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ABSTRACT: Predicting interactions between metal−organic frameworks (MOFs) and their adsorbates based on structures is
critical to design high-performance porous materials. Many gas uptake prediction models have been proposed, but adsorption
isotherm prediction is still challenging for most existing models. Here, we report a deep learning approach (MOFNet) that can
predict adsorption isotherms for MOFs based on hierarchical representation and pressure adaptive mechanism. We elaborately
design a hierarchical representation to encode the MOF structures. We adopt a graph transformer network to capture atomic-level
information, which can help learn chemical features required under low-pressure conditions. A pressure adaptive mechanism is
employed to interpolate and extrapolate the given limited data points by transfer learning, which can predict adsorption isotherms on
a wider pressure range by only one model. We demonstrate that our predictor outperformed other traditional machine learning as
well as graph neural network models on the challenging benchmarks and also achieves high performance on the real-world
experimental observed adsorption isotherms. Finally, we interpret the models to discover and present potential structure−property
relationships using the self-attention mechanism in the network. The proof-of-concept applications, such as disordered MOF
predictions and missing data imputation of gas adsorption isotherms, showcase the generality and usability of our model to improve
MOF material design.

■ INTRODUCTION
The rapid development of experimental and theoretical
calculated databases has made machine learning (ML)
methods play an important role in the field of material design
and discovery. The combination of big data and ML has also
been referred to as the “fourth paradigm of science”.1 In the
past years, the usefulness of ML has been proved in the field of
material property predicting,2 surface adsorption,3 forcefield
parameter fitting,4 protein structure predicting,5,6 and so forth.

Metal−organic frameworks (MOFs) have attracted increas-
ing attention because of their capabilities in many applications,
including gas separation7 and storage,8,9 sensing,10 and
catalysis11,12 to name a few. The unique structural diversities
of uniform pore structures, tunable porosity, flexibility in
geometry, and chemical functionality make MOFs highly
distinct from traditional materials. Experiments to collect gas
uptake of MOFs are expensive and time-consuming. Therefore,
research on gas uptake of MOFs commonly uses molecular

dynamics (MD) or grand canonical Monte Carlo (GCMC)
methods to obtain gas adsorption isotherms.13−15 However,
these methods still have computing costs, which limit their
application in large-scale material screening. Recently, ML
methods have begun to be applied to gas uptake as well as gas
adsorption isotherms. Traditional ML has been widely
explored for predicting gas uptake of MOFs, for example,
decision tree (DT),16 random forest (RF),17 Gaussian process
(GP) regression,18 support vector machine (SVM),19 and so
forth. In addition, deep learning models have also emerged for
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gas uptake prediction, for example, multilayer perceptrons
(MLPs),20−22 graph convolution neural network (GCN),23

transfer learning,24 and so forth.
Despite the remarkable success, current ML models in

adsorption properties prediction still encounter several
limitations. First, when the atoms and bonds of the MOF
structure are represented as nodes and edges in graph neural
networks, the calculation is very time-consuming due to the
large number of atoms (ranging from hundreds to thousands).
Too much redundant information can easily lead to over-fitting
of the deep learning model. Second, the bottleneck of the
adsorption isotherm prediction lies in low-pressure gas uptake.
The reason behind this phenomenon is that the chemical
contributions of the MOF pores are likely to play an important
role in determining adsorption capacity. However, commonly
used chemical representing methods such as chemical motif
density, atomic property-weighted radial distribution functions
(AP-RDF),25 and Bag-of-Atom21 cannot fully capture the
chemical information. Third, previous works mainly focused
on predicting gas uptake at a specific gas pressure, and few
studies have been done to predict the adsorption isotherm.
This curve-like property prediction is more practical and
challenging. One of the challenges is that the prediction model
needs to accurately predict not only the adsorption capacities
at each pressure but also the adsorption isotherm types.26

Another challenge is that the efficient adsorption isotherm
prediction model should have generalization capabilities to
enable the interpolation and extrapolation from the labeled
pressure conditions.

