
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 8410 - 8423

May 22-27, 2022 c©2022 Association for Computational Linguistics

PPT: Pre-trained Prompt Tuning for Few-shot Learning
Yuxian Gu1,3∗, Xu Han2,3∗, Zhiyuan Liu2,3,4, Minlie Huang1,3,4†

1The CoAI group, Tsinghua University, Beijing, China
2The THUNLP group, Tsinghua University, Beijing, China

3Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems,
Beijing National Research Center for Information Science and Technology,

Department of Computer Science and Technology, Tsinghua University, Beijing, China
4 Beijing Academy of Artificial Intelligence, BAAI, Beijing, China

{guyx21,hanxu17}@mails.tsinghua.edu.cn
{liuzy,aihuang}@tsinghua.edu.cn

Abstract

Prompts for pre-trained language models
(PLMs) have shown remarkable performance
by bridging the gap between pre-training tasks
and various downstream tasks. Among these
methods, prompt tuning, which freezes PLMs
and only tunes soft prompts, provides an effi-
cient and effective solution for adapting large-
scale PLMs to downstream tasks. However,
prompt tuning is yet to be fully explored. In
our pilot experiments, we find that prompt tun-
ing performs comparably with conventional
full-model tuning when downstream data are
sufficient, whereas it is much worse under few-
shot learning settings, which may hinder the
application of prompt tuning. We attribute
this low performance to the manner of initial-
izing soft prompts. Therefore, in this work,
we propose to pre-train prompts by adding
soft prompts into the pre-training stage to ob-
tain a better initialization. We name this Pre-
trained Prompt Tuning framework “PPT”. To
ensure the generalization of PPT, we formu-
late similar classification tasks into a unified
task form and pre-train soft prompts for this
unified task. Extensive experiments show that
tuning pre-trained prompts for downstream
tasks can reach or even outperform full-model
fine-tuning under both full-data and few-shot
settings. Our approach is effective and effi-
cient for using large-scale PLMs in practice.
The code is publicly available at https://
github.com/thu-coai/PPT.

1 Introduction

Fine-tuning pre-trained language models
(PLMs) (Devlin et al., 2019; Radford et al., 2019;
Raffel et al., 2020) has made great progress in re-
cent years. By tuning the entire model parameters,
the versatile knowledge acquired from large-scale
unlabeled corpora can be adapted to handling

† Corresponding author.
∗ indicates equal contribution.

various NLP tasks and outperform the approach of
learning models from scratch (Han et al., 2021a).
For simplicity, we name this full-model tuning as
“FT”. As shown in Figure 1 (b) and (c), there are
two mainstream FT approaches. The first one is
task-oriented fine-tuning, where a task-specific
head is added on top of PLMs, and the entire model
is then fine-tuned by optimizing task-specific
objectives on corresponding training data.

The second one is prompt-oriented fine-
tuning (Schick and Schütze, 2021a), which is
inspired by the recent works utilizing language
prompts to probe the knowledge in PLMs (Petroni
et al., 2019; Brown et al., 2020). In prompt-
oriented fine-tuning, data samples are converted
to sequences containing prompt tokens, and down-
stream tasks are formalized as language modeling
problems. As shown in Figure 1 (c), by adding the
prompt “It was 〈X〉 .” to a sentence, we can deter-
mine its sentiment polarity with PLMs by predict-
ing “great” or “terrible” at the mask position. As
shown in Figure 1, compared to task-oriented fine-
tuning, prompt-oriented fine-tuning is more simi-
lar to the pre-training objectives (masked language
modeling), thereby helping to better use knowledge
in PLMs and often obtaining better performance.

Although FT has shown promising results, with
the rapid growth of model scale, fine-tuning and
storing the entire large model for each downstream
task becomes much more expensive. To address
this challenge, Lester et al. (2021) proposes prompt
tuning (PT) to adapt large PLMs to downstream
tasks cheaply, as shown in Figure 1 (d). Specifi-
cally, PT uses soft prompts composed of continu-
ous embeddings instead of hard prompts (discrete
language phrases). These continuous prompts are
generally randomly initialized and learned end-to-
end. To avoid storing the entire model for each
downstream task, PT freezes all PLM parameters
and merely tunes soft prompts, without adding any
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Model LayersHard Prompt Tokens Soft Prompt Tokens

(a) Masked Language Modeling (b) Task-oriented Fine-tuning (c) Prompt-oriented Fine-tuning (d) Prompt Tuning
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I like eating apples .  <X>

Figure 1: Paradigms of pre-training (masked language modeling), full-model tuning (task-oriented fine-tuning
and prompt-oriented fine-tuning), and prompt tuning. The verbalizer is a function to map task labels to concrete
words.〈X〉means the mask of typical pre-trained encoder-decoder models
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Figure 2: Comparison between PT and FT. The tuned
prompt is composed of 100 learnable embeddings
whose dimensions are the same as the token embed-
dings of PLMs (4096 dimensions). All these results
are based on 11B PLMs T5 and CPM-2. FT needs
to optimize all 11B parameters, while PT only trains
about 410K prompt parameters.

intermediate layers and task-specific components.
PT has two promising advantages. First, soft

prompts can be learned end-to-end in comparison
to hard prompts. Second, PT is an efficient and
effective paradigm for the practical use of large-
scale PLMs, which is comparable to FT when
downstream data are sufficient (Figure 2(a)). How-
ever, as shown in Figure 2(b), we find that PT
performs much worse than FT under few-shot set-
tings, which may hinder the application of PT in
various low-resource scenarios.

