
AI Open 2 (2021) 216–224

Available online 4 January 2022
2666-6510/© 2021 Published by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

CPM-2: Large-scale cost-effective pre-trained language models

Zhengyan Zhang 1, Yuxian Gu 1, Xu Han 1, Shengqi Chen 1, Chaojun Xiao 1, Zhenbo Sun,
Yuan Yao, Fanchao Qi, Jian Guan, Pei Ke, Yanzheng Cai, Guoyang Zeng, Zhixing Tan,
Zhiyuan Liu *, Minlie Huang **, Wentao Han ***, Yang Liu, Xiaoyan Zhu, Maosong Sun
Department of Computer Science and Technology, Tsinghua University & BAAI, China

A R T I C L E I N F O

Keywords:
Pre-trained language models
Model efficiency

A B S T R A C T

In recent years, the size of pre-trained language models (PLMs) has grown by leaps and bounds. However, ef-
ficiency issues of these large-scale PLMs limit their utilization in real-world scenarios. We present a suite of cost-
effective techniques for the use of PLMs to deal with the efficiency issues of pre-training, fine-tuning, and
inference. (1) We introduce knowledge inheritance to accelerate the pre-training process by exploiting existing
PLMs instead of training models from scratch. (2) We explore the best practice of prompt tuning with large-scale
PLMs. Compared with conventional fine-tuning, prompt tuning significantly reduces the number of task-specific
parameters. (3) We implement a new inference toolkit, namely INFMOE, for using large-scale PLMs with limited
computational resources. Based on our cost-effective pipeline, we pre-train two models: an encoder-decoder
bilingual model with 11 billion parameters (CPM-2) and its corresponding MoE version with 198 billion pa-
rameters. In our experiments, we compare CPM-2 with mT5 on downstream tasks. Experimental results show
that CPM-2 has excellent general language intelligence. Moreover, we validate the efficiency of INFMOE when
conducting inference of large-scale models having tens of billions of parameters on a single GPU. All source code
and model parameters are available at https://github.com/TsinghuaAI/CPM.

1. Introduction

Training much larger models is an important research direction in
deep learning (Bengio, 2013). Recently, pre-training has become the
mainstream technique to develop large-scale neural networks and ach-
ieved great success in both computer vision (CV) and natural language
processing (NLP) (He et al., 2016; Dosovitskiy et al., 2020; Devlin et al.,
2019). Especially, there are some much larger pre-trained language
models (PLMs) with hundreds of billions of parameters, such as GPT-3
(Brown et al., 2020), PANGU-α (Zeng et al., 2021), and
Switch-Transformer (Fedus ei al., 2021).

However, the cost of using PLMs is increasing rapidly with the
growth of model sizes and becomes unaffordable for most users and
researchers. The cost consists of three parts. (1) Large computation
cost for pre-training: a super large model requires several weeks of pre-
training with thousands of GPUs. (2) Large storage cost for fine-tuned
models: a super large model usually takes hundreds of gigabytes (GBs) to

store, and we need to store as many models as downstream tasks. (3)
Strict equipment requirement for inference: it is common to use
multiple GPUs for the inference of a super large model, so these models
are hard to be used with limited computation resources.

To reduce the cost of large-scale PLMs from its pre-training to fine-
tuning, we try to improve the whole pipeline of developing PLMs as
follows:

(1) We adopt knowledge inheritance (Qin et al., 2021) to accelerate
the pre-training process. Current PLMs are usually trained from
scratch on pre-training data via self-supervised methods, while
there exist many PLMs that can also provide much knowledge.
Knowledge inheritance aims to use the knowledge of existing
PLMs to help the pre-training of new models.

(2) We use prompt tuning (Lester et al., 2021) instead of fine-tuning
to reduce the storage of task-specific parameters. With prompt
tuning, we only need to save the embeddings of prompt tokens,

* Corresponding author.
** Corresponding author.
*** Corresponding author.

E-mail addresses: liuzy@tsinghua.edu.cn (Z. Liu), aihuang@tsinghua.edu.cn (M. Huang), hanwentao@tsinghua.edu.cn (W. Han).
1 Equal contribution.

Contents lists available at ScienceDirect

AI Open

journal homepage: www.sciencedirect.com/journal/ai-open

https://doi.org/10.1016/j.aiopen.2021.12.003
Received 21 June 2021; Accepted 30 December 2021

https://github.com/TsinghuaAI/CPM
mailto:liuzy@tsinghua.edu.cn
mailto:aihuang@tsinghua.edu.cn
mailto:hanwentao@tsinghua.edu.cn
www.sciencedirect.com/science/journal/26666510
https://www.sciencedirect.com/journal/ai-open
https://doi.org/10.1016/j.aiopen.2021.12.003
https://doi.org/10.1016/j.aiopen.2021.12.003
https://doi.org/10.1016/j.aiopen.2021.12.003
http://creativecommons.org/licenses/by-nc-nd/4.0/

AI Open 2 (2021) 216–224

217

whose parameters are usually less than 0.01% of the whole model
parameters.

(3) We design a high-performance and memory-efficient inference
framework INFMOE with a dynamically-scheduled offloading
strategy, to support the inference of MoE models on a single GPU.

Based on our optimized pipeline for PLMs, we develop two large-
scale Cost-efficient Pre-trained language Models (CPM-2), an Chinese-
English bilingual models with 11 billion parameters and its Mixture-
of-Experts (MoE) version with 198 billion parameters. Specifically, we
accelerate the pre-training process by dividing the pre-training process
into three stages with knowledge inheritance: Chinese pre-training,
bilingual pre-training, and MoE pre-training. Then, we compare CPM-
2 with mT5 (Xue et al., 2020). Experimental results show that CPM-2
has excellent general language intelligence, including seven specific
language capabilities. Based on CPM-2, we search for the best practice of
prompt tuning. We find that (1) the positions of prompts are crucial and
(2) combining prompt tuning and fine-tuning can lead to better results.
Finally, we introduce INFMOE for users to conduct inference of large-scale
models with tens of billions of parameters on a single GPU.

2. Pre-training

In this section, we present the pre-training details of CPM-2.

2.1. Model

CPM-2 is a standard Transformer-based model combined with a
bidirectional encoder and a unidirectional decoder (Vaswani et al.,
2017). The comparisons between our models and CPM (Zhang et al.,
2020) are presented in Table 1. To efficiently store model parameters on
GPUs, we use the model parallelism (Shoeybi et al., 2019), which splits
self-attention layers and feed-forward layers along the width dimension,
and finally distributes the partitions of one model on 4 GPUs.