In this study, we propose a deep learning model, named
MOFNet, to address the above limitations. In our model, we
design a hierarchical representation to describe the structure
graph of MOFs. We leverage both local and global environ-
ment features of MOFs in our model. The local environment
features only use the minimum motif of MOFs based on the
symmetric information to reduce redundant graph structures,
which can capture fine-grained, atomic-scale information
required under the low-pressure conditions. Meanwhile, the
global features utilize the geometric structure information of
the MOFs, which are critical contributions for adsorption
under the high-pressure conditions. Specially, we employ a
graph transformer to capture the key contributions of the
atoms or functional groups relative to the adsorption
properties. We design a pressure adaptive mechanism to
interpolate and extrapolate the given limited data points by
transfer learning, which can predict adsorption isotherm on a
wider pressure range by only one model. We also construct a
large-scale calculated adsorption capacity database with N2,
CO2, and CH4 based on a Cambridge Structural Database
MOF subset (CSD-MOFDB) for training our model and
manually collect data set containing experimental observed gas
isotherms from the NIST/ARPA-E Database of Novel and
Emerging Adsorbent Materials (NIST-ISODB)27 to verify our
model. Comparing with other traditional ML as well as graph
neural network models, MOFNet achieves excellent perform-
ance for predicting the adsorption isotherm on the CSD-
MOFDB data set. Furthermore, MOFNet also achieves high
accuracy for predicting adsorption isotherms as well as
adsorption isotherm types on NIST-ISODB data set. The
proof-of-concept applications, such as disordered MOF
predictions and missing data imputation of gas adsorption
isotherms, showcase the generality and usability of our model
to improve MOF material design.

■ METHODS
Data Set. CSD-MOFDB Data Set. The MOF database28

contained 72,618 non-disordered structures integrated within
the Cambridge Structural Database (CSD, version 5.4) were
used. The solvent molecules were cleaned from the structures
by using an in-house script based on the graph-labeling
algorithm.29 The important structural properties, including
largest cavity diameter (LCD), pore-limiting diameter (PLD),
helium void fraction (VF), and so forth, were calculated using
open-source software Zeo++.30 We refined this data set by
removing structures based on the PLD less than the diameter
of three adsorbed molecules so that all three adsorbents can
access to the MOFs’ pores, and the diameters of N2, CO2, and
CH4 are 3.64, 3.3, and 3.8 Å, respectively. Some structures
failed in GCMC calculation are also removed. As shown in
Table S1, we finally eliminated those structures and ended up
with 7304, 6997, and 8539 MOFs for N2, CO2, and CH4,
respectively. We depicted the structure distribution of MOFs
for three adsorbents of N2, CO2, and CH4 in Figure S1 and
selected the CH4 data set to show the frequency of appearance
of various elemental types in Figure S2. The results indicate
that the atom type diversity of our data set contains 81 types in
total, which covers the most used types in the element periodic
table. We also evaluated the structure’s diversity by comparing
with other data sets in Figures S3 and S4. The detailed
description of the calculated data set can be found in the
Supporting Information.

GCMC simulations were carried out to calculate the
adsorption data of MOFs for CO2, N2, and CH4 using
RASPA software.31 A Lennard-Jones (LJ) plus Coulomb
potential described the interactions between MOF frameworks
and the gas molecules. The parameters for the MOF
framework were obtained from the universal force field
(UFF),32 while the TraPPE forcefield33 was used for the
guest model of CO2, N2, and CH4. The cutoff distance for
truncation of the intermolecular interactions was set to 12.8 Å.
The equilibration method (QEq)34 as implemented in RASPA
was assigned to frameworks. The supercells were used in
simulations by replicating the minimum images to meet the
requirement that each cell length was not less than 26 Å.
Number of cycles were set to 10,000 with the first 5000 cycles
for initialization and the last 1000 cycles for taking the
ensemble averages. The frameworks were fixed during
simulations to save calculation time. The external temperatures
for CO2, N2, and CH4 were set to 273, 77, and 298 K,
respectively. We set eight pressure points from the range of
0.2−100, 50−50,000, and 50−10,000 kPa for N2, CO2, and
CH4, respectively. We evaluated the accuracy of our calculated
data set by comparing with another data set in Figure S5. The
detailed description of the calculated data set can be found in
the Supporting Information.

