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A B S T R A C T   

In recent years, the size of pre-trained language models (PLMs) has grown by leaps and bounds. However, ef-
ficiency issues of these large-scale PLMs limit their utilization in real-world scenarios. We present a suite of cost- 
effective techniques for the use of PLMs to deal with the efficiency issues of pre-training, fine-tuning, and 
inference. (1) We introduce knowledge inheritance to accelerate the pre-training process by exploiting existing 
PLMs instead of training models from scratch. (2) We explore the best practice of prompt tuning with large-scale 
PLMs. Compared with conventional fine-tuning, prompt tuning significantly reduces the number of task-specific 
parameters. (3) We implement a new inference toolkit, namely INFMOE, for using large-scale PLMs with limited 
computational resources. Based on our cost-effective pipeline, we pre-train two models: an encoder-decoder 
bilingual model with 11 billion parameters (CPM-2) and its corresponding MoE version with 198 billion pa-
rameters. In our experiments, we compare CPM-2 with mT5 on downstream tasks. Experimental results show 
that CPM-2 has excellent general language intelligence. Moreover, we validate the efficiency of INFMOE when 
conducting inference of large-scale models having tens of billions of parameters on a single GPU. All source code 
and model parameters are available at https://github.com/TsinghuaAI/CPM.   

1. Introduction 

Training much larger models is an important research direction in 
deep learning (Bengio, 2013). Recently, pre-training has become the 
mainstream technique to develop large-scale neural networks and ach-
ieved great success in both computer vision (CV) and natural language 
processing (NLP) (He et al., 2016; Dosovitskiy et al., 2020; Devlin et al., 
2019). Especially, there are some much larger pre-trained language 
models (PLMs) with hundreds of billions of parameters, such as GPT-3 
(Brown et al., 2020), PANGU-α (Zeng et al., 2021), and 
Switch-Transformer (Fedus ei al., 2021). 

However, the cost of using PLMs is increasing rapidly with the 
growth of model sizes and becomes unaffordable for most users and 
researchers. The cost consists of three parts. (1) Large computation 
cost for pre-training: a super large model requires several weeks of pre- 
training with thousands of GPUs. (2) Large storage cost for fine-tuned 
models: a super large model usually takes hundreds of gigabytes (GBs) to 

store, and we need to store as many models as downstream tasks. (3) 
Strict equipment requirement for inference: it is common to use 
multiple GPUs for the inference of a super large model, so these models 
are hard to be used with limited computation resources. 

To reduce the cost of large-scale PLMs from its pre-training to fine- 
tuning, we try to improve the whole pipeline of developing PLMs as 
follows:  

(1) We adopt knowledge inheritance (Qin et al., 2021) to accelerate 
the pre-training process. Current PLMs are usually trained from 
scratch on pre-training data via self-supervised methods, while 
there exist many PLMs that can also provide much knowledge. 
Knowledge inheritance aims to use the knowledge of existing 
PLMs to help the pre-training of new models.  

(2) We use prompt tuning (Lester et al., 2021) instead of fine-tuning 
to reduce the storage of task-specific parameters. With prompt 
tuning, we only need to save the embeddings of prompt tokens, 
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whose parameters are usually less than 0.01% of the whole model 
parameters.  

(3) We design a high-performance and memory-efficient inference 
framework INFMOE with a dynamically-scheduled offloading 
strategy, to support the inference of MoE models on a single GPU. 

Based on our optimized pipeline for PLMs, we develop two large- 
scale Cost-efficient Pre-trained language Models (CPM-2), an Chinese- 
English bilingual models with 11 billion parameters and its Mixture- 
of-Experts (MoE) version with 198 billion parameters. Specifically, we 
accelerate the pre-training process by dividing the pre-training process 
into three stages with knowledge inheritance: Chinese pre-training, 
bilingual pre-training, and MoE pre-training. Then, we compare CPM- 
2 with mT5 (Xue et al., 2020). Experimental results show that CPM-2 
has excellent general language intelligence, including seven specific 
language capabilities. Based on CPM-2, we search for the best practice of 
prompt tuning. We find that (1) the positions of prompts are crucial and 
(2) combining prompt tuning and fine-tuning can lead to better results. 
Finally, we introduce INFMOE for users to conduct inference of large-scale 
models with tens of billions of parameters on a single GPU. 

2. Pre-training 

In this section, we present the pre-training details of CPM-2. 

2.1. Model 

CPM-2 is a standard Transformer-based model combined with a 
bidirectional encoder and a unidirectional decoder (Vaswani et al., 
2017). The comparisons between our models and CPM (Zhang et al., 
2020) are presented in Table 1. To efficiently store model parameters on 
GPUs, we use the model parallelism (Shoeybi et al., 2019), which splits 
self-attention layers and feed-forward layers along the width dimension, 
and finally distributes the partitions of one model on 4 GPUs. 