Hence, in this paper, we explore how to use
PLMs for few-shot learning in an efficient and ef-
fective manner through PT. Specifically, we con-

duct pilot experiments to empirically analyze the
effectiveness of PT on PLMs in Section 2, which
is ignored by most existing works. Our discover-
ies are as follows: (1) the verbalizer choice has a
large impact on the performance; (2) simply initial-
izing soft prompts with concrete word embeddings
fails to improve the performance, yet (3) combin-
ing soft and hard prompts is helpful; and (4) all
these methods cannot handle few-shot prompt tun-
ing problems well. The above observations reveal
that prompt searching for PLMs is not trivial, and
carefully initialized soft prompt tokens is crucial.

To help the model find suitable prompts, we pre-
train these tokens with self-supervised tasks on
large-scale unlabeled corpora. To ensure the gener-
alization of pre-trained prompts, we group typical
classification tasks into three formats: sentence-
pair classification, multiple-choice classification,
and single-text classification, each format corre-
sponding to one self-supervised pre-training task.
In addition, we find multiple-choice classification
more general among these formats and we can
unify all classification tasks to this format. We
name this Pre-trained Prompt Tuning framework
“PPT”. We evaluate PPT on several datasets based
on three 11B PLMs: T5-XXL (Raffel et al., 2020),
mT5-XXL (Xue et al., 2021) and CPM-2 (Zhang
et al., 2022) in few-shot scenarios. Experiments
show that PPT can not only improve PT by a large
margin, reaching or even outperforming FT meth-
ods, but also reduce the variance of few-shot learn-
ing. Besides the effectiveness, PPT also retains the
parameter efficiency of PT, which is valuable for
future applications on large-scale PLMs.

2 Pilot Experiments

In this section, we present pilot experiments of PT
for few-shot learning. We analyze three strategies
including hybrid prompt tuning, verbalizer selec-
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Hard Prompt Verbalizer Accuracy

None good/bad 70.515.5
Man #1: P s. It was 〈X〉. good/bad 87.66.6
Man #2: P Just 〈X〉 ! s good/bad 86.08.1
Man #3: P s. All in all, it was 〈X〉. good/bad 83.48.3

Gen #1: P .s. a 〈X〉. good/bad 81.613.8
Gen #2: P s. A 〈X〉 one. good/bad 81.22.2

Man #1: P s. It was 〈X〉. great/terrible 86.97.9
Man #1: P s. It was 〈X〉. dog/cat 60.07.6
Man #1: P s. It was 〈X〉. bad/good 76.311.7

Full-Model Tuning good/bad 91.40.8

Table 1: The impact of hard prompts and verbalizers
on PT for few-shot learning (32 samples) on SST-2.
P represents soft prompts. s denotes the input sen-
tence. “Man” means manually designed hard prompts
and “Gen” means auto-generated hard prompts. The
choice of hard prompts and verbalizers has a significant
influence on model performance.

tion, and real word initialization. We follow Lester
et al. (2021) to test PT with T5-XXL (11B parame-
ters) and use 100 tunable soft prompt tokens1.

Following Schick and Schütze (2021b), we ran-
domly select 32 samples to construct the training
set Dtrain from the original training data. To tune
the hyper-parameters, we compose a validation set
Ddev from the original training data and ensure
|Dtrain| = |Ddev| to simulate the few-shot learning
setting (Perez et al., 2021). We follow Zhang et al.
(2021) and Gao et al. (2021) to use the original
validation set as the test set Dtest, which means
|Dtest| � |Dtrain| = |Ddev|.

Hybrid Prompt Tuning In hybrid prompt tun-
ing, both soft and hard prompts are used (Liu
et al., 2021; Han et al., 2021b). However, pre-
vious works train soft prompts jointly with the
entire model. In PT where only prompt tokens
are tunable, the effectiveness of hybrid prompts is
under-explored. In Table 1, we show the results of
combining soft prompts P with three manually de-
signed hard prompts and two auto-generated hard
prompts (Gao et al., 2021) on a sentiment classifi-
cation task (Socher et al., 2013). We can see that
hard prompts improve PT, but still under-perform
FT. Furthermore, different hard prompts affect the
performance remarkably, therefore much human
labor for prompt design and selection is needed.

Verbalizer Selection Verbalizer maps task-
specific labels to concrete tokens. For instance,

1Using 100 soft prompt tokens achieves the best perfor-
mance in Lester et al. (2021).

SST-2 BoolQ

Random Init. 70.515.5 61.05.3
Label Init. 58.92.7 63.00.4
Vocab Sampling 57.04.0 58.44.9
Top-1000 Sampling 57.94.2 57.73.9
Task-Related Sampling 58.53.8 58.24.0

Full-Model Tuning 91.40.8 80.82.4

Table 2: Few-shot learning performance with different
strategies for choosing concrete words for prompt ini-
tialization in PT. “Label Init”: use the embeddings of
the label words. “Vocab Sampling”: randomly sam-
ple words from the vocabulary. “Top-1000 Sampling”:
randomly sample words from the most frequent 1000
words in the pre-training corpus. “Task-Related”: ran-
domly sample words from the downstream data. We
use the classification accuracy (%) for evaluation.

in Figure 1 (c) and (d), the verbalizer maps the la-
bel “Positive” to “great”. From Table 1 we can see
that the choices of verbalizers influence the perfor-
mance remarkably. In general, common words that
explain the meaning of corresponding labels work
well. This also guides our verbalizer selection for
PPT in Section 3.

Real Word Initialization In real word initializa-
tion, we use the embeddings of concrete words to
initialize the soft prompt and test four initialization
strategies. The effectiveness of this approach has
been verified on small PLMs (fewer than 3B pa-
rameters) in previous works (Lester et al., 2021).
However, from the experiments on SST-2 (Socher
et al., 2013) and BoolQ (Clark et al., 2019) (Table
2), we find that for the 11B model, real word ini-
tialization has little or even negative impact on the
performance in few-shot scenarios. This suggests
that observations on small models can not be di-
rectly adapted to large models and finding a good
initialization for soft prompts is yet to be explored.