NIST-ISODB Data Set. The NIST/ARPA-E databasea

contains experimental gas adsorption data of MOFs, while
few of them have atomic coordinate files. We obtained all gas
adsorption capacities (CO2 at 273 K, N2 at 77 K, and CH4 at
298 K) through the application programming interface (API)
provided by the official website. We further manually collected
MOF structures with crystallographic information file (CIF)
that are not used in the CSD-MOFDB data set. Finally, we
obtained 54 MOFs with 1876 pressure data points covering
N2, CO2, and CH4 adsorbate molecules.
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MOFNet Model. Hierarchical Representation. The
prediction of MOFNet originates from both local representa-
tion and global representation. Consider an MOF unit with N
atoms and M global features. To aggregate the local feature,
the input node feature of the MOF minimum unit is first
transformed by an atom embedding network to generate the
hidden node embedding H. Then, the embedding is processed
by L transformer-style message passing layers H Xf ( , , )local
composed of self-attention and feed forward layers, where

{ } ×0,1 N N and ×X N 3 denote the adjacency matrix
and the atom coordinates of the MOF unit, respectively. In the
other path, the global geometric features T M are fed into
an MLP fglobal(T) to obtain the global representation of the
MOF unit. Finally, the local and global representations are
summed up and transformed by an MLP, where the final
predicted gas uptake Ỹ can be acquired. That is

= +H X TY f fMLP( ( , , ) ( ))local global (1)

Local Node and Edge Features. To minimize the size of
the graph, we used the minimum repeating unit to characterize
local features. We used 81 element types, and classify the
outside types as “other”. Apart from the atom type, the other
attributes of a node include its node degree, whether it is a
hydrogen bond acceptor, whether it has chirality, whether it
belongs to the ring system, whether it is a metal, and whether it
is a spiro atom. The method of constructing the edge uses the
interface provided by the CSD Python API to calculate the
adjacency matrix.

Global Features. We used eight crystal geometric attributes,
for example, gravimetric surface area (GSA), LCD, PLD,
volumetric surface area (VSA), channel number (CN), crystal
density, pore volume (PV), VF, and open metal site per cell
(OMS).

We give the detailed information for local and global
features in the Supporting Information (Table S2).

Graph Transformer. Message Passing in the MOF Unit.
An MOF unit is a molecule graph that comprises atoms with
interactions. To capture the inter-atomic information, we apply
the message passing operation on the MOF unit. Particularly,
we iteratively apply the following aggregation scheme on a fully
connected graph formed by an MOF unit

=m h hAGGREGATE ( , )i
l

j i i
l

j
l( ) ( ) ( )

(2)

=+h h mUPDATE( , )i
l

i
l

i
l( 1) ( ) ( ) (3)

where we employ the average aggregation operator as the
aggregation function in eq 2 and a feed forward network after
residual connection as the feature update in eq 3. ψ is a neural
network parameterized layer that conveys the message between
atoms i and j.

Graph Transformer Network. Considering the highly
versatile structures of MOFs, we further employ a 3D-aware
self-attention mechanism on the message passing to expand the
representation capacity of MOFNet. Inspired by the molecule
attention transformer module,35 we adopt a threefold attention
aggregation that simultaneously considers interactions from
atom representation, bond connection, and 3D geometric
information. For node i, j with the hidden state h h,i j

h,

coordinates x x,i j
3, and the bond connection ij denoting

the i − j entry of the graph adjacency matrix, the transformer-
style message passing layer ψ is defined as

=

+ [ ] +

Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

Ö́ÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖ Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

i j
g h g h

g h g h
g h

x x

( , )
exp( ( ) ( ))

exp( ( ) ( ))
( )

/d ( )

i j

k i k
i

i j

a
Q

T
K

Q
T

K
V

attention on node representation

b ij i

bond messages

d 2
geometrical information (4)

where λa, λb, and λg are the balanced coefficients for the hybrid
message function. gQ, gK, gV are the query, key, and value
functions parameterized by MLPs. di is the node degree of
node i. ϕ is a function over the inter-atomic distances ∥xi −
xj∥n, which satisfies the E(n) invariance such that the predicted
gas absorption remains unchanged under all rotation,
reflection, and translation transformations on the input MOF
unit. We apply a set of radial Bessel basis functions to construct
the invariant function ϕ as