To reduce memory requirements and speed up pre-training, we use 
mixed-precision training (Micikevicius et al., 2018), gradient check-
pointing (Chen et al., 2016) and ZERO-stage-1 optimization (Rajbhan-
dari et al., 2020; Rasley et al., 2020). 

For CPM-2-MoE, we expand the feed-forward layer of each Trans-
former block to multiple experts. During the forward pass, for each 
token, we select one expert according to its current hidden state with a 
gating function. We balance the expert selection using the planning 
approach of BASE Layers (Lewis et al., 2021). 

2.2. Data processing 

We pre-train our model on WuDaoCorpus (Yuan, 2021), which 
contains 2.3 TB cleaned Chinese data as well as 300 GB cleaned English 
data. Data in both languages are collected from multiple domains, 
including encyclopedia, novels, Q&A, scientific literature, e-book, news, 
and reviews. 

To efficiently tokenize our pre-training corpus, we explore to reduce 
the redundancy brought by sentencepiece (Kudo and Richardson, 2018) 
to improve the vocabulary of CPM. 

We find that the original sentencepiece tokenizer will insert many 

redundant white space tokens ”_” to tokenized sequences. This makes 
the sequences become much longer. Since the implementation of sen-
tencepiece has a weak encapsulation of interfaces, it is unfriendly to-
wards programmers. We replace the sentencepiece tokenizer with a 
simple prefix matching and remove the white space insertion. Compared 
with sentencepiece, our newly-implemented tokenizer is more effective 
and easier to use. 

Besides, in the writing system of Chinese, it is not important whether 
a token in the vocabulary appears at the beginning of a word or not, we 
merge the tokens like “快乐” (happy) and “_快乐; ” (_happy) to a single 
token “快乐; ” (happy) to simplify the vocabulary. 

2.3. Pre-training with knowledge inheritance 

The pre-training process of CPM-2 can be divided into three stages: 
Chinese pre-training, bilingual pre-training, and MoE pre-training. 
Compared to training models from scratch, multi-stage training with 
knowledge inheritance (Qin et al., 2021) can significantly reduce the 
computation cost. 

Chinese Stage. In this stage, we only use Chinese texts as the 
training data. We suppose the model can focus on learning Chinese in-
formation and have a good basis to generalize to other languages. 

Bilingual Stage. In this stage, we further pre-train the model from 
the Chinese stage on both Chinese and English texts. There are two main 
challenges, how to initialize the input embeddings of English tokens and 
how to prevent the model from catastrophic forgetting. (1) When 
initializing English embeddings, we use the embeddings of their prefixes 
to initialize their embeddings, making the English tokens more familiar 
to the model. If all prefixes of an English token are not in the original 
vocabulary, we randomly select an existing token embedding for 
initialization. (2) To eliminate the effect of catastrophic forgetting, we 
carefully design the ratio between English data and Chinese data. In the 
experiment, we find 1:2 can well maintain the language knowledge of 
Chinese and capture new knowledge of English. 

MoE Stage. In this stage, we duplicate the model from the bilingual 
stage several times to initialize an MoE model. For the gating network, 
we adopt a random projection as a local sensitive hashing function 
(Har-Peled et al., 2012) and will not update the gating network in this 
stage. We suppose that the representation space of the model of the 
second stage is well organized, where similar tokens should use the same 
expert. 

3. Evaluation setups 

To validate the effectiveness of our model, we evaluate CPM-2 on a 
general language intelligence benchmark, CUGE Yao (2021). CUGE 
consists of 40 mainstream Chinese NLP datasets and each dataset is 
categorized into one of the important types of language capabilities. Due 
to the limitation of computation, we select a representative dataset for 
each language capability to speed up the experiments. We describe each 
language capability and dataset as follows. The detailed statistics of 
these datasets are shown in Table 2. 

