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Abstract—With the rapid development of artificial intelligence
(AI), there is a trend in moving AI applications, such as neural
machine translation (NMT), from cloud to mobile devices. Con-
strained by limited hardware resources and battery, the perfor-
mance of on-device NMT systems is far from satisfactory. Inspired
by conditional computation, we propose to improve the perfor-
mance of on-device NMT systems with dynamic multi-branch
layers. Specifically, we design a layer-wise dynamic multi-branch
network with only one branch activated during training and infer-
ence. As not all branches are activated during training, we propose
shared-private reparameterization to ensure sufficient training for
each branch. At almost the same computational cost, our method
achieves improvements of up to 1.7 BLEU points on the WMT14
English-German translation task and 1.8 BLEU points on the
WMT20 Chinese-English translation task over the Transformer
model, respectively. Compared with a strong baseline that also uses
multiple branches, the proposed method is up to 1.5 times faster
with the same number of parameters.

Index Terms—Conditional computation, decoding, machine
translation, natural language processing, transformers.

I. INTRODUCTION

MACHINE translation is a classic problem of artificial
intelligence (AI) that aims to translate natural languages

automatically. With the rapid development of deep learning, neu-
ral machine translation (NMT) [1], [21], [22] has achieved great
success and become the dominant approach to MT. Recently,
there has been an increasing interest in moving AI applica-
tions, such as NMT, from cloud to mobile devices. Compared
with cloud-based NMT services, on-device NMT systems offer
increased privacy, low latency, and a more compelling user
experience.

However, it is challenging to deploy NMT models on edge
devices. Due to high computation cost, on-device NMT systems
face a trade-off between latency and performance [24]. Fig. 1
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Fig. 1. Latency, performance (BLEU), and capacity of Transformer models
with different hidden sizes on a Raspberry Pi 4 device. All models are trained
on the WMT14 English-German dataset. Scaling down the hidden size of the
model (from 512 to 128) reduces the translation latency, but also lowers the
model’s capacity and hurts the translation performance.

gives an illustration of the latency, performance, and capacity of
Transformer models with different hidden sizes when translating
a sequence with 30 tokens on a Raspberry Pi 4 device. As we can
see, a Transformer-base model takes over 5 seconds to translate
a sequence of 30 tokens and such long latency is not desired for
real-time applications. Although the latency can be reduced by
simply scaling down the hidden size of the network, it also weak-
ens the model’s capacity, making the translation performance
of on-device NMT models far from satisfactory. As the model
capacity is a key factor in determining the performance of neural
networks [19], how to increase the capacity of on-device NMT
models without sacrificing efficiency is an important problem for
achieving a better trade-off between latency and performance.

This problem has received increasing attention in the commu-
nity in recent years [2], [3], [7], [19], [24]. Among prior studies,
conditional computation [3], [4], [6], which proposes to activate
parts of a neural network in an input-dependent fashion, is a
representative method for improving model capacity without a
proportional increase in computation time. Recently, Shazeer
et al. [19] have proposed a sparsely-gated mixture-of-experts
(MoE) approach. While their approach dramatically increases
model capacity by introducing multiple alternatives, it still in-
evitably incurs non-negligible computational overhead. Bapna
et al. [2] propose conditional computation Transformer, which
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Fig. 2. (a) A conventional multi-branch layer and (b) a dynamic multi-branch
layer. By dynamically activating only one branch during training and inference
via an input-dependent gate, our goal is to enable on-device NMT to share the
same model capacity with conventional multi-branch networks and maintain the
same efficiency with standard single-branch networks.

can dynamically skip a sub-layer of the model based on the
complexity of input and demonstrates its effectiveness over the
vanilla Transformer within a small computational budget on
an average basis. However, the computational time may vary
significantly when translating sequences with the same length
as in the worst case no sub-layer can be skipped, which is not
desired for on-device NMT services. As a result, how to use
conditional computation to improve model capacity without sac-
rificing efficiency still remains a major challenge for on-device
NMT.

Along the line of conditional computation, we propose to use
dynamic multi-branch (DMB) layers for on-device NMT. As
shown in Fig. 2, a dynamic multi-branch layer is capable of
dynamically activating a single branch using an input-sensitive
gate, enabling the resulting NMT model to have increased ca-
pacity thanks to the use of more branches while keeping the same
efficiency with the standard single-branch model. To ensure
sufficient training of each branch, we propose shared-private
reparameterization that requires zero computational and mem-
ory overhead during inference. Based on DMB layers, we also
propose Transformer-DMB architecture, which extends both the
feed-forward and attention layers of a Transformer model with
DMB counterparts, to effectively increase the capacity of the
model while keeping nearly the same efficiency.