=
=

i

k

jjjjjjjjj

y

{

zzzzzzzzz
( )

d
d

d( )
sin

( )
i

N

i

d
c

1 (5)

where σ is the activation function with the formula of
= +xSiLU( ) x

1 e x , N is the number of radial Bessel basis
functions, αi is the learnable parameter, c = 5.0 is the cutoff
distance, and φ(d) is the cosine cutoff function as

=
+

>

l
m
ooooo

n
ooooo

i
k
jjjj

i
k
jjj y

{
zzz

y
{
zzzzd

d
c

d c

d c

( )
1
2

cos 1

0 (6)

Pressure Adaptive Mechanism. In order to further predict
the isotherm of MOFs under varying pressures, we propose a
novel transfer learning approach to acquire the interpolated
and extrapolated isotherm given a limited data regime.

For each MOF, we have calculated the gas uptake {Y(i)}i=1
K at

K different pressure levels {Pi}i=0
K . To take pressure into

consideration, we extend our model in eq 1 with pressure P

= +

+

H X TY f f

P P

MLP( ( , , ) ( )

(log log ) )

local global

0 p (7)

where βp is a trainable adapted tensor and P0 is a basic pressure
level.

To obtain the adapted model, we first pretrain the model
with data under pressure P0 by eq 1, and βp is initialized
randomly. As mentioned, the model pretrained at low pressure
focuses more on the local representations, which leads to a
better initialization of the graph transformer module f local.
Therefore, we empirically set P0 as the lowest pressure in our
simulated training data P0 = min{Pi}i=0

K . As P = P0, the
adaptation term (log P − log P0)βp is constant to 0 during the
pretraining procedure.

After pretraining, we transfer the model across all available
pressures {Pi}i=1

K . Particularly, for each MOF unit in the
training set, we first obtain the hierarchical representation f r by
summing up the local and global representations, that is,

= +H X Tf f f( , , ) ( )r local global . We repeat f rK times, and
each of them is assigned with an available pressure Pi.
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According to eq 7, the prediction at Pi is derived as Ỹ(i) =
MLP( f r + (log P − log P0)βp). The predictions of multiple
pressures {Ỹ(i)}i=1

K are then compared with the corresponding
labels {Y(i)}i=1

K and the optimization objective is the summation
of losses from various pressures. That is

=
=

Y Y
i

K
i i

1

( ) ( )
2

(8)

Experimental Details. Multiple hyperparameters were used
in our MOFNet. After testing hyperparameters on the
validation data set, the graph transformer network layers was
set to 2 and the hidden state of each layer was set to 1024. We
applied a three-layer MLP as the global feature encoder, and
the dimensions of these three layers were set to 128, 512, and
1024. The model was trained for 300 epoch using a batch size
of 32 MOF structures. We use mean square error (MSE) as the
training loss function. We used Adam optimizer with β1 = 0.9,
β2 = 0.98, and ϵ = 10−9 with the warmup strategy proposed by

Figure 1. Architecture of MOFNet. (a) Hierarchical representation framework by global representation with nine crystal geometric features and
local representation with a graph transformer. Here, the geometric attributes are GSA, LCD, PLD, VSA, CN, crystal density, PV, VF, and OMS. (b)
Workflow of the pressure adaptive mechanism.
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ref 36. We follow the same warmup strategy to schedule the
learning rate during the training steps. Specifically, the learning
rate is a function of training steps as learning rate = (dmodel·
warmup steps)−0.5min(steps/warmup steps, (warmup steps/
steps)0.5), where dmodel is the hidden dimension of the model.
In our experiments, we set dmodel = 1024 and warmup steps =
2000. Hence, the maximum learning rate is set to (dmodel·
warmup steps)−0.5 = 7 × 10−4. More tested hyperparameters
can be found in Table S3.

We used a 10-fold cross-validation method and randomly
split our calculated data set 8:1:1 for training, validation, and
testing. We give all the data sets used and the exact number of
training data sizes, validation data sizes, and test data sizes in
Table S4. Finally, the ensemble model with 10 trained models
is used for testing the experimental data. We evaluated our
MOFNet model by Pearson correlation coefficient (PCC),
mean absolute error (MAE), and symmetric mean absolute
percentage error (sMAPE). Specially, we adopted sMAPE
measured based on relative errors which is suitable for
evaluating the performance of the gas uptake at various
pressures. We compared our model with both traditional ML
algorithms (e.g., SVR, DT, GBRT, and RF) and graph-based
neural networks (e.g., SchNet,37 DimeNet++,38 EGNN,39 and
PaiNN40). All models trained on the same data as MOFNet.
The detailed hyperparameters of traditional ML methods and
graph-based neural networks can be found in Tables S5 and
S6, respectively.