Recall Capability. Recall capability aims to evaluate the models’ 
ability to memorize and apply the general literature knowledge, such as 
the famous quotes, classical poems, and idioms. We adopt Chinese 

Table 1 
Comparisons between CPM and CPM-2. nparam is the amount of model parameters. L is the number of model layers. nhead is the number of attention heads in each layer. 
dhead is the dimension of each attention head. dff is the intermediate dimension of feed-forward layers. dmodel is the dimension of hidden states.   

nparam L nhead dhead dff dmodel Encoder Decoder MoE 

CPM-Small 109M 12 12 64 3,072 768 ⨯ ✓ ⨯ 
CPM-Medium 334M 24 16 64 4,096 1,024 ⨯ ✓ ⨯ 
CPM-Large 2.6B 32 32 80 10,240 2,560 ⨯ ✓ ⨯ 
CPM-2 11B 24 64 64 10,240 4,096 ✓ ✓ ⨯ 
CPM-2-MoE 198B 24 64 64 10,240 4,096 ✓ ✓ ✓  
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Classical Poetry Matching Dataset (CCPM) (Li et al., 2021) to test the 
models’ recall ability. Given a modern Chinese translation of a classic 
poem, the model is required to select the corresponding poem from four 
candidates. 

Comprehension Capability. Comprehension capability aims to 
evaluate the models’ ability to understand the given text and perform 
reasoning for specific tasks. For this capability, we select the C3 dataset 
(Sun et al., 2020) to evaluate our model. C3 is a free-form multi-
ple-choice reading comprehension dataset, which requires the model to 
understand the given documents or dialogues and answer several related 
questions. 

Calculation Capability. Calculation capability aims to test the 
models’ ability to perform numerical reasoning. For this capability, we 
select Math23K (Wang et al., 2017), which consists of tens of thousands 
of real math word problems for elementary school students. 

Cross-lingual Capability. Cross-lingual capability aims to evaluate 
the models’ performance in understanding multi-lingual text. We adopt 
the machine translation task to evaluate the ability of CPM-2 in under-
standing English and Chinese sentences. The dataset we used in this task 
is provided by WMT20 (Barrault et al., 2020). 

Summarization Capability. Summarization requires the model to 
read a long document and produce a concise summary while keeping the 
key information. We utilize LCSTS (Hu et al., 2015) to evaluate the 
summarization capability. LCSTS consists of tweets and their corre-
sponding abstracts from the largest Chinese microblogging website (Sina 
Weibo). 

Classification Capability. Text classification is a classic task in 
natural language processing. We evaluate the classification capability 
with a large-scale natural language inference dataset, LCQMC (Liu et al., 
2018a). Given two questions, LCQMC requires the model to answer 
whether the two questions express similar intent. 

Generation Capability. Text generation is one of the important 
tasks in natural language processing, which aims to generate fluent and 
diverse text. We adopt the AdGen (Shao et al., 2019) as our benchmark, 
which requires the model to generate long advertising text given the 
several keywords. 

We transform different tasks to a unified sequence-to-sequence 
format except for Sogou-Log. For Sogou-log, we train models in a 
contrastive manner following previous work (Liu et al., 2018b). Besides 
the original metrics, such as accuracy and BLEU, we also report the 
CUGE score of each dataset, which is the percentage between the per-
formance of the evaluated model and that of mT5-small. 

We compare our model with mT5 (Xue et al., 2020), including 
mT5-small, mtT5-large, and mT5-XXL. Notably, mT5-XXL also adopts an 
encoder-decoder architecture with 13 billion parameters, which is 
comparable to CPM-2. To the best of our knowledge, Pangu-α (Zeng 
et al., 2021) with 200 billion parameters is the largest Chinese 
pre-trained language model, which performs well in many downstream 
tasks. However, the parameters of Pangu-α are not publicly available, 
and thus we leave the comparison between CPM-2 and Pangu-α as future 
work. 

4. Fine-tuning 

In this section, we fine-tune CPM-2 and mT5 on downstream tasks to 
evaluate their general language intelligence. 

4.1. Experimental setups 

We adjust maximum lengths, batch sizes, learning rates for different 
models and datasets. Considering that the tokenizers of CPM-2 and mT5 
are different, we first tokenize the whole dataset and then set the 
maximum length of samples as the maximum length instead of a pre- 
defined length. For the batch size, we search from 128 to 512 to 
ensure the number of input tokens is around 216 following Raffel et al. 
(2020). For learning rates, we search from 1e-6 to 1e-4 and we find that 
larger models prefer smaller values. 

4.2. Results 

The results of fine-tuning are shown in Table 3. We observe that 
CPM-2 is better than mT5 in most language capabilities, including 
Chinese language understanding, generation and English to Chinese 
translation. Especially, CPM-2 outperforms mT5-XXL by over 10% in 
Math23K, which is for calculation capability. On the overall CUGE score, 
CPM-2 outperforms mT5-XXL by over 4%. This demonstrates that CPM- 
2 is an omnipotent large-scale multi-lingual PLM. 