To reduce memory requirements and speed up pre-training, we use
mixed-precision training (Micikevicius et al., 2018), gradient check-
pointing (Chen et al., 2016) and ZERO-stage-1 optimization (Rajbhan-
dari et al., 2020; Rasley et al., 2020).

For CPM-2-MoE, we expand the feed-forward layer of each Trans-
former block to multiple experts. During the forward pass, for each
token, we select one expert according to its current hidden state with a
gating function. We balance the expert selection using the planning
approach of BASE Layers (Lewis et al., 2021).

2.2. Data processing

We pre-train our model on WuDaoCorpus (Yuan, 2021), which
contains 2.3 TB cleaned Chinese data as well as 300 GB cleaned English
data. Data in both languages are collected from multiple domains,
including encyclopedia, novels, Q&A, scientific literature, e-book, news,
and reviews.

To efficiently tokenize our pre-training corpus, we explore to reduce
the redundancy brought by sentencepiece (Kudo and Richardson, 2018)
to improve the vocabulary of CPM.

We find that the original sentencepiece tokenizer will insert many

redundant white space tokens ”_” to tokenized sequences. This makes
the sequences become much longer. Since the implementation of sen-
tencepiece has a weak encapsulation of interfaces, it is unfriendly to-
wards programmers. We replace the sentencepiece tokenizer with a
simple prefix matching and remove the white space insertion. Compared
with sentencepiece, our newly-implemented tokenizer is more effective
and easier to use.

Besides, in the writing system of Chinese, it is not important whether
a token in the vocabulary appears at the beginning of a word or not, we
merge the tokens like “快乐” (happy) and “_快乐; ” (_happy) to a single
token “快乐; ” (happy) to simplify the vocabulary.

2.3. Pre-training with knowledge inheritance

The pre-training process of CPM-2 can be divided into three stages:
Chinese pre-training, bilingual pre-training, and MoE pre-training.
Compared to training models from scratch, multi-stage training with
knowledge inheritance (Qin et al., 2021) can significantly reduce the
computation cost.

Chinese Stage. In this stage, we only use Chinese texts as the
training data. We suppose the model can focus on learning Chinese in-
formation and have a good basis to generalize to other languages.

Bilingual Stage. In this stage, we further pre-train the model from
the Chinese stage on both Chinese and English texts. There are two main
challenges, how to initialize the input embeddings of English tokens and
how to prevent the model from catastrophic forgetting. (1) When
initializing English embeddings, we use the embeddings of their prefixes
to initialize their embeddings, making the English tokens more familiar
to the model. If all prefixes of an English token are not in the original
vocabulary, we randomly select an existing token embedding for
initialization. (2) To eliminate the effect of catastrophic forgetting, we
carefully design the ratio between English data and Chinese data. In the
experiment, we find 1:2 can well maintain the language knowledge of
Chinese and capture new knowledge of English.

MoE Stage. In this stage, we duplicate the model from the bilingual
stage several times to initialize an MoE model. For the gating network,
we adopt a random projection as a local sensitive hashing function
(Har-Peled et al., 2012) and will not update the gating network in this
stage. We suppose that the representation space of the model of the
second stage is well organized, where similar tokens should use the same
expert.

3. Evaluation setups

To validate the effectiveness of our model, we evaluate CPM-2 on a
general language intelligence benchmark, CUGE Yao (2021). CUGE
consists of 40 mainstream Chinese NLP datasets and each dataset is
categorized into one of the important types of language capabilities. Due
to the limitation of computation, we select a representative dataset for
each language capability to speed up the experiments. We describe each
language capability and dataset as follows. The detailed statistics of
these datasets are shown in Table 2.

Recall Capability. Recall capability aims to evaluate the models’
ability to memorize and apply the general literature knowledge, such as
the famous quotes, classical poems, and idioms. We adopt Chinese

Table 1
Comparisons between CPM and CPM-2. nparam is the amount of model parameters. L is the number of model layers. nhead is the number of attention heads in each layer.
dhead is the dimension of each attention head. dff is the intermediate dimension of feed-forward layers. dmodel is the dimension of hidden states.

nparam L nhead dhead dff dmodel Encoder Decoder MoE

CPM-Small 109M 12 12 64 3,072 768 ⨯ ✓ ⨯
CPM-Medium 334M 24 16 64 4,096 1,024 ⨯ ✓ ⨯
CPM-Large 2.6B 32 32 80 10,240 2,560 ⨯ ✓ ⨯
CPM-2 11B 24 64 64 10,240 4,096 ✓ ✓ ⨯
CPM-2-MoE 198B 24 64 64 10,240 4,096 ✓ ✓ ✓

Z. Zhang et al.

AI Open 2 (2021) 216–224

218

Classical Poetry Matching Dataset (CCPM) (Li et al., 2021) to test the
models’ recall ability. Given a modern Chinese translation of a classic
poem, the model is required to select the corresponding poem from four
candidates.

Comprehension Capability. Comprehension capability aims to
evaluate the models’ ability to understand the given text and perform
reasoning for specific tasks. For this capability, we select the C3 dataset
(Sun et al., 2020) to evaluate our model. C3 is a free-form multi-
ple-choice reading comprehension dataset, which requires the model to
understand the given documents or dialogues and answer several related
questions.

Calculation Capability. Calculation capability aims to test the
models’ ability to perform numerical reasoning. For this capability, we
select Math23K (Wang et al., 2017), which consists of tens of thousands
of real math word problems for elementary school students.

Cross-lingual Capability. Cross-lingual capability aims to evaluate
the models’ performance in understanding multi-lingual text. We adopt
the machine translation task to evaluate the ability of CPM-2 in under-
standing English and Chinese sentences. The dataset we used in this task
is provided by WMT20 (Barrault et al., 2020).

Summarization Capability. Summarization requires the model to
read a long document and produce a concise summary while keeping the
key information. We utilize LCSTS (Hu et al., 2015) to evaluate the
summarization capability. LCSTS consists of tweets and their corre-
sponding abstracts from the largest Chinese microblogging website (Sina
Weibo).

Classification Capability. Text classification is a classic task in
natural language processing. We evaluate the classification capability
with a large-scale natural language inference dataset, LCQMC (Liu et al.,
2018a). Given two questions, LCQMC requires the model to answer
whether the two questions express similar intent.

Generation Capability. Text generation is one of the important
tasks in natural language processing, which aims to generate fluent and
diverse text. We adopt the AdGen (Shao et al., 2019) as our benchmark,
which requires the model to generate long advertising text given the
several keywords.

