances and 464,218 entity pairs,
which is used for the snowball process.

Our main experiment follows the setting in previous sec-
tions. First we further split the training set into training set A
and B. We use the training set A as SN , and for each step of
evaluation, we sample one relation as the new relation r and
k instances of it as Sr from val/test set, and sample a query
setQ from both training set B and val/test set. Then the mod-
els classify all the query instances in a binary manner, judg-
ing whether each instance mentions the new relation r. Note
that the sampled query set includes N relations with suf-
ficient training data, one relation r with few instances and
many other unseen relations. It is a very challengeable set-
ting and closer to the real-world applications compared to
N-way K-shot few-shot (sampling N classes and classifying
inside the N classes), since corpora in the real world are not
limited to certain relation numbers or types.

Parameter Settings

We tune our hyperparameters on the validation set. For pa-
rameters of the encoders, we follow (Han et al. 2018) for
CNN and (Devlin et al. 2019) for BERT. For the fine-tuning,
after grid searching, we adopt training epochs e = 50, batch
size bs = 10, learning rate λ = 0.05 and negative loss coef-
ficient μ = 0.2. BERT fine-tuning shares the same parame-
ters except for λ = 0.01 and μ = 0.5.

For the Neural Snowball process, we also determine our
parameters by grid searching. We set K1 and K2, the num-
bers of added instances for each stage, as 5, and the thresh-
olds of RSN for each stage, α and β, as 0.5. We adopt 0.9
for the classifier threshold θ.
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Model
5 Seed Instances 10 Seed Instances 15 Seed Instances

P R F1 P R F1 P R F1

BREDS 33.71 11.89 17.58 28.29 17.02 21.25 25.24 17.96 20.99

Fine-tuning (CNN) 46.90 9.08 15.22 47.58 38.36 42.48 74.70 48.03 58.46

Relational Siamese Network (CNN) 45.00 31.37 36.96 46.42 30.68 36.94 49.32 30.46 37.66

Distant Supervision (CNN) 44.99 31.06 36.75 42.48 48.64 45.35 43.70 54.76 48.60

Neural Snowball (CNN) 48.07 36.21 41.30 47.28 51.49 49.30 68.25 58.90 63.23

Fine-tuning (BERT) 50.85 16.66 25.10 59.87 55.19 57.43 81.60 58.92 68.43

Relational Siamese Network (BERT) 39.07 51.39 44.47 42.42 54.93 47.87 44.10 52.73 48.03

Distant Supervision (BERT) 38.06 51.18 43.66 38.45 76.12 51.09 35.48 80.33 49.22

Neural Snowball (BERT) 56.87 40.43 47.26 60.50 62.20 61.34 78.13 66.87 72.06

Table 1: Experiment results on our few-shot relation learning settings with different size of seed sets. Here P refers to precision,
R refers to recall and F1 refers to F1-measure score.

All the models evaluated in our experiments output a
probability of being the mention of the new relation for each
query instance, and to get the predicting results we need to
set a confidence threshold. For fine-tuning and Neural Snow-
ball we set the threshold as 0.5, and 0.7 for the Relational
Siamese Network.

Few-Shot Relation Learning

Table 1 shows the experiment results on our few-shot re-
lation learning tasks. We evaluate five model architectures:
BREDS (Batista, Martins, and Silva 2015) is an advanced
version of the original snowball (Agichtein and Gravano
2000), which uses word embeddings for pattern selection;
Fine-tuning stands for directly using Algorithm 1 with
few-shot instances to train the new classifier; Relational
Siamese Network (RSN) refers to computing similarity
scores between the query instance and each instance in Sr,
and averaging them as the probability of the query one ex-
pressing the new relation; Distant Supervision refers to tak-
ing all instances sharing entity pairs with given seeds into the
training set and using Algorithm 1; Neural Snowball is our
proposed method. We do not evaluate other semi-supervised
and few-shot RE models for the reason that they do not suit
our few-shot new relation learning settings.

From Table 1 we can identify that (1) our Neural Snowball
achieves the best results in both settings and with both en-
coders. (2) While fine-tuning, distant supervision and Neu-
ral Snowball improve with the increase of seed numbers,
BREDS and RSN have little promotion.