5. Prompt tuning 

In this section, we study prompt tuning Brian Lester et al. (2021) 
based on CPM-2. Different from conventional fine-tuning, prompt tun-
ing inserts several prompt tokens into the original inputs and only up-
dates the parameters of the inserted prompt tokens. For better 
clarification, we refer to the conventional full-parameter fine-tuning 
(Devlin et al., 2019) as full-model tuning. Throughout our experi-
ments, we keep the number of prompt tokens as 100 to control the 
number of trainable parameters and initialize the parameters randomly. 
In the prompt tuning setting, the amount of the parameters needed to 
update is only 409.6K. Compared to the 11B parameters of full-model 
tuning, prompt tuning only needs to modify 0.003 7% parameters. We 
present the main results of prompt tuning in Section 5.1. We also explore 
how the positions of inserted prompt tokens affect the model perfor-
mance (Section 5.2), how the prompt tokens work (Section 5.3), and 
propose a two-stage fine-tuning strategy to improve model performance 
on downstream tasks (Section 5.4). 

5.1. Main results 

We present the model performance and GPU memory usage of both 
full-model tuning and prompt tuning in Table 4. From the results, we 
have two observations. (1) With prompt tuning, CPM-2 can achieve 
comparable performance to full-model tuning on most of tasks. How-
ever, prompt tuning significantly degrades the performance on Sogou- 
Log. The reason may be that Sogou-Log adopts a contrastive loss, 
which is different from other datasets and difficult to optimize under 
prompt tuning. (2) Prompt tuning is much more memory-efficient. The 
results of the GPU memory usage show that prompt tuning can save at 
most 50% GPU memory compared with full-model tuning. This is 
because when the model is trained with the Adam optimizer, gradients 
and optimizer states account for a large proportion of the overall GPU 
memory. Since the number of parameters needed to be optimized is 
much smaller in prompt tuning, the total sizes of gradient tensors and 
optimizer state tensors decrease. Note that small sizes of gradient tensors 
and optimizer state tensors also lead to small communication overhead 

Table 2 
Numbers of instances in each dataset.   

CCPM C3 Sogou-Log WMT20-enzh Math23K LCSTS LCQMC AdGen 

Train 21k 8k 8,052k 21,000k 21k 2,400k 238k 114k 
Valid 2.7k 2.7k 500k 2k 1k 8.6k 8.8k 1k 
Test 2.7k 2.7k 1k 2k 1k 0.7k 12.5k 3k  
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during the synchronization of distributed training. This makes the 
optimization of a single step in prompt tuning faster than full-model 
tuning. However, we also observe that it takes much more steps for 
prompt tuning to converge than full-model tuning, which makes the 
whole time of prompt tuning longer. We leave the question “How to 
accelerate the convergence of prompt tuning?” to future work. 

5.2. Position of prompt 

We study the effect of the positions of the inserted prompt tokens. For 
single-sequence tasks, such as Math23k, there exist 3 strategies to insert 
the prompt: front, back, and front + back. For multi-sequence tasks, such 
as LCQMC, prompt tokens can also be inserted between two of the input 
sequences (middle). For a two-sequence input, there are 7 strategies to 
insert the prompt tokens. The illustration of all possible prompt in-
sertions of the two-sequence input task is shown in Fig. 1. 

We conduct experiments on Math23k and LCQMC to evaluate the 
effect of prompt positions. We keep the number of prompt tokens as 100. 
When there are 2 positions to insert tokens, we insert 50 tokens at each 
position. When there are 3 positions, we insert 33, 34, 33 tokens at each 
position. The results are shown in Table 5. 

From the table, we have two observations. (1) For the single sentence 
task (Math23k), the positions of the prompt tokens have no significant 
influence on the model performance. (2) For the multi-sentence task 
(LCQMC), whether to insert the prompt between sentences significantly 

matters. Compared with inserting prompts between the two input sen-
tences, only considering the front and the back positions leads to about 
2% accuracy drop. 

To study the effect in the learning process, we plot the accuracy 
curves on the LCQMC dev set of different prompt positions. Further-
more, we take F + M as an example and change the proportion of the 
number of prompt tokens at different positions. The results are shown in 
Fig. 2. In Fig. 2(b), R denotes the ratio between the middle prompt token 
number and the total prompt token number. 

From the figure, we can conclude that: (1) As Fig. 2(a) shows, for 
“Front”, “Back” and “Front + Back” strategies, the convergence is much 
slower than the strategies with prompt tokens inserted between the two 
input sentences, which means it is necessary to insert the prompt be-
tween sentences to improve convergence speed. (2) As Fig. 2(b) shows, 
when R = 0.00 (front) R = 0.01 and R = 0.02 (insert 1 or 2 tokens be-
tween sentences), the model converges slowly.But when we insert 5 or 
more tokens between the two sentences, the convergence speed is 
significantly improved. This means only a few middle-inserted tokens 
can help the model converge and when we add more tokens afterward, 
the impact of the middle token number is much less. 