We conduct experiments on the WMT14 English-German
(En-De) and the WMT20 Chinese-English (Zh-En) translation
tasks to verify the effectiveness of our proposed method. Experi-
ments show that our method achieves improvements of up to 1.7
BLEU points on the WMT14 En-De translation task and up to
1.8 BLEU points on the WMT20 Zh-En translation task over the
Transformer model while keeping nearly the same computation
efficiency. The proposed method is also up to 1.5 times faster
than a strong MoE-based baseline with the same number of
parameters and comparable translation quality.

In summary, our contributions are:
� We propose dynamic multi-branch layers, which is a simple

yet effective method to increase the capacity of a network
without sacrificing speed.

� We propose shared-private reparameterization to ensure
the effective training of each branch in a DMB layer.

� We propose Transformer-DMB architecture that signifi-
cantly increases the capacity while keeping nearly the same
computation cost of the Transformer model.

II. BACKGROUND

A. The Transformer Model

Transformer [22] is the state-of-the-art neural architecture for
machine translation. The encoder of the Transformer typically
consists of 6 layers, where each encoder layer is composed of a
multi-head attention (MHA) sub-layer and a feed-forward (FFN)
sub-layer. The decoder of the Transformer also consists of 6
layers, where each decoder layer is composed of a masked MHA
sub-layer, an encoder-decoder MHA sub-layer, and an FFN sub-
layer.

Multi-head attention consists of H parallel heads, each of
which is a scaled dot-product attention. Given a set of n queries
Q ∈ Rn×d, m keys K ∈ Rm×d, and m values V ∈ Rm×d,
where d is the hidden size, the output of an MHA sub-layer
is a combination of the outputs of each head. Formally, it can be
described as

MHA(Q,K,V) = Concat(head1, . . .,headH)Wo, (1)

where Wo ∈ Rd×d are learnable parameters. Each attention
head attends to different representation subspaces at different
positions:

headh = Attention(QW(h)
q ,KW

(h)
k ,VW(h)

v ), (2)

where W
(h)
q ∈ Rd×dh ,W

(h)
k ∈ Rd×dh , W

(h)
v ∈ Rd×dh , and

dh = d/H . The computation involved in scaled dot-product
attention network can be described as

Attention(Q,K,V) = softmax

(
QK�
√
dk

)
V. (3)

To compensate the attention’s negligence of the order of input
sequence, the Transformer adds positional encoding to the bot-
tom of both the encoder and the decoder. Please refer to [22] for
more details.

The FFN sub-layer consists of two linear layers with ReLU as
the activation function. Formally, given an input vector x ∈ Rd,
the output of an FFN sub-layer can be described as

FFN(x) = W2ReLU(W1x), (4)

where W1 ∈ Rdf×d,W2 ∈ Rd×df , and df is the hidden filter
size.

The loss function for learning the Transformer model is the
cross-entropy loss. Given a source sequence x of length S and
a target sequence y of length T , the loss function Lm is defined
as

Lm = − 1

T

T∑
t=1

logP (yt|x). (5)

B. Sparsely-Gated Mixture-of-Experts Layer

Sparsely-gated mixture-of-experts (MoE) layer [19] is a
method to realize the promise of conditional computation. Each
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MoE layer consists of a set of N experts fi and a gating network
g. Given an input vector x ∈ Rd, the output y of the MoE layer
is formally described as follows:

y =

N∑
i=1

g(x, i) · fi(x), (6)

where “·” denotes the scalar-matrix multiplication, and g(x, i)
denotes the i-th element in g(x).

To increase the number of experts N without a proportional
increase of computation, Shazeer et al. [19] introduced a noisy
top-k gating mechanism. Formally, the computation involved in
g(·) can be described as

g(x) = softmax(KeepTopK(H(x), k)), (7)

H(x) = Wx+ ε� softplus(Wnx), (8)

where ε ∼ N (0,1) is a d-dimensional noise vector and “�”
denotes the element-wise product. “softplus” is an activation
function which is formally defined as

softplus(x) = log(1 + exp(x)). (9)

The i-th element in the vector KeepTopK(v, k) is formally
defined as

KeepTopK(v, k, i) =

⎧⎨
⎩

vi if vi is in the top k
elements in v,

−∞ otherwise.
(10)

When setting k > 1, gradients can back-propagate through
the noise top-k gating network to its inputs. As a result, the
MoE layers can be learned in an end-to-end fashion. However,
gradients can no longer back-propagate through the network
to its inputs when k = 1. The reason is that g(x) is always a
constant vector regardless of the input x in Eq (7). Therefore,
to enable end-to-end training, the MoE layers still introduce
non-negligible computational overhead.