We transform different tasks to a unified sequence-to-sequence
format except for Sogou-Log. For Sogou-log, we train models in a
contrastive manner following previous work (Liu et al., 2018b). Besides
the original metrics, such as accuracy and BLEU, we also report the
CUGE score of each dataset, which is the percentage between the per-
formance of the evaluated model and that of mT5-small.

We compare our model with mT5 (Xue et al., 2020), including
mT5-small, mtT5-large, and mT5-XXL. Notably, mT5-XXL also adopts an
encoder-decoder architecture with 13 billion parameters, which is
comparable to CPM-2. To the best of our knowledge, Pangu-α (Zeng
et al., 2021) with 200 billion parameters is the largest Chinese
pre-trained language model, which performs well in many downstream
tasks. However, the parameters of Pangu-α are not publicly available,
and thus we leave the comparison between CPM-2 and Pangu-α as future
work.

4. Fine-tuning

In this section, we fine-tune CPM-2 and mT5 on downstream tasks to
evaluate their general language intelligence.

4.1. Experimental setups

We adjust maximum lengths, batch sizes, learning rates for different
models and datasets. Considering that the tokenizers of CPM-2 and mT5
are different, we first tokenize the whole dataset and then set the
maximum length of samples as the maximum length instead of a pre-
defined length. For the batch size, we search from 128 to 512 to
ensure the number of input tokens is around 216 following Raffel et al.
(2020). For learning rates, we search from 1e-6 to 1e-4 and we find that
larger models prefer smaller values.

4.2. Results

The results of fine-tuning are shown in Table 3. We observe that
CPM-2 is better than mT5 in most language capabilities, including
Chinese language understanding, generation and English to Chinese
translation. Especially, CPM-2 outperforms mT5-XXL by over 10% in
Math23K, which is for calculation capability. On the overall CUGE score,
CPM-2 outperforms mT5-XXL by over 4%. This demonstrates that CPM-
2 is an omnipotent large-scale multi-lingual PLM.

5. Prompt tuning

In this section, we study prompt tuning Brian Lester et al. (2021)
based on CPM-2. Different from conventional fine-tuning, prompt tun-
ing inserts several prompt tokens into the original inputs and only up-
dates the parameters of the inserted prompt tokens. For better
clarification, we refer to the conventional full-parameter fine-tuning
(Devlin et al., 2019) as full-model tuning. Throughout our experi-
ments, we keep the number of prompt tokens as 100 to control the
number of trainable parameters and initialize the parameters randomly.
In the prompt tuning setting, the amount of the parameters needed to
update is only 409.6K. Compared to the 11B parameters of full-model
tuning, prompt tuning only needs to modify 0.003 7% parameters. We
present the main results of prompt tuning in Section 5.1. We also explore
how the positions of inserted prompt tokens affect the model perfor-
mance (Section 5.2), how the prompt tokens work (Section 5.3), and
propose a two-stage fine-tuning strategy to improve model performance
on downstream tasks (Section 5.4).

5.1. Main results

We present the model performance and GPU memory usage of both
full-model tuning and prompt tuning in Table 4. From the results, we
have two observations. (1) With prompt tuning, CPM-2 can achieve
comparable performance to full-model tuning on most of tasks. How-
ever, prompt tuning significantly degrades the performance on Sogou-
Log. The reason may be that Sogou-Log adopts a contrastive loss,
which is different from other datasets and difficult to optimize under
prompt tuning. (2) Prompt tuning is much more memory-efficient. The
results of the GPU memory usage show that prompt tuning can save at
most 50% GPU memory compared with full-model tuning. This is
because when the model is trained with the Adam optimizer, gradients
and optimizer states account for a large proportion of the overall GPU
memory. Since the number of parameters needed to be optimized is
much smaller in prompt tuning, the total sizes of gradient tensors and
optimizer state tensors decrease. Note that small sizes of gradient tensors
and optimizer state tensors also lead to small communication overhead

Table 2
Numbers of instances in each dataset.

CCPM C3 Sogou-Log WMT20-enzh Math23K LCSTS LCQMC AdGen

Train 21k 8k 8,052k 21,000k 21k 2,400k 238k 114k
Valid 2.7k 2.7k 500k 2k 1k 8.6k 8.8k 1k
Test 2.7k 2.7k 1k 2k 1k 0.7k 12.5k 3k

Z. Zhang et al.

AI Open 2 (2021) 216–224

219

during the synchronization of distributed training. This makes the
optimization of a single step in prompt tuning faster than full-model
tuning. However, we also observe that it takes much more steps for
prompt tuning to converge than full-model tuning, which makes the
whole time of prompt tuning longer. We leave the question “How to
accelerate the convergence of prompt tuning?” to future work.

5.2. Position of prompt

We study the effect of the positions of the inserted prompt tokens. For
single-sequence tasks, such as Math23k, there exist 3 strategies to insert
the prompt: front, back, and front + back. For multi-sequence tasks, such
as LCQMC, prompt tokens can also be inserted between two of the input
sequences (middle). For a two-sequence input, there are 7 strategies to
insert the prompt tokens. The illustration of all possible prompt in-
sertions of the two-sequence input task is shown in Fig. 1.

We conduct experiments on Math23k and LCQMC to evaluate the
effect of prompt positions. We keep the number of prompt tokens as 100.
When there are 2 positions to insert tokens, we insert 50 tokens at each
position. When there are 3 positions, we insert 33, 34, 33 tokens at each
position. The results are shown in Table 5.

From the table, we have two observations. (1) For the single sentence
task (Math23k), the positions of the prompt tokens have no significant
influence on the model performance. (2) For the multi-sentence task
(LCQMC), whether to insert the prompt between sentences significantly

matters. Compared with inserting prompts between the two input sen-
tences, only considering the front and the back positions leads to about
2% accuracy drop.

To study the effect in the learning process, we plot the accuracy
curves on the LCQMC dev set of different prompt positions. Further-
more, we take F + M as an example and change the proportion of the
number of prompt tokens at different positions. The results are shown in
Fig. 2. In Fig. 2(b), R denotes the ratio between the middle prompt token
number and the total prompt token number.

From the figure, we can conclude that: (1) As Fig. 2(a) shows, for
“Front”, “Back” and “Front + Back” strategies, the convergence is much
slower than the strategies with prompt tokens inserted between the two
input sentences, which means it is necessary to insert the prompt be-
tween sentences to improve convergence speed. (2) As Fig. 2(b) shows,
when R = 0.00 (front) R = 0.01 and R = 0.02 (insert 1 or 2 tokens be-
tween sentences), the model converges slowly.But when we insert 5 or
more tokens between the two sentences, the convergence speed is
significantly improved. This means only a few middle-inserted tokens
can help the model converge and when we add more tokens afterward,
the impact of the middle token number is much less.