We think that the influence of the prompt token positions is related to 
the relative position embedding we use in CPM-2. When there are 
multiple input sentences, CPM-2 needs to model the tokens with a long 
distance. For relative position embedding, the long-range tokens will be 
assigned the same position embeddings, which may harm long-distance 
modeling. The prompt tokens inserted between sentences can bridge the 
gap between long-range tokens, which makes it easier for the model to 
learn the relationships between two input sentences. 

Table 3 
Performance of mT5 and CPM-2 with fine-tuning. We use the first 6 datasets, which makes up the lite version of CUGE, to compute the overall CUGE scores (%). The 
numbers in brackets are the CUEG scores (%) for each dataset.   

CCPM C3 Sogou-Log WMT20 Math23K LCSTS LCQMC AdGen CUGE  

Acc Acc MRR/NDCG BLEU Acc Rouge-L Acc BLEU/Distinct Score 
mT5-small 87.7(100) 41.5(100) 29.2/29.2(100) 9.1(100) 18.4(100) 33.1(100) 82.1(100) 10.2/32.3(100) 100 
mT5-large 89.9(102) 56.3(136) 32.2/31.1(108) 11.1(122) 34.3(186) 34.4(104) 85.0(104) 10.0/35.5(104) 126 
mT5-XXL 90.6(103) 86.4(208) 36.9/34.9(123) 24.0(264) 61.6(335) 34.8(105) 88.3(108) 9.8/68.7(154) 190 
CPM-2 91.6(104) 86.1(207) 36.3/35.5(123) 26.2(288) 69.4(377) 35.9(108) 89.2(109) 10.6/70.2(161) 198  

Table 4 
Comparisons between fine-tuning and prompt tuning. CPM-2-F represents fine-tuning. CPM-2-P represents prompt tuning. Δ(P − F) means the difference between fine- 
tuning and prompt tuning.   

CCPM C3 Sogou-Log WMT20 Math23K LCSTS LCQMC AdGen 

Performance on test set  
Acc Acc MRR/NDCG BLEU Acc Rouge-L Acc BLEU/Distinct 

CPM-2-F 91.63 86.05 36.28/35.49 26.21 69.37 35.88 89.16 10.60/70.22 
CPM-2-P 90.85 85.33 30.28/30.64 24.13 67.48 34.17 88.36 8.63/72.02 
Δ(P − F) − 0.78 − 0.72 − 6.00/ − 4.85 − 2.08 − 1.89 − 1.71 − 0.80 − 1.97/+1.80 
GPU memory usage(%) 
CPM-2-F 98 96 88 98 93 98 98 98 
CPM-2-P 50 46 49 75 68 76 54 53 
Δ(P − F) − 48 − 50 − 39 − 23 − 25 − 22 − 44 − 45  

Fig. 1. Different designs to insert prompts for the task with two input se-
quences, S1 and S2. P1, P2, P3 represent different input prompts. F, B, M 
represent Front, Back, and Middle, respectively. 

Table 5 
Effects of prompt positions on Math23k and LCQMC. For both datasets, we 
report the accuracy on dev sets.   

Math23k LCQMC 

F 71.74 88.38 
B 72.40 88.50 
F + B 72.66 88.48 

M – 89.20 
F + M – 90.21 
M + B – 90.38 
F + M + B – 90.65  
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5.3. How prompt works 

Although prompt tuning can reach comparable performance with 
full-model tuning by only modifying a small number of parameters, the 
working mechanisms of prompt tuning are still unclear. We assume that 
the prompt can play two kinds of roles: (1) Working as a “Provider”. 
Provide an additional context for the model input. (2) Working as an 
“Aggregator”. Aggregate the information from the input text. 

To verify our hypothesis, we use attention masks to control the at-
tentions between the prompt tokens and the text tokens. Specifically, for 
“Provider”, we mask the attention from the prompt to text tokens such 
that the representations of prompt tokens can not be computed by 
attending to text tokens, disabling their ability to aggregate information. 
But they can still work as contexts and provide information to text to-
kens. For “Aggregator”, on the contrary, we mask the attentions from 
text tokens to prompt tokens. In this way, prompt tokens can not work as 
contexts but can aggregate information by attending to text tokens. The 
illustration of our attention mask is shown in Fig. 3. 

We add the attention masks mentioned above to the model when 
doing prompt tuning. We conduct experiments on on C3, Math23k, 
LCQMC, and CCPM. The results are shown in Table 6. 