We focus on two tasks for predicting properties of MOFs.
(1) Gas uptake prediction evaluates the ability of the model to
predict gas adsorption values under different pressures for each
gas on CSD-MOFDB and NIST-MOFDB databases. (2) Gas
isotherm prediction evaluates the ability of the interpolation
and extrapolation performance of our model on NIST-ISODB.
Obtaining accurate gas adsorption isotherms is based on
accurately predicting the gas uptake under different pressures.
For the gas isotherm prediction, we require not only the
predicted adsorption values to be close to the target but also
the shape of the predicted adsorption isotherm to be consistent
with the target. Therefore, we used the consistency of
adsorption isotherm types as an additional evaluation metric.

■ DATA AND MODEL AVAILABILITY
To ensure reproducibility of the results, the CSD-MOFDB and
NIST-ISODB data set used in this work has been made
available as a compressed file at https://matgen.nscc-gz.cn/
dataset.html. The MOFNet model and related data processing
scripts have been released as an open-source code in a GitHub
repository at https://github.com/Matgen-project/MOFNet.

■ RESULTS
MOFNet Architecture. As shown in Figure 1, MOFNet

consists of two essential sub-models. The first model is the
hierarchical representation (Figure 1a). The second model is
the pressure adaptive mechanism (Figure 1b). We represent
the structures of MOFs into two separate parts: the global part
contains crystal geometric attributes, and the local part learns
the fine-grained atomic and functional group information from
a symmetric unit. We will demonstrate in the next section that
the hierarchical representation approach focuses on different
features under different pressure conditions. Specially, an end-
to-end graph transformer network is applied to learn central
features contributed to gas uptake. Finally, we use a pressure
adaptor by a novel transfer learning approach to obtain the
interpolated and extrapolated isometric curve given the limited
data points.

Results of Predicting Performance on CSD-MOFDB
Data Set. We compared our MOFNet with two lines of
baseline models. The first line is traditional ML methods such
as SVR,19 DT,16 GBRT,41 and RF,17 which have shown
superior performance in gas uptake prediction. The second line
is GNN-based deep learning methods. We involve SchNet,37

DimeNet++,38 EGNN,39 and PaiNN40 as state-of-the-art
models which have been validated on other material
benchmarks to verify that the graph transformer is a more
suited local feature encoder.

We displayed our results of predicting performance on the
calculated data set in Table 1. Our MOFNet outperforms the
best traditional RF model. This phenomenon is in line with
our expectations. Our predictor contains local representation,
which is helpful to learn a more informative representation of
MOFs. MOFNet also outperforms the best GNN-based
DimeNet++ model, and the results are consistent in MAE

Table 1. MOFNet Predicting Performance (sMAPE) Comparing with Other Traditional Machine Learning Methods and
GNN-Based Modelsa

N2 CO2 CH4

low medium high low medium high low medium high

model 0.2 kPa 20 kPa 100 kPa 10 kPa 500 kPa 5 × 104 kPa 50 kPa 200 kPa 104 kPa

SVR 0.289 0.244 0.240 0.691 0.359 0.296 0.462 0.367 0.186
DT 0.355 0.304 0.305 0.732 0.424 0.350 0.548 0.444 0.249
GBRT 0.296 0.251 0.246 0.475 0.372 0.304 0.496 0.387 0.198
RF 0.273 0.231 0.227 0.671 0.342 0.278 0.443 0.348 0.182
SchNet 0.293 0.247 0.244 0.695 0.359 0.296 0.444 0.334 0.190
PaiNN 0.281 0.250 0.240 0.632 0.348 0.282 0.402 0.309 0.189
EGNN 0.295 0.249 0.245 0.697 0.356 0.297 0.445 0.334 0.188
DimeNet++ 0.276 0.228 0.227 0.595 0.331 0.272 0.398 0.296 0.187
MOFNet-Lb 0.377 0.379 0.379 0.770 0.405 0.382 0.515 0.405 0.406
MOFNet-Gc 0.289 0.243 0.240 0.720 0.362 0.293 0.471 0.368 0.190
MOFNet 0.251 0.216 0.215 0.569 0.311 0.258 0.359 0.281 0.171