We think that the influence of the prompt token positions is related to
the relative position embedding we use in CPM-2. When there are
multiple input sentences, CPM-2 needs to model the tokens with a long
distance. For relative position embedding, the long-range tokens will be
assigned the same position embeddings, which may harm long-distance
modeling. The prompt tokens inserted between sentences can bridge the
gap between long-range tokens, which makes it easier for the model to
learn the relationships between two input sentences.

Table 3
Performance of mT5 and CPM-2 with fine-tuning. We use the first 6 datasets, which makes up the lite version of CUGE, to compute the overall CUGE scores (%). The
numbers in brackets are the CUEG scores (%) for each dataset.

CCPM C3 Sogou-Log WMT20 Math23K LCSTS LCQMC AdGen CUGE

Acc Acc MRR/NDCG BLEU Acc Rouge-L Acc BLEU/Distinct Score
mT5-small 87.7(100) 41.5(100) 29.2/29.2(100) 9.1(100) 18.4(100) 33.1(100) 82.1(100) 10.2/32.3(100) 100
mT5-large 89.9(102) 56.3(136) 32.2/31.1(108) 11.1(122) 34.3(186) 34.4(104) 85.0(104) 10.0/35.5(104) 126
mT5-XXL 90.6(103) 86.4(208) 36.9/34.9(123) 24.0(264) 61.6(335) 34.8(105) 88.3(108) 9.8/68.7(154) 190
CPM-2 91.6(104) 86.1(207) 36.3/35.5(123) 26.2(288) 69.4(377) 35.9(108) 89.2(109) 10.6/70.2(161) 198

Table 4
Comparisons between fine-tuning and prompt tuning. CPM-2-F represents fine-tuning. CPM-2-P represents prompt tuning. Δ(P − F) means the difference between fine-
tuning and prompt tuning.

CCPM C3 Sogou-Log WMT20 Math23K LCSTS LCQMC AdGen

Performance on test set
Acc Acc MRR/NDCG BLEU Acc Rouge-L Acc BLEU/Distinct

CPM-2-F 91.63 86.05 36.28/35.49 26.21 69.37 35.88 89.16 10.60/70.22
CPM-2-P 90.85 85.33 30.28/30.64 24.13 67.48 34.17 88.36 8.63/72.02
Δ(P − F) − 0.78 − 0.72 − 6.00/ − 4.85 − 2.08 − 1.89 − 1.71 − 0.80 − 1.97/+1.80
GPU memory usage(%)
CPM-2-F 98 96 88 98 93 98 98 98
CPM-2-P 50 46 49 75 68 76 54 53
Δ(P − F) − 48 − 50 − 39 − 23 − 25 − 22 − 44 − 45

Fig. 1. Different designs to insert prompts for the task with two input se-
quences, S1 and S2. P1, P2, P3 represent different input prompts. F, B, M
represent Front, Back, and Middle, respectively.

Table 5
Effects of prompt positions on Math23k and LCQMC. For both datasets, we
report the accuracy on dev sets.

Math23k LCQMC

F 71.74 88.38
B 72.40 88.50
F + B 72.66 88.48

M – 89.20
F + M – 90.21
M + B – 90.38
F + M + B – 90.65

Z. Zhang et al.

AI Open 2 (2021) 216–224

220

5.3. How prompt works

Although prompt tuning can reach comparable performance with
full-model tuning by only modifying a small number of parameters, the
working mechanisms of prompt tuning are still unclear. We assume that
the prompt can play two kinds of roles: (1) Working as a “Provider”.
Provide an additional context for the model input. (2) Working as an
“Aggregator”. Aggregate the information from the input text.

To verify our hypothesis, we use attention masks to control the at-
tentions between the prompt tokens and the text tokens. Specifically, for
“Provider”, we mask the attention from the prompt to text tokens such
that the representations of prompt tokens can not be computed by
attending to text tokens, disabling their ability to aggregate information.
But they can still work as contexts and provide information to text to-
kens. For “Aggregator”, on the contrary, we mask the attentions from
text tokens to prompt tokens. In this way, prompt tokens can not work as
contexts but can aggregate information by attending to text tokens. The
illustration of our attention mask is shown in Fig. 3.

We add the attention masks mentioned above to the model when
doing prompt tuning. We conduct experiments on on C3, Math23k,
LCQMC, and CCPM. The results are shown in Table 6.

From the table, we can conclude that: (1) Both attention masks hurt
the model performance on the two datasets. This means that the prompt

Fig. 2. Accuracy curves on the LCQMC dev set with different prompt inser-
tion strategies.

Fig. 3. Attention masks for ”Provider” and ”Aggregator”. P1, P2, P3 are
prompt tokens.

Table 6
Results of masking the attentions between prompts and texts. “Mask P to T”
means masking the attention weights from the prompt to the text and “Mask T to
P” means masking the attention weights from the text to the prompt. For both
datasets, we report the accuracy on dev sets.

C3 Math23K LCQMC CCPM

Full Attention 85.75 71.74 90.21 93.19
Mask P to T 83.84 69.92 81.50 92.78
Mask T to P 68.54 35.29 79.45 86.90

Z. Zhang et al.

AI Open 2 (2021) 216–224

221

should work as ”Provider” and ”Aggregator” at the same time for the
model to reach good performance. (2) The impact of masking attention
from text to prompt is larger than that of masking attention from prompt
to text. This means prompt tokens are more likely to work as ”Provider”
than as ”Aggregator” in prompt tuning.

5.4. Two-stage fine-tuning

Previous work (Schick and Schütze, 2020a,b) has shown that good
prompts can help stimulate model ability in full-model tuning. However,
most of them explore to manually design prompts or search prompts in a
discrete space, which requires many human efforts. To make the prompt
design easier, we attempt to search for good prompts in a continuous
space, which can benefit full-model tuning afterward. Specifically, we
propose to fine-tune models with two stages. In the first stage, we
perform prompt tuning to search for a prompt suitable for the down-
stream task. Then, in the second stage, we fine-tune the whole model
together with the prompt token embeddings. We hope that the model
can take advantage of the prompt that we have found in the first stage
and have better performance than the vanilla full-model tuning. We
conduct experiments on C3, Math23k, LCQMC, and CCPM. We try
several prompts given by the first stage and select the one with the best
results in the second stage. For each dataset, we use the same
hyper-parameters as in Sections 4 and 5.1. Our results on dev set are
shown in Table 7.