From the table, we can conclude that: (1) Both attention masks hurt 
the model performance on the two datasets. This means that the prompt 

Fig. 2. Accuracy curves on the LCQMC dev set with different prompt inser-
tion strategies. 

Fig. 3. Attention masks for ”Provider” and ”Aggregator”. P1, P2, P3 are 
prompt tokens. 

Table 6 
Results of masking the attentions between prompts and texts. “Mask P to T” 
means masking the attention weights from the prompt to the text and “Mask T to 
P” means masking the attention weights from the text to the prompt. For both 
datasets, we report the accuracy on dev sets.   

C3 Math23K LCQMC CCPM 

Full Attention 85.75 71.74 90.21 93.19 
Mask P to T 83.84 69.92 81.50 92.78 
Mask T to P 68.54 35.29 79.45 86.90  
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should work as ”Provider” and ”Aggregator” at the same time for the 
model to reach good performance. (2) The impact of masking attention 
from text to prompt is larger than that of masking attention from prompt 
to text. This means prompt tokens are more likely to work as ”Provider” 
than as ”Aggregator” in prompt tuning. 

5.4. Two-stage fine-tuning 

Previous work (Schick and Schütze, 2020a,b) has shown that good 
prompts can help stimulate model ability in full-model tuning. However, 
most of them explore to manually design prompts or search prompts in a 
discrete space, which requires many human efforts. To make the prompt 
design easier, we attempt to search for good prompts in a continuous 
space, which can benefit full-model tuning afterward. Specifically, we 
propose to fine-tune models with two stages. In the first stage, we 
perform prompt tuning to search for a prompt suitable for the down-
stream task. Then, in the second stage, we fine-tune the whole model 
together with the prompt token embeddings. We hope that the model 
can take advantage of the prompt that we have found in the first stage 
and have better performance than the vanilla full-model tuning. We 
conduct experiments on C3, Math23k, LCQMC, and CCPM. We try 
several prompts given by the first stage and select the one with the best 
results in the second stage. For each dataset, we use the same 
hyper-parameters as in Sections 4 and 5.1. Our results on dev set are 
shown in Table 7. 

From the table, we have three observations: (1) Two-stage fine- 
tuning can significantly improve the model performance on C3 and 
Math23k datasets by 2.16% and 1.41%, respectively. On the LCQMC 
dataset, two-stage fine-tuning has a similar performance as vanilla full- 
model tuning. We think this is because the LCQMC dataset is relatively 
easier than the other two datasets and vanilla fine-tuning can perform 
well enough without a better prompt. (2) If we fix the prompt parame-
ters during the second stage (“+fix prompt”), the model performance 
does not change much. We think this is because as fine-tuning goes, the 
gradients become small when backward to the input prompt. Therefore, 
the prompt tokens do not change much even when they are not fixed. (3) 
Without the first stage (“-stage 1”), even if we add additional parame-
ters, the model can not reach a good performance, which proves the 
necessity of our two-stage fine-tuning. 

6. INFMOE: memory-efficient inference framework for MoE layers 

Although MoE linear layers could outperform dense linear layers 
with almost the same computational cost (Fedus et al., 2021), they 
greatly enlarge the number of model parameters and require more 
memory to store these parameters. When increasing the number of ex-

perts, the parameter size of the model can easily reach the order of tens 
or even hundreds of GBs. Such storage requirements greatly exceed the 
capacity of commodity GPUs, bringing difficulty not only to model 
training but also to model inference. 

To make well-trained MoE layers more accessible to downstream 
tasks (e.g., to researchers using the aforementioned prompt tuning for 
downstream tasks), we introduce INFMOE,2 a high-performance and 
memory-efficient inference framework that can offload parameters of 
experts of MoE layers to CPU memory. 

INFMOE enables the inference of MoE layers with hundreds of billions 
of parameters using one single GPU. To preserve the efficiency of 
computation, we design a dynamic scheduling strategy that can overlap 
data movement of parameters with inference computation to the 
greatest extent. 

6.1. Existing inference frameworks 

PyTorch and TensorFlow are widely-used deep learning frameworks 
in industry and academia for both training and inference. There are also 
many other frameworks like TensorRT and ONNX Runtime that are 
specially designed for efficient model inference on different devices. 
However, they are currently not fit for the efficient inference of MoE 
layers for various reasons. 

One category of these frameworks, like TensorFlow Serving, uses 
static computational graphs for training and inference. Typically, graphs 
can only be moved between CPUs and GPUs as a whole, so it is difficult 
to offload selected parameters in the inference process. Currently, no 
existing static-graph-based framework can provide full support for all 
required operators of MoE layers. 