Shazeer et al. [19] also introduced two additional losses
to each MoE layer. The first loss is the diversity loss, which
encourages all experts to have equal importance. The second
loss is the load balance loss, which ensures balanced loads when
training on distributed hardware.

III. PROPOSED METHOD

In this section, we first describe the definition of dynamic
multi-branch layers in Section III-A. Then we describe the
shared-private reparameterization in Section III-B. Finally, we
describe the architecture of our models in Section III-C.

A. Dynamic Multi-Branch Layers

We propose dynamic multi-branch (DMB) layers for increas-
ing the model capacity while maintaining roughly the same com-
putational cost. Similar to MoE layers, each DMB layer consists
of a set ofN identical branches with different parameters. We use
d to denote the hidden size of the network. Given an input vector
x ∈ Rd, we denote the i-th branch in the layer asfi(x;θi), where
fi can be an arbitrary differentiable function with parameters θi.

Fig. 3. Overview of a dynamic multi-branch layer with 4 branches. Based on
the predictions of the gating unit, only one branch in a layer is active during
training and inference.

The output of a DMB layer is described as

y =

N∑
i=1

g(x, i) · fi(x;θi). (11)

Different from MoE layers where g(x, i) is a real-valued
scalar, g(x, i) in DMB layers is a binary-valued scalar indi-
cating whether the i-th branch is activated or not. The value of
g(x, i) is dynamically computed based on the input x. For each
DMB layer, we first employ a lightweight gating unit to learn a
probability distribution for activating each branch. We use a(x)
to denote the predicted distribution and ai(x) to denote the i-th
element in a(x). The gating unit is simply a linear layer followed
by a softmax activation function:

a(x) = softmax(Wgx+ bg), (12)

whereWg ∈ RN×d andb ∈ RN are learnable parameters. Then
we activate the branch with the highest probability. Formally, the
value of g(x, i) is described as

g(x, i) =

⎧⎨
⎩

1 if ai (x) is the top
element in a (x),

0 otherwise.
(13)

Fig. 3 gives an illustration of a DMB layer. By introducing the
gating unit, we can ensure that only one branch in a layer is active
during training and inference. Unfortunately, binary outputs of
the gating units are not differentiable, which complicates the
learning of DMB layers. To enable the end-to-end training of
gating units, we introduce two auxiliary losses: the diversity
loss and the entropy loss.

The first auxiliary loss is the diversity loss. The goal of diver-
sity loss is to encourage a balanced utilization of each branch.
Following Shazeer et al. [19], we minimize the coefficient of
variation among all branches. For a batch of M inputs {xi}, the
loss function is formally described as

μ =
1

N

N∑
i=1

M∑
j=1

ai(xj), (14)

σ2 =
N∑
i=1

⎛
⎝ M∑

j=1

ai(xj)− μ

⎞
⎠

2

, (15)
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Ld =
σ2

μ2
. (16)

The second auxiliary loss is the entropy loss. We expect that
the gating unit can give a high probability when activating a
branch. Therefore, we minimize the entropy of predicted distri-
bution a(x). Formally, entropy loss is defined as

Le = − 1

M

M∑
j=1

N∑
i=1

ai(xj) · log ai(xj). (17)

By using the auxiliary losses, the gating units can receive
gradients directly from the loss functions. Despite of its sim-
plicity, in our experiments, we found the two auxiliary losses
are sufficient for learning the gating units.

Therefore, DMB layers achieve nearly the same computa-
tional efficiency as the corresponding single-branch layers. The
only additional computational overhead of a DMB layer is calcu-
lating a(x), which is negligible compared with the computation
of an active branch fi.

B. Shared-Private Reparameterization

Ideally, we expect a balanced utilization for all branches of
a DMB layer. However, in this situation, each branch is only
trained with a subset of training examples. We refer to this
phenomenon as the shrinking training examples problem. For
example, for a smaller training set or large choices of N , each
branch is only trained with 1/N examples in expectation, which
often leads to insufficient training of each branch.