From the table, we have three observations: (1) Two-stage fine-
tuning can significantly improve the model performance on C3 and
Math23k datasets by 2.16% and 1.41%, respectively. On the LCQMC
dataset, two-stage fine-tuning has a similar performance as vanilla full-
model tuning. We think this is because the LCQMC dataset is relatively
easier than the other two datasets and vanilla fine-tuning can perform
well enough without a better prompt. (2) If we fix the prompt parame-
ters during the second stage (“+fix prompt”), the model performance
does not change much. We think this is because as fine-tuning goes, the
gradients become small when backward to the input prompt. Therefore,
the prompt tokens do not change much even when they are not fixed. (3)
Without the first stage (“-stage 1”), even if we add additional parame-
ters, the model can not reach a good performance, which proves the
necessity of our two-stage fine-tuning.

6. INFMOE: memory-efficient inference framework for MoE layers

Although MoE linear layers could outperform dense linear layers
with almost the same computational cost (Fedus et al., 2021), they
greatly enlarge the number of model parameters and require more
memory to store these parameters. When increasing the number of ex-

perts, the parameter size of the model can easily reach the order of tens
or even hundreds of GBs. Such storage requirements greatly exceed the
capacity of commodity GPUs, bringing difficulty not only to model
training but also to model inference.

To make well-trained MoE layers more accessible to downstream
tasks (e.g., to researchers using the aforementioned prompt tuning for
downstream tasks), we introduce INFMOE,2 a high-performance and
memory-efficient inference framework that can offload parameters of
experts of MoE layers to CPU memory.

INFMOE enables the inference of MoE layers with hundreds of billions
of parameters using one single GPU. To preserve the efficiency of
computation, we design a dynamic scheduling strategy that can overlap
data movement of parameters with inference computation to the
greatest extent.

6.1. Existing inference frameworks

PyTorch and TensorFlow are widely-used deep learning frameworks
in industry and academia for both training and inference. There are also
many other frameworks like TensorRT and ONNX Runtime that are
specially designed for efficient model inference on different devices.
However, they are currently not fit for the efficient inference of MoE
layers for various reasons.

One category of these frameworks, like TensorFlow Serving, uses
static computational graphs for training and inference. Typically, graphs
can only be moved between CPUs and GPUs as a whole, so it is difficult
to offload selected parameters in the inference process. Currently, no
existing static-graph-based framework can provide full support for all
required operators of MoE layers.

Another category, including PyTorch, uses dynamic computational
graphs and provides simple interfaces to control data storage location
(such as layer.cuda() and layer.cpu(). However, these frameworks usu-
ally take full control of the scheduling of computation and data move-
ment. When handling MoE layers, they do not provide enough flexibility
to implement the aforementioned overlapping mechanism. FastMoE (He
et al., 2021) is a novel high-performance MoE implementation on top of
PyTorch. However, FastMoE focuses on large-scale distributed training
and also lacks delicate control on scheduling.

TensorRT is a high-performance (yet relatively low-level) inference
SDK developed by NVIDIA. It employs several optimization techniques
like tensor fusion, kernel auto-tuning, and memory reusing. Our toolkit
INFMOE is developed based on TensorRT. The reason why we choose
TensorRT is that it supports custom plugins. Therefore, we can imple-
ment our own plugin only for MoE layers with a specially designed
scheduling strategy, handing over the remaining layers to TensorRT to
get optimal performance.

6.2. Scheduling strategy for offloading

The main challenge of the offloaded MoE layer inference lies in
workload imbalance, as the amount of computation performed on
different experts may be unbalanced. Tokens are routed and batched to
different experts before computation. The workload distribution of ex-
perts may vary with different gating mechanisms (Lewis et al., 2021;
Lepikhin et al., 2020; Fedus et al., 2021). Experts having more tokens to
process will spend more time in computation, while the overhead of data
movement (which must be done prior to its computation) of each expert
remains the same, for they all have the same amount of parameters.

In INFMOE, by using different CUDA streams, parameter-loading and
computation of different experts can be easily overlapped (i.e., executed
at the same time). However, as shown in Fig. 4(a), naïvely running ex-
perts in order easily leads to a waste of time on waiting for parameter
loading due to the imbalanced computation time.

In order to maximize the overlap between the communication and
computation, we design a dynamic schedule strategy in INFMOE to reorder
the loading and computation sequence of these experts:

Table 7
Results of two-stage fine-tuning on three tasks using the dev sets. CPM-2-F stands
for full-model tuning CPM-2-P stands for prompt tuning. CPM-2-P + F is our two-
stage fine-tuning. “+fix prompt” means we fix the parameters of the prompt we
have found in stage 1 when we do full-model tuning in stage 2. “-stage 1” means
we randomly initialize the prompt tokens and do full-model tuning directly
without stage 1.

C3 Math23k LCQMC CCPM

CPM-2-F 85.66 73.85 90.88 93.00
CPM-2-P 85.75 71.74 90.21 93.19
CPM-2-P + F 86.77 75.26 90.45 93.42
+fix prompt 86.27 76.17 89.64 93.01
-stage 1 85.04 72.40 88.76 92.76

2 INFMOE is an open-source toolkit with MIT License at https://github.com/
TsinghuaAI/InfMoE.

Z. Zhang et al.

https://github.com/TsinghuaAI/InfMoE
https://github.com/TsinghuaAI/InfMoE

AI Open 2 (2021) 216–224

222

Assuming there are T experts in an MoE layer, we can estimate the
computation time of the i-th expert (denoted as αi) and its communi-
cation time (denoted as β). αi is obtained by dividing the number of
floating operations by the peak computation performance of the GPU.
With common expert workload (such as feed-forward layers in Trans-
formers), it is proportional to the number of tokens. β can be calculated
as the size of parameters to load from the CPU divided by the peak
bandwidth of the GPU. It remains the same for all experts. In addition,
due to the limit of GPU memory capacity and the existence of parameters
belonging to non-MoE layers, only the parameters of a certain number
(denoted as K and can be either configured or automatically inferred) of
experts can reside in GPU memory simultaneously.

In order to obtain optimal overlapping with negligible cost, INFMOE

use a greedy algorithm to generate a computation order of experts that
satisfies the following two constraints:

● ∀1 ≤ t ≤ T,
∑t− 1

i=1αi ≥ (t − 1)β. This means the parameter loading of
each expert can be fully covered by the computation of previously
loaded experts.