Another category, including PyTorch, uses dynamic computational 
graphs and provides simple interfaces to control data storage location 
(such as layer.cuda() and layer.cpu(). However, these frameworks usu-
ally take full control of the scheduling of computation and data move-
ment. When handling MoE layers, they do not provide enough flexibility 
to implement the aforementioned overlapping mechanism. FastMoE (He 
et al., 2021) is a novel high-performance MoE implementation on top of 
PyTorch. However, FastMoE focuses on large-scale distributed training 
and also lacks delicate control on scheduling. 

TensorRT is a high-performance (yet relatively low-level) inference 
SDK developed by NVIDIA. It employs several optimization techniques 
like tensor fusion, kernel auto-tuning, and memory reusing. Our toolkit 
INFMOE is developed based on TensorRT. The reason why we choose 
TensorRT is that it supports custom plugins. Therefore, we can imple-
ment our own plugin only for MoE layers with a specially designed 
scheduling strategy, handing over the remaining layers to TensorRT to 
get optimal performance. 

6.2. Scheduling strategy for offloading 

The main challenge of the offloaded MoE layer inference lies in 
workload imbalance, as the amount of computation performed on 
different experts may be unbalanced. Tokens are routed and batched to 
different experts before computation. The workload distribution of ex-
perts may vary with different gating mechanisms (Lewis et al., 2021; 
Lepikhin et al., 2020; Fedus et al., 2021). Experts having more tokens to 
process will spend more time in computation, while the overhead of data 
movement (which must be done prior to its computation) of each expert 
remains the same, for they all have the same amount of parameters. 

In INFMOE, by using different CUDA streams, parameter-loading and 
computation of different experts can be easily overlapped (i.e., executed 
at the same time). However, as shown in Fig. 4(a), naïvely running ex-
perts in order easily leads to a waste of time on waiting for parameter 
loading due to the imbalanced computation time. 

In order to maximize the overlap between the communication and 
computation, we design a dynamic schedule strategy in INFMOE to reorder 
the loading and computation sequence of these experts: 

Table 7 
Results of two-stage fine-tuning on three tasks using the dev sets. CPM-2-F stands 
for full-model tuning CPM-2-P stands for prompt tuning. CPM-2-P + F is our two- 
stage fine-tuning. “+fix prompt” means we fix the parameters of the prompt we 
have found in stage 1 when we do full-model tuning in stage 2. “-stage 1” means 
we randomly initialize the prompt tokens and do full-model tuning directly 
without stage 1.   

C3 Math23k LCQMC CCPM 

CPM-2-F 85.66 73.85 90.88 93.00 
CPM-2-P 85.75 71.74 90.21 93.19 
CPM-2-P + F 86.77 75.26 90.45 93.42 
+fix prompt 86.27 76.17 89.64 93.01 
-stage 1 85.04 72.40 88.76 92.76  

2 INFMOE is an open-source toolkit with MIT License at https://github.com/ 
TsinghuaAI/InfMoE. 

Z. Zhang et al.                                                                                                                                                                                                                                   

https://github.com/TsinghuaAI/InfMoE
https://github.com/TsinghuaAI/InfMoE


AI Open 2 (2021) 216–224

222

Assuming there are T experts in an MoE layer, we can estimate the 
computation time of the i-th expert (denoted as αi) and its communi-
cation time (denoted as β). αi is obtained by dividing the number of 
floating operations by the peak computation performance of the GPU. 
With common expert workload (such as feed-forward layers in Trans-
formers), it is proportional to the number of tokens. β can be calculated 
as the size of parameters to load from the CPU divided by the peak 
bandwidth of the GPU. It remains the same for all experts. In addition, 
due to the limit of GPU memory capacity and the existence of parameters 
belonging to non-MoE layers, only the parameters of a certain number 
(denoted as K and can be either configured or automatically inferred) of 
experts can reside in GPU memory simultaneously. 

In order to obtain optimal overlapping with negligible cost, INFMOE 

use a greedy algorithm to generate a computation order of experts that 
satisfies the following two constraints:  

● ∀1 ≤ t ≤ T, 
∑t− 1

i=1αi ≥ (t − 1)β. This means the parameter loading of 
each expert can be fully covered by the computation of previously 
loaded experts. 

● ∀1 ≤ t ≤ T, 
∑t− 1

i=1αi ≤ (t + K − 1)β. This means no more than K ex-
perts will be loaded to GPU memory simultaneously during the 
whole process. 