To summarize, although the above enhancement
strategies cannot help PT achieve comparable re-
sults with FT under few-shot settings, they are still
the key factors that influence the PT performance.
In the following sections, we describe our PPT
framework and show in experiments that PPT not
only provides a good prompt initialization, but also
takes advantage of the good verbalizer, and is com-
plementary to hybrid prompts.

3 Pre-trained Prompt Tuning (PPT)

In this section, we describe the whole framework
of PPT, including how to pre-train prompts and
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use these pre-trained prompts for specific tasks.

3.1 Overview
Following the approach of T5 (Raffel et al., 2020)
and PT (Lester et al., 2021), we solve all down-
stream tasks in a text-to-text format. As shown
in Figure 1 (c), to reduce the objective gap be-
tween pre-training and downstream tasks, prompt-
oriented fine-tuning converts downstream tasks into
cloze-style objectives. Taking classification for ex-
ample, given an input sentence x ∈ V∗ and its
label y ∈ Y , a pattern mapping f : V∗ 7→ V∗
is first applied to convert x into a new sequence
f(x), where V is the vocabulary of PLMs. f(x)
not only adds some prompt tokens as hints, but also
preserves the mask token 〈X〉 to let PLMs predict
tokens at the masked positions. Then, a verbalizer
v : Y 7→ V∗ is used to map y to some label tokens
v(y). With f(·) and v(·), a classification task can
be represented by a pattern-verbalizer pair (f, v):

argmax
θ

∑
x

log p
(
y|x;θ

)
= argmax

θ

∑
x

log p
(
〈X〉 = v(y)|f(x);θ

)
,

(1)

where θ indicates all tunable parameters, especially
the parameters of PLMs. For convenience, we use
“PVP” to denote this pattern-verbalizer pair (Schick
and Schütze, 2021a).

In PT (Lester et al., 2021), a set of soft prompts
P are concatenated to the beginning of the se-
quence and the model input becomes [P ; f(x)],
where [·; ·] is the concatenation operation. By tun-
ing P , Eq. (1) is replaced by

argmax
P

∑
x

log p
(
〈X〉 = v(y) | [P ; f(x)];P

)
. (2)

Owing to the power of large-scale PLMs, Eq. (2)
is verified to be comparable to these FT methods
under full-data settings. However, we find it hard
to learn effective soft prompts, which may result
in low performance in various few-shot scenarios.
The parameter initialization usually has a large im-
pact on the difficulty of the model training and op-
timization, and our pilot experiments have shown
that existing initialization strategies have little or
even negative impact on the PT performance of
large-scale PLMs. We refer more details of these
pilot experiments to Section 4.

Recently, pre-training has been proven to be an
effective method to find a good model initializa-
tion. Inspired by this, we propose to pre-train soft

…Iron Man sacrificed himself. The Avengers finally wins…<X>

Can you drive in Canada? Drivers in Canada register the vehicle.

I say I became very uneasy. She was very uneasy last night.

I visited Iraqi, including Fallujah. Fallujah is a Iraqi city.

<X>

<X>

<X>

Prompt Tuning (Labeled Data) : Yes / No Question Answering

Pre-Training (Unlabeled Data) : Next Sentence Prediction

Prompt Tuning (Labeled Data) : Natural Language Inference

Prompt Tuning (Labeled Data) : Sentence Similarity

Figure 3: An example of PPT used in sentence pair
tasks. P denotes soft prompt. 〈X〉 means the mask of
typical encoder-decoder model like T5 and CPM-2.

prompts. We notice that some groups of down-
stream tasks are related to certain self-supervised
tasks built on unlabeled pre-training corpora. For
instance, some tasks in the form of sentence-pair
classification, such as natural language inference
and sentence similarity, are similar to the next sen-
tence prediction (NSP) (Devlin et al., 2019) task
used in the pre-training stage. As shown in Fig-
ure 3, these tasks all take two sentences as input
and compare their semantic meanings. Therefore,
soft prompts pre-trained by NSP can be a good
initialization for these sentence-pair tasks.

Formally, suppose we can divide down-
stream tasks into m groups {T1, T2, ..., Tm},
where Ti is the set containing ni downstream
tasks: {PVP1

i ,PVP2
i , ...,PVPni

i }, where PVPk
i =

(fk
i , v

k
i ). For each group, we design a correspond-

ing pre-training task PVPpre
i = (f

pre
i , v

pre
i ). Af-

ter pre-training soft prompts on these tasks with
all model parameters fixed, we get m pre-trained
prompts {P1,P2, ...,Pm}. Then, for each task
PVPk

i in Ti, we continue to optimize Eq. (2) by
using Pi as the soft prompts initialization.

3.2 Designing Pattern-Verbalizer Pairs for
Pre-training

In this section, we take three typical classification
tasks as examples to describe the design of pattern-
verbalizer pairs PVPpre

i for prompt pre-training.

3.2.1 Sentence-Pair Classification
Sentence-pair classification tasks such as natural
language inference and sentence similarity take
two sentences x = (s1, s2) as the input. To de-
sign a PVP for these tasks, we extend the next sen-
tence prediction in Devlin et al. (2019) to a 3-class
classification with labels Y = {0, 1, 2} as the pre-
training task. These labels in Y can respectively
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indicate that the semantic relation between two sen-
tences is coherent (with label 2), similar (1) and
irrelevant (0). To construct signal from unlabeled
documents, we set the two sentences next to each
other as label 2, those from the same document
but not true next sentences as 1, and those from
different documents as 0. We consider the label
set |Y| ≤ 3 because this covers most sentence pair
tasks. PVPpre

i = (f
pre
i , v

pre
i ) is given as

f pre
i (x) = “s1 〈X〉 .s2”,

vpre
i (Y) = [no,maybe, yes].

(3)

Designing PVPk
i = (fk

i , v
k
i ) according to PVPpre

i

is simple. s1 and s2 can be replaced by the input
sentence pair. If a task outputs two labels, then
we take vki (Y) = [no, yes]. If a task outputs three
labels, we set vki = v

pre
i . If a task requires to

measure the similarity between two sentences, the
probability over {no, yes} can serve for this task.