aAll models are trained on the same data set and display the predicting performance on the independent test set. Here, we only select three
pressure points per each adsorption gas type in the picture. More pressure data points and metrics (MAE and PCC) can be found in Tables S7−
S15. bMOFNet only trained on local features. cMOFNet only trained on global features.
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and PCC performance, as shown in Tables S7−S15. The
difference between MOFNet and other GNN models lies in
the processing of local features, which shows that the self-
attention mechanism of MOFNet can better capture local
features related to adsorption properties.

In particular, we found that predicting the gas uptake at low
pressure is a more challenging task for N2, CO2, and CH4. The
sMAPE metric of N2, CO2, and CH4 increases as the pressure
decreases. Previous studies21 have explained that at high
pressure, the geometric information dominates adsorption
properties, so the ML models containing geometric descriptors
achieved high performance. At low pressure, the chemical
information related to the interactions between the gas guest
and the MOF framework may play a more important role in
determining the absorption capacities. We plotted the scatter
points of predictions against simulation data for CH4 at the
pressure of 104 kPa, and MOFNet achieves a high accuracy on
all metrics (Figure 2a). We give a detailed example of MOFs
(CSD code: BAZFUF) in Figure 2b, and the adsorption
isotherm of CH4 is close to the simulation result.

We also carried out ablation studies on MOFNet to
investigate factors that influence the performance of the
proposed MOFNet framework. The results are shown in
Tables S7−S15. MOFNet achieves the lowest sMAPE, MAE,
RMSE, and PCC metrics against MOFNet-L (only using local
features) and MOFNet-G (only using global features) for N2,
CO2, and CH4, respectively.

Results of Predicting Performance on NIST-ISODB
Data Set. We further explored the interpolation and
extrapolation performance of MOFNet on the real-world
adsorption isotherms. We collected data from the NIST/
ARPA-E Database of Novel and Emerging Adsorbent Materials
(NIST-ISODB),27 which is a collection of compiled gas
adsorption measurements in MOFs from both experimental
and simulation sources for various gases under a wide range of
conditions. The main challenges include the following: first,
the pressure interval of the real adsorption isotherm is likely to
be much wide, which requires the extrapolation of our
predictor trained on limited pressure intervals. Second, some
adsorption isotherms are very complex within specific pressure

intervals, which requires the interpolation capability of
MOFNet trained on only eight pressure points. Third, there
are six types of representative adsorption isotherms proposed
by IUPAC conventions26 that reflect the relationship between
porous structures and their adsorption types. Therefore, the
isotherm predictor needs to not only predict the gas uptake at
different pressures accurately but also generate the entire
isotherm consistent with the adsorption type.

To verify our MOFNet, we obtained all gas adsorption data
from NIST-ISODB and selected the data containing
coordinate files. Finally, we collected 54 MOFs with 1876
data points covering N2, CO2, and CH4. As shown in Figure
3a, our MOFNet achieves high performance in interpolated
and extrapolated capacities. We checked all the isotherm types,
and depicted the prediction accuracy in Figure 3b. We
observed that MOFNet achieves the best MAE and PCC
metric for CH4 gas, while it obtains moderate accuracy in
isotherm types. Specifically, we presented two case examples in
Figure 3c,d. In Figure 3c, we showed a successful case by the
MOF-74-Ni material. MOFNet accurately predicts the gas
uptake at various pressures with a MAE of 0.155 and a PCC of
0.997 and obtains the consistent adsorption type (type I) with
experimental observations. In another case example (Figure
3d), although MOFNet achieves high performance in MAE
(0.919) and PCC (0.816) metrics, it predicted the wrong
isotherm type. Our predictor gets type I isotherm, but the truth
is type II. We found that the PLD of ZIF-8 is 3.27 Å, while the
kinetic diameter of N2 is 3.64 Å, which indicates that the ZIF-8
may have a larger PLD in the experimental environment. This
may explain the biases when predicting the ZIF-8 adsorption
isotherm at high pressures.