This computation order can guarantee that no expert would have to 
wait for the loading of its parameters except the first one, thus fully 
hiding the overhead of data movement caused by offloading and 
leveraging full GPU computing performance (as shown in Fig. 4(b). It is 
possible that these constraints cannot be satisfied at the same time. Such 
unsatisfiability indicates either the total computation amount is too 
small, or the workload is extremely imbalanced. The former cause can be 
mitigated by increasing the batch size, while the latter is out of the scope 
for inference. As for the MoE gating mechanism described in Section 2.3, 
it shows a relatively good balance between experts in our evaluation, 
thus fits well for INFMOE. 

We evaluate the effectiveness of INFMOE by inputting 40 instances into 
CPM-2-MoE with a single GPU. The computation times are reported in 
Fig. 5. From the figure, we can find that using INFMOE for inference can 
overlap parameter movement and inference computation. 

7. More promising directions for effective and efficient pre- 
trained language models 

In this section, we will briefly introduce our four novel explorations 
in tokenization, architecture, pre-training, and fine-tuning to achieve a 
more efficient pipeline of PLMs. 

7.1. Tokenization based on pronunciation and glyph 

For Chinese PLMs, input tokenization is quite important. The con-
ventional tokenization methods applied by existing PLMs may treat each 
character as an indivisible token. However, there is more linguistic in-
formation beyond characters. To explore a better tokenization method 
for Chinese PLMs, we consider pronunciation, glyph, and word seg-
mentation to tokenize the input for PLMs. More specifically, we build 
pronunciation-based tokenizers, glyph-based tokenizers, and 
segmentation-based tokenizers respectively, and then systematically 
evaluate their performance based on BERT. Sufficient experimental re-
sults on various downstream NLU tasks have shown that applying 
pronunciation-based and glyph-based tokenizers can outperform exist-
ing used character-based tokenizers, and is more robust on the text 
noise. For more details, we refer to our paper (Si et al., 2021). 

7.2. Architecture based on non-euclidean geometry 

Some recent efforts have shown that models learned in non- 
Euclidean geometry could better model complex data, especially those 
hyperbolic neural networks. However, existing hyperbolic networks are 
not completely hyperbolic, and training a deep hyperbolic network is 
also not trivial. To this end, we introduce a fully hyperbolic framework 
to build hyperbolic networks based on the Lorentz model and the Lor-
entz transformations. Based on the fully hyperbolic framework, we 
successfully train a hyperbolic Transformer and outperform existing 
Euclidean baselines. The experimental results show that hyperbolic 
Transformers can achieve comparable performance to Euclidean 
Transformers with half the size of model parameters, which may lead to 
more efficient PLMs in the future. In our paper (Chen et al., 2021), we 
introduce more details of building hyperbolic neural networks. 

7.3. Pre-training based on knowledge inheritance 

As we mentioned before, large-scale PLMs have achieved success on 
various NLP tasks. However, training a large-scale PLM requires huge 
amounts of computational resources, which is time-consuming and 
expensive. Hence, taking the availability of existing well-trained PLMs 
into consideration is of importance. To this end, we propose knowledge 
inheritance to make previously trained PLMs benefit later larger PLMs. 
In fact, CPM-2 is built based on knowledge inheritance. In (Qin et al., 
2021), we introduce the overall framework of knowledge inheritance, 
indicating the effect of teacher PLMs’ settings, including pre-training 
methods, model architectures, training data, etc. For more details, we 
refer to our original paper. 

Fig. 4. Different scheduling strategies of load-imbalanced experts (L: param-
eter loading, C: computation). 

Fig. 5. For our MoE model with 32 experts, we give the time (seconds) of 
inference computation, parameter movement, inference with INFMOE, and 
inference without INFMOE. 
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7.4. Fine-tuning based on rich knowledge 

In our experiments, we have shown that CPM-2 can perform well 
with prompt tuning, as additional prompts can stimulate the rich 
knowledge of PLMs to better serve downstream tasks. Besides model 
knowledge distributed in PLMs, we explore utilizing the prior knowl-
edge to make fine-tuning PLMs more efficient and effective. To this end, 
we propose prompt tuning with rules, which can apply logic rules to 
construct prompts with several sub-prompts. By encoding prior knowl-
edge of each class into prompt tuning, PLMs can converge faster and 
achieve better results on downstream tasks. More details of this part are 
included in our paper (Han et al., 2021). 

8. Conclusion 

In this work, we propose a cost-effective pipeline for large-scale pre- 
trained language models, including pre-training with knowledge in-
heritance, fine-tuning based on prompt, and inference with dynamic 
scheduling. Correspondingly, we provide models and codes to support 
future applications with large-scale models. In the next stage, we will try 
to continually update our CPM models with emerging data gathered 
from the Internet to further improve model performance. 
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