● ∀1 ≤ t ≤ T,
∑t− 1

i=1αi ≤ (t + K − 1)β. This means no more than K ex-
perts will be loaded to GPU memory simultaneously during the
whole process.

This computation order can guarantee that no expert would have to
wait for the loading of its parameters except the first one, thus fully
hiding the overhead of data movement caused by offloading and
leveraging full GPU computing performance (as shown in Fig. 4(b). It is
possible that these constraints cannot be satisfied at the same time. Such
unsatisfiability indicates either the total computation amount is too
small, or the workload is extremely imbalanced. The former cause can be
mitigated by increasing the batch size, while the latter is out of the scope
for inference. As for the MoE gating mechanism described in Section 2.3,
it shows a relatively good balance between experts in our evaluation,
thus fits well for INFMOE.

We evaluate the effectiveness of INFMOE by inputting 40 instances into
CPM-2-MoE with a single GPU. The computation times are reported in
Fig. 5. From the figure, we can find that using INFMOE for inference can
overlap parameter movement and inference computation.

7. More promising directions for effective and efficient pre-
trained language models

In this section, we will briefly introduce our four novel explorations
in tokenization, architecture, pre-training, and fine-tuning to achieve a
more efficient pipeline of PLMs.

7.1. Tokenization based on pronunciation and glyph

For Chinese PLMs, input tokenization is quite important. The con-
ventional tokenization methods applied by existing PLMs may treat each
character as an indivisible token. However, there is more linguistic in-
formation beyond characters. To explore a better tokenization method
for Chinese PLMs, we consider pronunciation, glyph, and word seg-
mentation to tokenize the input for PLMs. More specifically, we build
pronunciation-based tokenizers, glyph-based tokenizers, and
segmentation-based tokenizers respectively, and then systematically
evaluate their performance based on BERT. Sufficient experimental re-
sults on various downstream NLU tasks have shown that applying
pronunciation-based and glyph-based tokenizers can outperform exist-
ing used character-based tokenizers, and is more robust on the text
noise. For more details, we refer to our paper (Si et al., 2021).

7.2. Architecture based on non-euclidean geometry

Some recent efforts have shown that models learned in non-
Euclidean geometry could better model complex data, especially those
hyperbolic neural networks. However, existing hyperbolic networks are
not completely hyperbolic, and training a deep hyperbolic network is
also not trivial. To this end, we introduce a fully hyperbolic framework
to build hyperbolic networks based on the Lorentz model and the Lor-
entz transformations. Based on the fully hyperbolic framework, we
successfully train a hyperbolic Transformer and outperform existing
Euclidean baselines. The experimental results show that hyperbolic
Transformers can achieve comparable performance to Euclidean
Transformers with half the size of model parameters, which may lead to
more efficient PLMs in the future. In our paper (Chen et al., 2021), we
introduce more details of building hyperbolic neural networks.

7.3. Pre-training based on knowledge inheritance

As we mentioned before, large-scale PLMs have achieved success on
various NLP tasks. However, training a large-scale PLM requires huge
amounts of computational resources, which is time-consuming and
expensive. Hence, taking the availability of existing well-trained PLMs
into consideration is of importance. To this end, we propose knowledge
inheritance to make previously trained PLMs benefit later larger PLMs.
In fact, CPM-2 is built based on knowledge inheritance. In (Qin et al.,
2021), we introduce the overall framework of knowledge inheritance,
indicating the effect of teacher PLMs’ settings, including pre-training
methods, model architectures, training data, etc. For more details, we
refer to our original paper.

Fig. 4. Different scheduling strategies of load-imbalanced experts (L: param-
eter loading, C: computation).

Fig. 5. For our MoE model with 32 experts, we give the time (seconds) of
inference computation, parameter movement, inference with INFMOE, and
inference without INFMOE.

Z. Zhang et al.

AI Open 2 (2021) 216–224

223

7.4. Fine-tuning based on rich knowledge

In our experiments, we have shown that CPM-2 can perform well
with prompt tuning, as additional prompts can stimulate the rich
knowledge of PLMs to better serve downstream tasks. Besides model
knowledge distributed in PLMs, we explore utilizing the prior knowl-
edge to make fine-tuning PLMs more efficient and effective. To this end,
we propose prompt tuning with rules, which can apply logic rules to
construct prompts with several sub-prompts. By encoding prior knowl-
edge of each class into prompt tuning, PLMs can converge faster and
achieve better results on downstream tasks. More details of this part are
included in our paper (Han et al., 2021).

8. Conclusion

In this work, we propose a cost-effective pipeline for large-scale pre-
trained language models, including pre-training with knowledge in-
heritance, fine-tuning based on prompt, and inference with dynamic
scheduling. Correspondingly, we provide models and codes to support
future applications with large-scale models. In the next stage, we will try
to continually update our CPM models with emerging data gathered
from the Internet to further improve model performance.

Contributions

Yuxian Gu and Zhengyan Zhang implemented the basic pre-
training framework.

Xu Han implemented the pipeline parallel strategy for better
efficiency.

Zhengyan Zhang implemented the MoE pre-training.
Yuxian Gu, Zhengyan Zhang, Chaojun Xiao, and Xu Han imple-

mented the downstream tasks.
Shengqi Chen, Zhenbo Sun, Xu Han, and Yanzheng Cai imple-

mented the toolkit of INFMOE.
Jian Guan, Pei Ke, Guoyang Zeng, and Zhixing Tan prepared the

pre-training data.
Yuan Yao and Fanchao Qi prepared the fine-tuning data.
Zhengyan Zhang, Yuxian Gu, Xu Han, Chaojun Xiao, Zhenbo

Sun, and Shengqi Chen wrote the paper.
Zhiyuan Liu, Minlie Huang, and Wentao Han designed and led the

research.
Yang Liu, Xiaoyan Zhu, Maosong Sun provided valuable advice to

the research.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

Thanks to the Beijing Academy of Artificial Intelligence (BAAI) for
providing the computing resources. This work is also supported by the
National Key Research and Development Program of China (No.
2020AAA0106501). In addition, we would like to thank BAAI, NetEase
Inc., zhihu.com, and aminer.cn for the support in collecting the Chinese
corpus.

References

Alexey Dosovitskiy, Beyer, Lucas, Alexander, Kolesnikov, Weissenborn, Dirk,
Zhai, Xiaohua, Unterthiner, Thomas, Dehghani, Mostafa, Minderer, Matthias,
Heigold, Georg, Gelly, Sylvain, Uszkoreit, Jakob, Houlsby, Neil, 2020. An Image Is
Worth 16x16 Words: Transformers for Image Recognition at Scale arXiv preprint,
arXiv:2010.11929.