Interpretable Prediction of Gas Adsorption Iso-
therms in MOFs. We attempted to interpret our MOFNet
predictor by determining which feature(s) a given ML model
weighs most heavily when making the prediction. We first
employed Shapley Additive Explanations (SHAP),42 a game-
theoretic approach to model interpretation, to explore this
issue. Figure 4a−c ranks the local and global features to
MOFNet under low, medium, and high pressure conditions for
N2, CO2, and CH4, respectively. Some observations stand out

Figure 2. (a) Scatter plot of MOFNet on CH4 at a high pressure of 10,000 kPa. (b) Case example of MOF isotherms (CSD code: BAZFUF).
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when comparing these rankings. First, in all these three
adsorption gases, the relative importance distributions of local
features appear to narrow with the increase in pressure. This
phenomenon further validates our hypothesis that as the
pressure increases, the geometric features of MOFs gradually
become the dominant factors. Second, the relative importance
of local features is not the same in different gases. We can
observe that the order of the distribution interval width in
different gases is CH4 > CO2 > N2, possibly because the
temperature of N2 is the lowest (77 K) compared to the others.
In addition, N2 is relatively inert and has a weaker interaction
with MOFs. Third, PV, density, and VF are the most important
global features to MOFNet, which confirms the findings of
multiple high-throughput studies of adsorption of MOFs and
other materials.22,43 Additionally, we can see that the relative
importance of the PV descriptor varies greatly in CH4 and CO2
at different pressures, especially at high pressures.

Let us illustrate the findings of gas uptake sensitivity to
pressure using a specific MOF example. As shown in Figure 4e,
we depict the density of CH4 sorbate component on a

framework calculated by GCMC methods at different
pressures. At 50 kPa, the uptake loading is 0.601 mol/kg and
few CH4 adsorbed on the framework. Under this condition, the
interactions between the CH4 molecules and the framework
are rare, and the CH4 molecules are more likely to appear on
the open metal sites or the specific functional group, which is
also called the monolayer adsorption stage.26 Thus, the
chemical information of the framework correlates well with
adsorption properties. As the pressure increases, we can see
from Figure 4e that more CH4 distributed in the pore of the
framework with an uptake loading of 1.277 mol/kg at 200 kPa
pressure. As a result, the geometric descriptors, for example,
PLD, LCD and GSA, and so forth, start to work. When the
high-pressure environment of 10,000 kPa is carried out, the
maximum uptake loading reaches to 3.984 mol/kg. The cavity
of the framework structure will be exploited by CH4 adsorbed
gas (multilayer adsorption stage), and thus, the geometric
features will dominate the adsorption properties.

We further explored the local feature learned by MOFNet by
determining which nodes (actually the chemical atoms and

Figure 3. Predicting performance on real-world adsorption isotherms (NIST-ISODB data set): (a) the half violin plots of MAE and PCC for N2,
CO2, and CH4 on independent adsorption data points, respectively. SD means standard deviation. (b) The accuracy of isotherm types prediction
for N2, CO2, and CH4, respectively. (c) Case example of the MOF-74-Ni isotherm. (d) Case example of the ZIF-8 isotherm.
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functional groups) in the graph transformer network gain the
most attention weight. We displayed the averaged attention
matrix of the first layer learned by our MOFNet in Figure 4f−h
for N2, CO2, and CH4, respectively. It is observed that the
attention matrixes focus more on the metals, such as the sliver
and zinc atoms in the minimum MOF unit. This phenomenon
consists with the prior knowledge that the gases are mostly
absorbed around the open metal atoms,44,45 so that the
absorption is mainly determined by the metals. Overall, the
self-attention mechanism considers the inter-atomic interac-
tions in MOF units and captures the relationship between the
predicted property and different types of atoms.