3.2.2 Multiple-Choice Classification
Many tasks can be formulated as multiple-choice
classification, which takes a query and several an-
swer candidates as the input. We design a next
sentence selection task to pre-train the prompt.
Given a sentence as the query sq, the model is
trained to select the adjacent sentence from six
candidates, denoted as s1 ∼ s6 and thus the la-
bel set is Y = {1, 2, 3, 4, 5, 6}. These candidates
consist of the right answer, one sentence from the
same document but is not adjacent to the query,
and four sentences from other documents. For
x = (sq, s1, s2, · · · , s6), (fpre

i , v
pre
i ) is given as

f pre
i (x) = “sq? A.s1 · · · F.s6.Answer is 〈X〉 .”,

vpre
i (Y) = [A,B,C,D,E, F].

(4)

Most multiple-choice tasks can use {fpre
i , v

pre
i } di-

rectly as their PVPs. For tasks like reading com-
prehension, the input may contain a passage and a
question. We concatenate them to form the query.

3.2.3 Single-Sentence Classification
For single-sentence classification, we create pseudo
labels for prompt pre-training. Taking sentiment
classification as an example, we use another small
model to annotate sentiment labels for the sen-
tences from the pre-training corpus and filter out
those with low classification probability. In prac-
tice, we use a RoBERTaBASE (Liu et al., 2019)
model fine-tuned on a 5-class sentiment classifi-
cation dataset other than the few-shot datasets we

evaluate on. Then with a sentence s from the cor-
pus, we have the input x = (s) and the label set
Y = {1, 2, 3, 4, 5}. (fpre

i , v
pre
i ) is given as

f pre
i (x) = “s. 〈X〉 .”,

vpre
i (Y) = [terrible, bad,maybe, good, great].

(5)

For sentiment classification tasks with 5 labels, we
can use PVPk

i = PVPpre
i . For those with fewer than

5 labels, we choose a subset from v
pre
i (Y) as labels.

Although the above method improves the model
performance, we have to point out that it is still lim-
ited to generalize to other single-text classifications
in different domains and with different numbers
of labels. Therefore, the method described in the
following section is proposed to solve this problem.

3.3 Unifying Task Formats

The above-mentioned PVPs for pre-training can be
unified to a single format: multiple-choice classifi-
cation. Specifically, for sentence-pair classification,
the query is the concatenation of the two sentences
and there are three options: no, maybe, and yes.
For single-sentence classification, the query is the
input sentence and the options are the concrete la-
bels. Note that in this way, the pre-trained PVPs
can be used in single text classification tasks from
arbitrary domains and with much more labels.

Constructing a unified PVP is similar to the idea
of MultiQA (Talmor and Berant, 2019) and Uni-
fiedQA (Khashabi et al., 2020). Recently, Zhong
et al. (2021a) use some hard prompts to unify sev-
eral tasks as a meta question answering task. They
tune the entire model with this meta task on a col-
lection of QA datasets and then transfer to other
classification tasks under low-resource settings.
However, our PPT focuses on tuning soft prompts
with the main body of PLMs fixed and our pre-
training is conducted on fully unsupervised data,
rather than the collection of supervised datasets.

Since different tasks may have different can-
didate numbers and lengths, we construct pre-
training samples with option numbers varying from
2 to 16 2 and option lengths from 50 to 20. We use
the PVP in Section 3.2.2 for pre-training, and then
apply pre-trained soft prompts to cover the above
mentioned three classification tasks.

2We set 16 labels in this paper as they can cover most
benchmarks, but more labels are applicable for other tasks.
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English Chinese

Dataset Format nclass Dataset Format nclass

SST-2 SSC 2 ChnSent SC 2
SST-5 SSC 5 Amazon SC 5
YahooAns SSC 10 TNews SC 14
RACE-m MCC 4 CCPM MCC 4
RACE-h MCC 4 C3 MCC 4
BoolQ SPC 3 LCQMC SPC 3
RTE SPC 3 CMNLI SPC 3
CB SPC 3 OCNLI SPC 3

Table 3: The datasets we evaluate. The “Format” col-
umn means the task category. SSC stands for single-
sentence classification, MCC for multiple-choice clas-
sification, and SPC for sentence-pair classification.
nclass means the label number of each dataset.

4 Experiments

4.1 Setup

We conduct experiments on both Chinese and En-
glish tasks (see Table 3). As described in Section
2, for tasks with fewer than 5 labels, we construct
Dtrain and Ddev with 32 samples from the original
training data and ensure the number of labels is
balanced. For tasks with more than 5 labels like
TNews and YahooAnswer, it is hard to compose
a dataset with label-balanced samples. Therefore,
we randomly select 8 samples for each label.

For English datasets, we conduct PT based on
T5-XXL with 11B parameters because previous
works (Lester et al., 2021; Zhang et al., 2022) have
shown that, T5-XXL is comparable with FT under
the full-data setting. We also evaluate FT on vari-
ous sizes of T5 to verify that larger models perform
better and thus improving PT based on T5-XXL
is meaningful. For Chinese datasets, we do PT
based on a 11B model CPM-2. Since CPM-2 does
not provide other size models, we compare it with
mT5 (Xue et al., 2021) of various sizes.

Consistently, we use 100 soft tokens for PT. As a
result, the tunable parameters is only 100×4096 =
4.1× 105 = 410K. Compared with the 11B (1.1×
1010) parameters of FT, PT only needs to store
3000 times smaller parameters for each task.

For prompt pre-training, we sample 10GB data
from OpenWebText (Gokaslan et al., 2019) for
English tasks and 10GB data from WuDaoCor-
pora (Yuan et al., 2021) for Chinese tasks. We use
the Yelp-5 (Zhang et al., 2015a) dataset to train the
RoBERTaBASE model mentioned in Section 3.2.3.
More details of the training hyper-parameters can
be found in the Appendix C.