By further comparison between Neural Snowball and
other baselines, we notice that our model largely promotes
the recall values while maintaining the high precision val-
ues. It indicates that Neural Snowball not only gathers new
training instances with high quality, but also successfully ex-
tracts new relation facts and patterns to widen the coverage
of instances for the new relation.

Relation Set P@5 P@10 P@20 P@50

Train 83.60 80.66 76.03 61.98
Test 82.15 78.64 72.57 55.10

Table 2: Precisions at top-N instances scored by RSN (CNN)
in the 5-seed setting. “Train” and “Test” represent results on
relations in the training and test sets.

Analysis on Relational Siamese Network

To examine the quality of instances selected by RSN, we
randomly sample one relation and 5 instances of it and use
the rest data as query instances. We use the method men-
tioned before to calculate a score for each query instance,
then we calculate precisions at top-N instances (P@N ).

We can see that RSN achieves a precision of 82.15% at
top-5 instances on the test set. It is relative high consider-
ing RSN is only given a small number of instances and it
even have not seen the relation before. Also note that though
RSN is only trained with relations of the training set, the per-
formance on relations in the test set has only a narrow gap,
further proving the effectiveness of RSN.

Analysis on Neural Snowball Process

To further analyze the iterative process of Neural Snowball
(NS), we present a quantitative evaluation on the numbers
of newly-gathered instances as well as the classifier perfor-
mance on relation chairperson with the 5-seed-instance set-
ting. Note that it is a randomly-picked relation and other re-
lations have shown similar trends. Due to the space limit, we
only take the relation chairperson as an example.

Figure 4 demonstrates the development of evaluation re-
sults as the iteration grows. Here we adopt two settings: NS
setting refers to fine-tuning the classifier with instances se-
lected by Neural Snowball, and random setting refers to
fine-tuning on randomly-picked instances of relation chair-
person with the same amount of NS, under the premise of
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Figure 4: Evaluation results on each iteration of Neural
Snowball. Blue bars are numbers of instances added. Solid
lines represent performance on the NS setting, and dotted
lines represent the random setting.

knowing all the instances of the relation. Note that random
setting is an ideal case since it reflects the real distribution
of data for the new relation and the overall performance of
the random setting serves as an upper bound.

From the results of random setting, we see that the binary
classifier obtains higher recall and performs a little lower in
precision when trained on larger randomly-distributed data.
This can be explained that more data brings more patterns
in representations, improving the completeness of extracting
while sacrificing a little in quality.

Then by comparing the results between the two settings,
we get two observations: (1) As the number of iterations and
amount of instances grow, the classifier fine-tuned on NS
setting maintains higher precision than the one fine-tuned
on random setting, which proves that RSN succeeds in ex-
tracting high-confidence instances and brings in high-quality
patterns. (2) The recall rate of NS grows less than expected,

indicating that RSN might overfit existing patterns. To main-
tain high precision of the model, Neural Snowball stucks in
the “comfort zone”of existing high-quality patterns and fails
to jump out of the zone to discover patterns with more diver-
sity. We plan to further investigate it in future.

Conclusion and Future Work

In this paper, we propose Neural Snowball, a novel ap-
proach that learns to classify a new relation with only a small
number of instances. We use Relational Siamese Networks
(RSN), which are pre-trained on historical relations to itera-
tively select reliable instances for the new relation from un-
labeled corpora. Evaluations on a large-scale relation extrac-
tion dataset demonstrate that Neural Snowball brings signif-
icant improvement in performance of extracting new rela-
tions with few instances. Further analysis proves the effec-
tiveness of RSN and the snowball process. In the future, we
will further explore the following directions:

(1) The deficiency of our current model is that it mainly
extracts patterns semantically close to the given instances,
which limits the increase in recall. In the future, we will ex-
plore how to jump out of the “comfort zone” and discover
instances with more diversity.

(2) For now, RSN is fixed during new relation learning
and shares the same parameters across relations. This can
be ameliorated by an adaptive RSN that can be further op-
timized given new relations and new instances. We will in-
vestigate into it and further improve the efficiency of RSN.
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