■ DISCUSSION
In this work, we establish an efficient method for describing
the relationship between MOFs and its adsorbates to predict
the curve-like properties. First, it enables us to train the big
structures of MOFs collected in the CSD database by
hierarchical representation, which is general and applicable to
other macro-molecular systems with certain symmetry. Second,
we have proved that the graph transformer can effectively

capture the relationship between the MOF structure and gas
uptake by focusing on open metal sites and functional groups.
Unlike other models developed for single system property
prediction, such as DimNet++, PaiNN, EGNN, and SchNet,
the transformer model with the self-attention mechanism may
be more suitable for two interacting systems. The reason
behind this phenomenon is that some atoms of the interacting
system (the parts that are in contact or close to each other)
play a central role for the concerned properties, and the
attention mechanism of the transformer is likely to help to
capture the important features. Moreover, due to the good
parallax of the transformer models, the self-supervised learning
strategy has been widely used to pre-train these models, such
as the work46 in the biochemistry and the work47 in biology.
Third, in our proposed pressure adaptive mechanism, we
introduce an adapted tensor to balance the contribution
weights of global and local features at different pressures. This
mechanism can interpolate and extrapolate the isotherm using
limited data and thus allow us to predict the isotherm of MOFs
under varying pressures. We also compare with the method by
inputting pressure as the feature into MLPs,22,48 of which

Figure 4. Feature importance, as ranked by SHAP for (a) N2, (b) CO2, and (c) CH4. The feature’s name is shown on the y-axis, and its
corresponding importance is shown on the x-axis. (d) Molecule minimum unit of MOFs (CSD code: LAGCIH). (e) CH4 uptake of LAGCIH
material and its uptake behavior on low, medium (Med.), and high pressures. The atom surface is colored by blue (inside) and gray (outside).
Heatmaps of self-attention weights from the first layer of MOFNet on a molecule minimum unit of LAGCIH for (f) N2, (g) CO2, and (h) CH4.
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prediction performance is worse than our method as shown in
Table S16. The reason behind this could be the model
pretrained at low pressure used in pressure adaptive
mechanism focuses more on the local representations, which
leads to a better initialization of the graph transformer module.

Meanwhile, we noticed that the node contributed weights of
some non-metals in the structure are very weak, which may
allow MOFNet to predict the disordered MOFs caused by
these atoms with reasonable results. We depicted the ordered
and disordered structure in Figure 5a,b. The disordered atoms
are carbon. We found that the predictions of MOF-205
material in ordered and disordered structures are close (Figure
5c), and their MAE and PCC against experimental
observations are 5.937 (PCC = 0.987) and 4.832 (PCC =
0.987), respectively. We further showed the prediction
difference between these two structures against various
pressures in Figure 5d, and those disordered atoms have
weak effect at low pressures and little effect at high pressures.
Additionally, due to the capacities of interpolation and

extrapolation, MOFNet can potentially be applied to missing
data imputation of gas adsorption isotherms in databases. We
found reports of related attempts,49 and our model may help to
complete missing adsorption properties of nanoporous
materials. In terms of the training data set, previous studies
are mainly based on the hMOF data set,50 which has limited
diversity in types of metal atoms and metallic corners. Our
MOFNet is trained on CSD-MOFDB, which has the most
complete collection of MOF structures at present, with wide
distribution of element types and more diverse structures.

■ CONCLUSIONS
In summary, we develop a deep learning model based on
hierarchical representation, graph transformer, and pressure
adaptive mechanism for predicting the gas adsorption isotherm
of MOFs. To train our model, we construct the CSD-MOFDB
data set with N2, CO2, and CH4 calculated adsorption
capacities for training and manually collect the NIST-ISODB
data set containing experimental observed gas isotherms to

Figure 5. (a) Ordered and (b) disordered structure of MOF-205. White, gray, red, and dark blue spheres stand for H, C, O, and Zn atoms,
respectively. The atom surface is colored by blue (inside) and gray (outside). (c) MOFNet predictions of ordered and disordered structures of
MOF-205. (d) Distribution of difference between predictions of the ordered and disordered structures.
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verify our model. We first evaluate our model on the CSD-
MOFDB data set, and MOFNet achieves excellent perform-
ance on predicting the gas absorption on various pressure
levels compared with prior state-of-art methods. We further
extend our model in a transfer learning fashion to learn an
interpolation across arbitrary pressures and fit the isotherms.
Finally, we assess MOFNet on real-world NIST-ISODB and
discover that MOFNet, despite trained with simulation data, is
capable of generalizing to real-world data. We showcase the
generality and usability of our model in the proof-of-concept
applications, which might be valuable to the material science
community.
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