4.2 Main Results
The main results of English and Chinese datasets
are shown in Table 4. In the block FT, we present
the FT results of the T5 model from the size small
to XXL. In the block PT, we show the results
of PPT and other baselines. The first baseline is
Vanilla PT, where the soft prompts are randomly
initialized from a normal distribution. The second
is the hybrid strategy in Section 2. We also con-
sider LM Adaption used in Lester et al. (2021) in
which the T5 model is further pre-trained for 10K
steps with language modeling to reduce the gap be-
tween the pre-training and PT. We test two variants
of PPT: Hybrid PPT, in which carefully designed
hard prompts are combined with pre-trained soft
prompt, and Unified PPT, in which all tasks are
unified in the multiple-choice classification format.

Effectiveness From the Table 4 we have four ob-
servations. First, larger models achieve better over-
all performance, which means increasing the model
size still helps under the few-shot setting. There-
fore, we study PT on the large-scale pre-trained
model. Note that for Chinese experiments, CPM-
2 and mT5-XXL share the same parameter scale.
Since CPM-2 outperforms mT5-XXL across all
tasks, we use CPM-2 as the base model.

Second, PPT outperforms Vanilla PT and LM
Adaption on most datasets significantly. Although
PPT is worse than Hybrid PT on BoolQ, combining
PPT and hard prompts (Hybrid PPT) outperforms
all baselines. This means pre-training soft prompts
and using hybrid prompts are complementary. Sim-
ilar phenomenons are observed on other datasets
like RACE-m, LCQMC, and C3, where adding
hard prompts to PPT continues to improve results.

Third, PPT outperforms FT on all Chinese
datasets and most English datasets. This indicates
that there still remains a gap between masked lan-
guage modeling and downstream tasks. Prompt
pre-training bridges this gap to some extend. Based
on this observation, an intuitive extension of our
method is to further pre-train the entire model with
PVPpre

i and fine-tune the model to the correspond-
ing downstream tasks. However, since we focus on
PT in this paper, we leave this as future work.

Fourth, PPT results in lower variances on most
of the datasets. Few-shot learning is notorious
for its instability, which becomes very obvious in
Vanilla PT. For some datasets like SST-2, the vari-
ance reaches 15.5 which means the model does not
perform better than random guesses under some
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English Tasks

Model Method SST-2 SST-5 RACE-m RACE-h BoolQ RTE CB
Acc. Acc. Acc. Acc. Acc. Acc. F1

FT
(11B)

T5-Small - 72.83.1 31.10.4 26.40.6 26.30.5 59.20.6 54.01.7 70.14.6
T5-Base - 74.62.7 28.81.8 27.20.5 26.70.2 61.92.1 56.12.3 70.42.6
T5-Large - 89.12.2 42.41.2 48.21.6 43.21.7 74.60.9 64.43.4 82.32.2
T5-XL - 89.63.2 38.45.1 55.02.8 50.92.6 77.22.1 62.36.8 81.99.0
T5-XXL - 91.40.8 40.62.0 62.93.9 54.83.0 80.82.4 64.12.0 86.55.3

PT
(410K) T5-XXL

Vanilla PT 70.515.5 32.38.3 34.78.2 31.63.5 61.05.3 53.53.5 50.74.1
Hybrid PT 87.66.6 40.92.7 53.58.2 44.26.4 79.81.5 56.82.6 66.57.2

LM Adaption 77.67.5 36.23.6 27.30.2 26.50.4 62.00.3 55.31.0 61.21.7

PPT 93.50.3 50.20.7 60.01.2 53.00.4 66.435.7 58.91.6 71.26.2
Hybrid PPT 93.80.1 50.10.5 62.50.9 52.20.7 82.01.0 59.83.2 73.27.0
Unified PPT 94.40.3 46.01.3 58.00.9 49.91.3 76.02.7 65.82.1 82.25.4

Chinese Tasks

Model Method ChnSent Amazon CCPM C3 LCQMC CMNLI OCNLI
Acc. Acc. Acc. Acc. Acc. Acc. Acc.

FT
(11B)

mT5-Small - 76.12.6 29.91.9 31.91.2 29.60.5 52.42.5 36.50.2 34.91.3
mT5-Base - 78.20.6 36.40.9 40.46.8 29.40.6 50.91.0 36.30.5 35.40.6
mT5-Large - 79.10.6 31.01.4 46.04.0 29.90.8 52.10.6 35.81.2 35.21.1
mT5-XL - 82.72.6 35.51.7 68.35.1 29.71.2 52.92.4 36.81.6 35.60.5
mT5-XXL - 83.61.5 42.10.8 79.71.1 37.23.3 53.11.0 39.00.4 37.41.2
CPM-2 - 86.11.8 42.52.0 81.81.6 38.43.7 58.81.8 40.71.0 38.51.5

PT
(410K) CPM-2

Vanilla PT 62.13.1 30.34.8 31.09.7 28.20.4 51.53.4 35.40.5 37.00.5
Hybrid PT 79.24.0 39.13.8 46.615.0 29.20.5 54.62.3 37.10.6 37.81.4

LM Adaption 74.35.2 35.22.4 33.712.8 30.21.5 51.42.9 35.10.3 38.01.1

PPT 90.10.8 48.60.6 85.40.6 43.82.2 59.10.6 43.00.5 40.10.4
Hybrid PPT 89.50.3 48.82.0 83.90.5 46.00.5 67.30.9 41.30.8 38.70.6
Unified PPT 90.70.2 44.61.1 83.40.9 50.20.6 55.00.4 40.60.4 41.51.5

Table 4: Classification results. The experiments are conducted with 32 training samples and 32 validation samples
on each dataset. FT means full-model tuning, where the entire model (with about 11B parameters) should be tuned
on each dataset. PT means prompt tuning, where only 410K parameters are trained. We report the mean and the
standard deviation over 5 random seeds. The score marked as bold means the best performance among all the
methods. The score marked with an underline means the best one among prompt tuning (PT) methods.

random seeds. Combining with hard prompt or
further pre-training with language modeling can
alleviate this problem to some extent. But on some
datasets like CCPM, Hybrid PT increases the vari-
ance and LM Adaption does not guarantee the aver-
age performance. With the help of pre-training, the
variance remains at a low level across all datasets.