Barrault, Loïc, Biesialska, Magdalena, Bojar, Ondřej, Marta, R., Costa-jussà,
Federmann, Christian, Graham, Yvette, Grundkiewicz, Roman, Barry, Haddow,
Huck, Matthias, Joanis, Eric, Kocmi, Tom, Koehn, Philipp, Lo, Chi-kiu,
Ljubešić, Nikola, Monz, Christof, Morishita, Makoto, Nagata, Masaaki,
Nakazawa, Toshiaki, Pal, Santanu, Post, Matt, Zampieri, Marcos, 2020. Findings of
the 2020 conference on machine translation (WMT20). In: Proceedings of
Conference on Machine Translation, pp. 1–55.

Bengio, Yoshua, 2013. Deep learning of representations: Looking forward. In:
Proceedings of SLSP, vol. 7978, pp. 1–37 (Springer).

Lester, Brian, Al-Rfou, Rami, Constant, Noah, 2021. The Power of Scale for Parameter-
Efficient Prompt Tuning arXiv preprint arXiv:2104.08691.

Brown, Tom B., Mann, Benjamin, Ryder, Nick, Subbiah, Melanie, Kaplan, Jared,
Dhariwal, Prafulla, Neelakantan, Arvind, Shyam, Pranav, Sastry, Girish,
Askell, Amanda, Agarwal, Sandhini, Herbert-Voss, Ariel, Krueger, Gretchen,
Tom, Henighan, Child, Rewon, Ramesh, Aditya, Ziegler, Daniel M., Wu, Jeffrey,
Winter, Clemens, Hesse, Christopher, Chen, Mark, Sigler, Eric, Litwin, Mateusz,
Gray, Scott, Chess, Benjamin, Clark, Jack, Berner, Christopher, McCandlish, Sam,
Radford, Alec, Sutskever, Ilya, Amodei, Dario, 2020. Language models are few-shot
learners. In: Proceedings of NeurIPS.

Chen, Tianqi, Xu, Bing, Zhang, Chiyuan, Guestrin, Carlos, 2016. Training Deep Nets with
Sublinear Memory Cost arXiv preprint, arXiv:1604.06174.

Chen, Weize, Han, Xu, Lin, Yankai, Zhao, Hexu, Liu, Zhiyuan, Peng, Li, Sun, Maosong,
Zhou, Jie, 2021. Fully Hyperbolic Neural Networks. Technical report.

Devlin, J., Chang, Ming-Wei, Lee, Kenton, Toutanova, Kristina, 2019. BERT: pre-training
of deep bidirectional transformers for language understanding. In: Proceedings of
NAACL-HLT.

Fedus, William, Zoph, Barret, Shazeer, Noam, 2021. Switch Transformers: Scaling to
Trillion Parameter Models with Simple and Efficient Sparsity arXiv preprint, arXiv:
2101.03961.

Han, Xu, Zhao, Weilin, Ding, Ning, Liu, Zhiyuan, Sun, Maosong, 2021. PTR: Prompt
Tuning with Rules for Text Classification arXiv preprint, arXiv:2105.11259.

Har-Peled, Sariel, Indyk, Piotr, Motwani, Rajeev, 2012. Approximate nearest neighbor:
towards removing the curse of dimensionality. Theor. Comput. 8 (1), 321–350.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, Sun, Jian, 2016. Deep residual learning for
image recognition. In: Proceedings of CVPR.

He, Jiaao, Qiu, Jiezhong, Zeng, Aohan, Yang, Zhilin, Zhai, Jidong, Tang, Jie, 2021.
FastMoE: A Fast Mixture-Of-Expert Training System arXiv preprint, arXiv:
2103.13262.

Hu, Baotian, Chen, Qingcai, Zhu, Fangze, 2015. Lcsts: a large scale Chinese short text
summarization dataset. In: Proceedings of EMNLP, pp. 1967–1972.

Kudo, Taku, Richardson, John, 2018. Sentencepiece: a simple and language independent
subword tokenizer and detokenizer for neural text processing. In: Proceedings of
EMNLP.

Lepikhin, Dmitry, Lee, HyoukJoong, Xu, Yuanzhong, Chen, Dehao, Firat, Orhan,
Huang, Yanping, Krikun, Maxim, Shazeer, Noam, Chen, Zhifeng, 2020. Gshard:
Scaling Giant Models with Conditional Computation and Automatic Sharding arXiv
preprint, arXiv:2006.16668.

Lewis, Mike, Bhosale, Shruti, Tim Dettmers, Goyal, Naman, Zettlemoyer, Luke, 2021.
BASE Layers: Simplifying Training of Large, Sparse Models arXiv preprint, arXiv:
2103.16716.

Li, Wenhao, Qi, Fanchao, Sun, Maosong, Yi, Xiaoyuan, Zhang, Jiarui, 2021. Ccpm: A
Chinese Classical Poetry Matching Dataset arXiv preprint arXiv:2106.01979.

Liu, Xin, Chen, Qingcai, Deng, Chong, Zeng, Huajun, Chen, Jing, Li, Dongfang,
Tang, Buzhou, 2018a. LCQMC:a large-scale Chinese question matching corpus. In:
Proceedings of COLING, pp. 1952–1962.

Liu, Zhenghao, Xiong, Chenyan, Sun, Maosong, Liu, Zhiyuan, 2018b. Entity-duet neural
ranking: understanding the role of knowledge graph semantics in neural information
retrieval. In: Proceedings of ACL, pp. 2395–2405.

Micikevicius, Paulius, Narang, Sharan, Alben, Jonah, Diamos, Gregory, Elsen, Erich,
Garcia, David, Ginsburg, Boris, Houston, Michael, Kuchaiev, Oleksii,
Venkatesh, Ganesh, Wu, Hao, 2018. Mixed precision training. In: Proceedings of
ICLR.

Qin, Yujia, Lin, Yankai, Yi, Jing, Zhang, Jiajie, Han, Xu, Zhang, Zhengyan, Su, Yusheng,
Liu, Zhiyuan, Peng, Li, Sun, Maosong, Zhou, Jie, 2021. Knowledge Inheritance for
Pre-trained Language Models arXiv preprint, arXiv:2105.13880.

Raffel, Colin, Shazeer, Noam, Roberts, Adam, Lee, Katherine, Narang, Sharan,
Matena, Michael, Zhou, Yanqi, Li, Wei, Liu, Peter J., 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21,
140:1–140:67.