Unified PPT Unifying all formats to multiple-
choice classification format is another variant of
PPT. In Table 4, we can see that Unified PPT
reaches comparable performance as PPT and Hy-
brid PPT, still outperforming other PT baselines.
However, the datasets we have considered so far
have no more than 5 labels. For tasks with more
labels, especially single-text classification where
pseudo label pre-training is not appropriate for
cross-domain adaption, Unified PPT is a good alter-
native. In Table 5, we test Unified PPT on datasets
with more than 5 labels. For PT and FT, we use

TNews YahooAns

nclass 14 10
FT 43.20.6 64.11.9
PT 41.26.2 62.04.2
PT (MC) 11.82.1 60.83.9
Unified PPT 50.60.7 70.51.9

Table 5: The experiments on single-text classification
tasks with more than 5 labels. Different from previous
experiments, we randomly select 8 samples for each
label. PT (MC) means doing PT in a multiple-choice
format without prompt pre-training.

a verbalizer to map the labels to the intuitively se-
lected words. PT (MC) means we solve the task
in a multiple-choice classification format without
prompt pre-training. We do not use PPT for single-
sentence classification discussed in Section 3.2.3
because it is hard to find other suitable datasets to
train the pseudo label annotator. However, we can
see that Unified PPT still achieves the best perfor-
mance, even exceeding FT by a large margin.
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Figure 4: Comparison between FT, Vanilla PT, and PPT
when different numbers of training samples are avail-
able. For the small number of samples, PPT is consis-
tently better than Vanilla PT. When the number grows,
the performance of these methods becomes closer.

FT PT PPT Unified PPT

SST-2 96.10.2 96.80.1 96.90.1 97.00.1

SST-5 58.41.4 58.51.1 59.31.2 58.30.2
RACE-m 86.81.4 85.00.5 85.90.4 86.40.6

RACE-h 83.70.6 82.51.9 83.91.3 84.30.5

BoolQ 90.90.6 89.40.6 89.30.3 89.40.3

RTE 89.81.0 88.04.8 89.60.8 91.80.7

CB 94.61.2 94.35.6 93.73.1 92.94.9

Table 6: The performance of FT, PT, PPT, and Unified
PPT when the full training datasets are available. We
report the mean and the standard deviation over 3 ran-
dom seeds on the validation set.

4.3 Sample Efficiency

We discuss how the performance of FT, PT, and
PPT varies when the number of training samples
increases. In Figure 4, we show the trend of these
methods on the RACE-m and CB datasets. For
32 to 128 samples, PPT is consistently better than
PT, and the performances of the three methods
gradually converge when the number grows to 256.

We also compare different tuning approaches
given the full training data. From Table 6, we can
see that PPT and Unified PPT still outperform the
Vanilla PT on most datasets. In addition, we ob-
serve that although PT is faster than FT in a single
optimization step, it converges much slower, which
results in an even longer training time. We argue
that PPT can be an effective solution to this prob-
lem. As shown in Figure 5, with the pre-trained
initialization, PPT speeds up the convergence of
Vanilla PT on both RACE-m and CB datasets. We
give a more detailed analysis of the training con-
sumption in the Appendix E. Since PPT still con-
verges a bit slower than FT, how to further accel-
erate the convergence of PT is worth studying in
future work.
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Figure 5: Comparison of the convergence between FT,
Vanilla PT, and PPT. PT converges much slower than
FT. Owing to the pre-trained initialization, PPT signifi-
cantly speeds up the convergence.

5 Related Works

PLMs and Task-oriented Fine-tuning Re-
cently, various powerful PLMs have been proposed,
such as GPT (Radford et al., 2018), BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) and
T5 (Raffel et al., 2020). To adapt these PLMs to
downstream NLP tasks, task-oriented fine-tuning
has been proposed, where researchers use PLMs as
the backbone and add some task-specific heads to
optimize task-specific objectives. Then, all param-
eters of both PLMs and additional heads are tuned
using task-specific data. Results have shown that
task-oriented fine-tuning can outperform models
trained from scratch on a series of NLP tasks.

Prompt-oriented Fine-tuning Most existing
PLMs are pre-trained with language modeling ob-
jectives, yet the objectives of downstream tasks are
quite different. To overcome the gap between pre-
training and downstream tasks, prompt-oriented
fine-tuning is introduced. In prompt-oriented fine-
tuning, downstream tasks are also formalized as
language modeling problems by inserting language
prompts, and the results of language modeling can
correspond to the solutions of downstream tasks.

Knowledge probing (Petroni et al., 2019; Trinh
and Le, 2018; Davison et al., 2019) is the seminal
work that stimulates the development of prompts.
In knowledge probing, language triggers are widely
used to induce PLMs to generate relational facts.
These pioneering works demonstrate that language
prompts can effectively stimulate the knowledge
from PLMs. Encouraged by this, manually design-
ing hard prompts consisting of discrete words is
first used in prompt-oriented fine-tuning Schick and
Schütze (2021a,b). Considering manually design-
ing prompts is both time-consuming and difficult to
find the best choice, later works (Gao et al., 2021;
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Jiang et al., 2020; Shin et al., 2020) proposed to
generate prompts automatically. However, these
works still restrict auto-generated prompts to dis-
crete spaces which are usually sub-optimal.

To overcome the shortcomings of discrete spaces,
Li and Liang (2021); Liu et al. (2021); Han et al.
(2021b); Hambardzumyan et al. (2021); Zhong
et al. (2021b) explore to combine hard prompts and
soft prompts. Different from hard prompts using
concrete and discrete tokens, soft prompts are com-
posed of several continuous learnable embeddings,
and these embeddings are randomly initialized. To
step forward, some works (Li and Liang, 2021;
Qin and Eisner, 2021; Lester et al., 2021) propose
to only tune soft prompts and fix the entire PLM
parameters. When models are large enough, this
method can be comparable to full-model tuning.

Few-shot Learning with PLMs Since long-tail
distribution is common in real-world applications,
few-shot learning is quite meaningful for the stable
and effective use of PLMs, thereby attracts much
attention recently. Apart from GPT-3 (Brown et al.,
2020) and PET(Schick and Schütze, 2021a) which
demonstrates the superiority of PLMs in few-shot
scenarios, some later works Perez et al. (2021);
Bragg et al. (2021) also discuss reasonable few-
shot settings by restricting the size of validation
set and proposing a unified framework to evaluate
few-shot performance. There is also work (IV et al.,
2021) pointing out the low performance of PT for
few-shot learning. But they mostly focus on PLMs
with fewer than 400M parameters. In this paper, we
study few-shot learning on large-scale 11B PLMs.

6 Conclusion and Future Work

In this paper, we present PPT, a framework that
improves prompt tuning for few-shot learning. We
propose to firstly unify downstream tasks to sev-
eral formats. Then, we design self-supervised
pre-training tasks for each format and pre-train
prompts on these tasks. Finally, we do prompt tun-
ing on downstream tasks based on the pre-trained
initialization. Extensive experiments show that our
method significantly outperforms other prompt tun-
ing baselines, performing comparable or even bet-
ter than full-model tuning.

There are three important directions for future
work: (1) Designing unified task formats and
the corresponding pre-training objectives for other
kinds of tasks such as language generation and
relation extraction. (2) Evaluating the few-shot

performance of other parameter-efficient tuning ap-
proaches (He et al., 2022) and adapting unified task
pre-training to them. (3) Beyond the soft prompt,
studying whether unified task pre-training helps the
pre-trained language models itself.
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Appendices

A Dataset Information

Since some of the test sets of the datasets we used
is not publicly available, we follow Zhang et al.
(2021) and Gao et al. (2021) to use original vali-
dation sets for testing. For English experiments,
we use a dataset from GLUE (Wang et al., 2019b)
(SST-2 (Socher et al., 2013)), datasets from Su-
perGLUE (Wang et al., 2019a), (BoolQ (Clark
et al., 2019), CB (De Marneffe et al., 2019), and
RTE (Dagan et al., 2006)), two extra single-text
classification datasets (SST-5 (Socher et al., 2013)
and YahooAnswers (Zhang et al., 2015b)), and
two standard question answering datasets (RACE-
middle and RACE-high) (Lai et al., 2017) for
multiple-choice classification. For Chinese ex-
periments, we use four datasets from CLUE (Xu
et al., 2020) (CMNLI3 , OCNLI (Hu et al., 2020),
TNews3, C3 (Sun et al., 2020)), two sentiment anal-
ysis datasets (ChnSent4 and Amazon Reviews4),
and one extra natural language inference dataset
LCQMC (Liu et al., 2018).

B PVPs for Chinese Tasks

We describe the PVPpre
i for Chinese datasets in this

section. Just like English scenarios, all these PVPs
are simple and intuitive.

Sentence-Pair Classification Given the input
x = (s1, s2), the label list Y = [0, 1, 2], we have:

f pre
i (x) = “s1 〈X〉。s2”,

vpre
i (Y) = [矛盾,中立,相似].

(6)

Multiple-Choice Classification Given a input x
consisting of a query and six candidates: x =
(sq, s1, s2, · · · , s6), we convert x to a language
sequence by defining the PVPpre

i as follows:

f pre
i (x) = “sq？一、s1 · · ·六、s6.答案是 〈X〉。”,

vpre
i (Y) = [一,二,三,四,五,六].

(7)

Single-Sentence Classification Similar to the
English scenario, we take sentiment classification
as an example. Given the input x = (s), we have:

f pre
i (x) = “s。 〈X〉。”,

vpre
i (Y) = [差,不好,一般,好,赞].

(8)

Based on the PVPpre
i , the design of PVPk

i is
similar to that of English tasks.

3https://www.cluebenchmarks.com/
4https://github.com/SophonPlus/

ChineseNlpCorpus

English

SPC P Question: s1 ? 〈X〉. s2
MCC P We ask sq ? A.s1 · · · F.s6.The answer is 〈X〉.
SSC P s. It was 〈X〉.

Chinese

SPC P 问题：s1？〈X〉。s2
MCC P 问题：sq？一、s1 · · ·六、s6.答案是：〈X〉。
SSC P s。这很〈X〉。

Table 7: The hard prompts for Hybrid PT and Hy-
brid PPT. SSC stands for single-sentence classifica-
tion, MCC stands for multiple-choice classification,
and SPC stands for sentence-pair classification.

C Training Details

Considering the instability of the few-shot learning,
we run each experiment 5 times on the random
seed [10, 20, 30, 40, 50] and report the averaged
performance as well as the standard deviation. Due
to the resource limit, for 11B models, we adopt
model parallelism (Shoeybi et al., 2019) and store
a model with 4 GPU devices. We also use mixed-
precision training (Micikevicius et al., 2018) and
ZeRO (Rajbhandari et al., 2020) stage-1 provided
in DeepSpeed (Rasley et al., 2020) to reduce GPU
memory usage. For models in other sizes, we all
use full-precision training. We describe the details
of the training hyper-parameters in the following
sections.