Rajbhandari, Samyam, Rasley, Jeff, Ruwase, Olatunji, He, Yuxiong, 2020. Zero: memory
optimizations toward training trillion parameter models. In: Proceedings of SC,
pp. 1–16.

Rasley, Jeff, Rajbhandari, Samyam, Ruwase, Olatunji, He, Yuxiong, 2020. Deepspeed:
system optimizations enable training deep learning models with over 100 billion
parameters. In: Proceedings of KDD, pp. 3505–3506.

Schick, Timo, Schütze, Hinrich, 2020a. Exploiting Cloze Questions for Few-Shot Text
Classification and Natural Language Inference arXiv preprint, arXiv:2001.07676.

Schick, Timo, Schütze, Hinrich, 2020b. It’s Not Just Size that Matters: Small Language
Models Are Also Few-Shot Learners arXiv preprint, arXiv:2009.07118.

Shao, Zhihong, Huang, Minlie, Wen, Jiangtao, Xu, Wenfei, et al., 2019. Long and diverse
text generation with planning-based hierarchical variational model. In: Proceedings
of EMNLP-IJCNLP, pp. 3248–3259.

Shoeybi, Mohammad, Patwary, Mostofa, Puri, Raul, LeGresley, Patrick, Casper, Jared,
Bryan, Catanzaro, 2019. Megatron-LM: Training Multi-Billion Parameter Language
Models Using Model Parallelism arXiv preprint arXiv:1909.08053.

Z. Zhang et al.

http://refhub.elsevier.com/S2666-6510(21)00031-0/sref1
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref1
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref1
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref1
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref1
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref2
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref2
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref2
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref2
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref2
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref2
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref2
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref3
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref3
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref4
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref4
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref5
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref5
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref5
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref5
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref5
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref5
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref5
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref5
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref6
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref6
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref7
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref7
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref8
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref8
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref8
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref9
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref9
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref9
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref10
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref10
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref11
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref11
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref12
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref12
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref13
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref13
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref13
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref14
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref14
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref15
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref15
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref15
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref16
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref16
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref16
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref16
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref17
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref17
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref17
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref18
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref18
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref19
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref19
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref19
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref20
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref20
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref20
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref21
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref21
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref21
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref21
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref22
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref22
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref22
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref23
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref23
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref23
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref23
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref24
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref24
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref24
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref25
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref25
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref25
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref26
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref26
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref27
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref27
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref28
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref28
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref28
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref29
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref29
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref29

AI Open 2 (2021) 216–224

224

Si, Chenglei, Zhang, Zhengyan, Chen, Yingfa, Qi, Fanchao, Wang, Xiaozhi, Liu, Zhiyuan,
Wang, Yasheng, Liu, Qun, Sun, Maosong, 2021. Sub-Character Tokenization for
Chinese Pretrained Language Models. arXiv preprint arXiv:2106.00400.

Sun, Kai, Yu, Dian, Dong, Yu, Cardie, Claire, 2020. Investigating prior knowledge for
challenging Chinese machine reading comprehension. TACL 8, 141–155.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,
Gomez, Aidan N., Kaiser, Lukasz, Polosukhin, Illia, 2017. Attention is all you need.
In: Proceedings of NeurIPS, pp. 5998–6008.

Wang, Yan, Liu, Xiaojiang, Shi, Shuming, 2017. Deep neural solver for math word
problems. In: Proceedings of EMNLP, pp. 845–854.

Xue, Linting, Constant, Noah, Roberts, Adam, Kale, Mihir, Al-Rfou, Rami,
Siddhant, Aditya, Barua, Aditya, Raffel, Colin, 2020. mt5: A Massively Multilingual
Pre-trained Text-To-Text Transformer arXiv preprint, arXiv:2010.11934.

Yao, Yuan, et al., 2021. CUGE: A Chinese Language Understanding and Generation
Evaluation Benchmark. arXiv preprint arXiv:2112.13610.

Yuan, Sha, et al., 2021. WuDaoCorpora: A super large-scale Chinese corpora for pre-
training language models. AI Open 2, 65–68.

Zeng, Wei, Ren, Xiaozhe, Su, Teng, Wang, Hui, Liao, Yi, Wang, Zhiwei, Jiang, Xin,
Yang, ZhenZhang, Wang, Kaisheng, Zhang, Xiaoda, et al., 2021. Pangu-α: Large-
Scale Autoregressive Pretrained Chinese Language Models with Auto-Parallel
Computation arXiv preprint arXiv:2104.12369.

Zhang, Zhengyan, Han, Xu, Zhou, Hao, Pei, Ke, Gu, Yuxian, Ye, Deming, Qin, Yujia,
Su, Yusheng, Ji, Haozhe, Guan, Jian, et al., 2020. CPM: A Large-Scale Generative
Chinese Pre-trained Language Model arXiv preprint arXiv:2012.00413.

Z. Zhang et al.

http://refhub.elsevier.com/S2666-6510(21)00031-0/sref30
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref30
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref30
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref32
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref32
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref33
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref33
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref33
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref34
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref34
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref35
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref35
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref35
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref36
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref36
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref37
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref37
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref38
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref38
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref38
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref38
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref39
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref39
http://refhub.elsevier.com/S2666-6510(21)00031-0/sref39

	CPM-2: Large-scale cost-effective pre-trained language models
	1 Introduction
	2 Pre-training
	2.1 Model
	2.2 Data processing
	2.3 Pre-training with knowledge inheritance

	3 Evaluation setups
	4 Fine-tuning
	4.1 Experimental setups
	4.2 Results

	5 Prompt tuning
	5.1 Main results
	5.2 Position of prompt
	5.3 How prompt works
	5.4 Two-stage fine-tuning

	6 infmoe: memory-efficient inference framework for MoE layers
	6.1 Existing inference frameworks
	6.2 Scheduling strategy for offloading

	7 More promising directions for effective and efficient pre-trained language models
	7.1 Tokenization based on pronunciation and glyph
	7.2 Architecture based on non-euclidean geometry
	7.3 Pre-training based on knowledge inheritance
	7.4 Fine-tuning based on rich knowledge

	8 Conclusion
	Contributions
	Declaration of competing interest
	Acknowledgments
	References