C.1 Full-Model Tuning
For Full-Model Tuning (FT), we tune the entire
parameters of the model without concatenating soft
prompts. For all models, we fix the batch size as
16. In this way, we train the largest 11B model
with 16 NVIDIA V100 32G GPUs. We find that
different sized models prefer significantly different
learning rates. Therefore, we search for the learn-
ing rates in varied intervals and show each model
size and its corresponding searching interval in Ta-
ble 8. We train the model for 50 epochs and do
evaluation every 6 optimization steps. We choose
the model performing the best on the validation set
and evaluate it on the test set.

C.2 Prompt Tuning
For Prompt Tuning (PT), we add a set of soft
prompts before the input text. When adapting the
model to downstream tasks, we only tune the soft
prompts with the entire model fixed. Similar to
FT, we fix the batch size as 16 and train the model
for 50 epochs, while evaluating the model every 6
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Model Size Searching Interval

Small 2e-4, 5e-4, 1e-3
Base 2e-4, 5e-4, 1e-3
Large 5e-5, 1e-4, 2e-4
XL 3e-5, 5e-5, 1e-4

XXL 3e-6, 5e-6, 1e-5

Table 8: The searching intervals of learning rates for
the models with different sizes. Generally, small mod-
els prefer large learning rates.

steps. Since the tunable parameters are much less
in PT, 8 NVIDIA V100 32G GPUs are enough for
the training. We find PT requires a much larger
learning rate than FT. Therefore, we search for the
learning rate in [5e-3, 1e-2, 2e-2, 5e-2] and choose
the model with the best performance on the valida-
tion set. This observation also implies that PT is
much harder to train than FT, which is consistent
with the experiment results in the main paper.

C.3 Prompt Pre-Training

We use the sampled 10GB data to construct the
pre-training data for each task format for prompt
pre-training. Across all tasks, we use the “inverse
square root” learning rate scheduler (Raffel et al.,
2020) and set the learning rate in this scheduler
as 0.1 with no warmup steps. We set the batch
size as 256, the max input length as 512, and train
the prompts for at most 200,000 steps. We split
5% data for validation and the rest for pre-training.
We evaluate the performance on the validation set
every 2,000 steps and choose the prompt with the
lowest validation loss. The details of constructing
the pre-training data for each task are as follows.

Sentence-Pair Classification In the next sen-
tence prediction task, we set the two sentences
next to each other as label 2, those from the same
document but not true next sentence as 1, and those
from different documents as 0. We filter out the
sentences with less than 5 tokens and the pairs in
which the two sentences’ length ratios are larger
than 100.

Multiple-Choice Classification In the next sen-
tence selection task, giving a query sentence, the
options contain one adjacent sentence, one sen-
tence from the same document as the query, and
four from the different documents. We also filter
out the sentences with less than 5 tokens. To fit in
the max input length, we truncate the query sen-
tence to 389 tokens and the options to 86 tokens.

Num. len(q) len(op) Pos. Neg.-S Neg.-D

2 400 50 1 1 0
3 400 50 1 1 1
4 400 50 1 1 2
5 400 40 1 1 3
6 300 40 1 1 4
7 250 30 1 2 4
8 200 30 1 2 5
9 200 30 1 2 6

10 150 20 1 2 7
11 150 20 1 3 8
12 150 20 1 3 9
13 150 20 1 3 10
14 150 20 1 3 11
15 150 20 1 3 12
16 150 20 1 3 13

Table 9: The input configurations of different option
numbers. “Num.” means the number of the options.
“len(q)” and “len(op)” means the maximum length of
the query and the options. “Pos.” means the number
of positive options. “Neg.-S” and “Neg.-D” represent
the negative options from the same and different docu-
ments.

For Unified PPT, we uniformly sample the option
numbers from 2 to 16 to cover more downstream
circumstances. The input configurations of differ-
ent option numbers is shown in Table 9.

Single-Sentence Classification We use the
RoBERTaBASE model trained on the Yelp-5 dataset
to annotate pseudo labels on the unlabeled data.
We use learning rate 1e-4, batch size 16, warm-up
rate 0.01, and train the model for 10 epochs. We
choose the checkpoint with the highest accuracy on
the validation set, which is 70.53 at the 5-th epoch,
to annotate the label. We set different minimal clas-
sification confidence thresholds for the 5 labels to
control annotation quality and balance the label.
The thresholds of the label 0 ∼ 4 are [0.95, 0.50,
0.50, 0.50, 0.70].

D Hard Prompts

In this section, we describe the hard prompts we use
in Hybrid PT and Hybrid PPT. For simplicity, we
choose the best hard prompts for each task format
(e.g. sentence-pair classification, multiple-choice
classification, and single-sentence classification)
based on PT in pilot experiments and directly use
them in Hybrid PPT. The hard prompts correspond-
ing to each task format are shown in Table 7.

E Training Consumption

We analyze the time and memory consumption of
FT and PT in this section. For PPT, the consump-
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SST-2 SST-5 RACE-m RACE-h BoolQ RTE CB

FT Single Step Time (ms) 4,416 4,419 6,498 6,238 4,760 4,653 5,962
GPU Mem. Cost (GB) 259 259 512 512 314 346 512

PT Single Step Time (ms) 794 791 4,000 3,976 1,089 944 1,655
GPU Mem. Cost (GB) 72 72 159 154 82 81 102

Table 10: The time cost for a single optimization step and GPU memory usage throughout the training. PT has a
shorter single-step optimization time and a lower GPU memory cost.

tion is exactly the same as PT during the down-
stream adaption. Although pre-training prompts
may introduce external costs, we only need to do it
once and use the pre-trained prompts for multiple
tasks. From Table 10, we can see that PT’s opti-
mization time of a single step is much shorter than
FT, and it occupies much less GPU memory. The
reason is that during optimization, PT only needs
to update the prompt parameters, which means the
momentum and gradients of other parameters are
not required to be stored and transmitted to between
different GPU devices.
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