To alleviate this problem, we propose a method called shared-
private reparameterization: for a given DMB layer, the param-
eters θi of the i-th branch fi is composed of two separate
set of parameters {θS ,θPi

}. θS is the shared parameters for
all branches in the DMB layer. In contrast, θPi

is the private
parameters bound to the i-th branch in the DMB layer. θi is
reparameterized as a summation of θS and θPi

:

θi = θS + θPi
. (18)

Suppose the gating unit chooses the j-th branch in the forward
pass. During the backward-pass, the gradients with respect to θS

and θPi
are

∂L
∂θS

=
∂L
∂y

∂fj(x;θj)

∂θj
, (19)

∂L
∂θPi

=
∂L
∂y

∂fj(x;θj)

∂θj

∂θj

∂θPi

. (20)

The shared parameters are always updated no matter which
branch is chosen. In contrast, the private parameters θPi

receive
non-zero gradients only when i is equal to j. By introducing the
shared-private reparameterization, we expect that each branch
in a DMB layer is not only able to learn shared knowledge with
θS , but also preserves distinct characteristics via θPi

.
Another benefit of using a summation in Equation (18) is that

we can easily pre-compute θi when the training is over. As a
result, there is zero computational and memory overhead after
training when introducing θS .

Fig. 4. Transformer with dynamic multi-branch layers.

C. Architecture and Training Objective

We extend the Transformer architecture with DMB layers,
which we refer to as the Transformer-DMB architecture. Fig. 4
depicts the Transformer-DMB architecture. Different from [19]
where MoE layers are only applied for FFN layers, we apply
DMB at a more fine-grained level. For DMB FFN layers, we
introduce a single gating unit gf . Suppose the gate predictions
gf (x, k) = 1 for a given input x, the computation of DMB FFN
layers is formally defined as:

FFNDMB(x) = W
(k)
2 ReLU(W

(k)
1 x), (21)

where W
(k)
1 ,W

(k)
2 are parameters of the k-the branch of the

DMB FFN layer.
For DMB MHA layers, we also introduce an additional gating

unit ga. Given a set of n inputs X = [x1, . . . ,xn] and a set of N
weights {W(k)}, we use g(X, {W(k)}) to denote the following
computations:

g(X, {W(k)}) = [W(i1)x1, . . . ,W
(in)xn], (22)

where g(xk, ik) = 1 for k ∈ {1, . . . , n} and ik ∈ {1, . . . , N}.
Then the computations involved in DMB MHA layers can be
formally described as

MHADMB(Q,K,V) = ga(H, {W(k)
o }), (23)

where W(k)
o are weights associated with the k-th MHA branch,

H = Concat(head1, . . .,headH), and

headh = Attention(Q(h),K(h),V(h)). (24)

Furthermore, we have

Q(h) = ga(Q, {W(h,k)
q }), (25)

K(h) = ga(K, {W(h,k)
k }), (26)

V(h) = ga(V, {W(h,k)
v }), (27)

where W(h,k)
q , W(h,k)

k , and W
(h,k)
v are weights associated with

the h-th head of the k-th MHA branch.
Suppose there are a total of L DMB layers. For the i-th gating

unit g(·, i), the associated auxiliary losses Ld,i and Le,i are
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added to the original cross-entropy loss Lm (see Eq. (5)) with
a weight α. As a result, the final loss function of our model
becomes

L = Lm + α
1

L

L∑
i=1

(Ld,i + Le,i). (28)

IV. EXPERIMENTS

A. Setup

1) Datasets: We evaluate our proposed models on English-
German (En-De) and Chinese-English (Zh-En) translation tasks.
The evaluation metric is case-sensitive BLEU [15]. We use the
number of Mult-Adds 1 to measure the computational costs of
an NMT model [24]. To quantify how well an on-device NMT
system increases capacity while keeping efficiency, we introduce
a measure called performance-time ratio (PTR) defined as

PTR =
BLEU√

#Mult-Adds
× 104. (29)

For the En-De translation task, we use the WMT14 train-
ing corpus which contains 4.5 M sentence pairs with 103 M
English words and 96 M German words. We use a shared
source-target vocabulary of about 37,000 tokens encoded by
BPE [18]. We use newstest2013 as the validation set and
use newstest2014 as the test set. We report the tokenized
BLEU score as calculated by multi-bleu.perl to be in
accordance with previous works.

For the Zh-En translation task, we use the training corpus
provided by WMT20. After filtering duplicate entries, the corpus
consists of 21 M sentence pairs with 417 M Chinese words and
452 M English words. We use 32 K BPE operations to build
vocabularies. The validation set is newsdev2017 and the test
set is newstest2020. We report the detokenized BLEU score
calculated by SACREBLEU 2 [16].

2) Settings: We compare our proposed models with the fol-
lowing baselines:
� Transformer [22]: State-of-the-art self-attention based

neural machine translation architecture.
� Transformer-MoE. We implement the sparsely-gated MoE

layer [19] on top of the Transformer architecture. The over-
all architecture is similar to ours, with two key differences.
First, we mix top-2 experts from a total of N in the MoE
architecture for end-to-end training of the gating unit. Sec-
ond, we do not use the shared-private reparameterization
in this approach.

Besides these baselines, we also compare our model with
recent works on efficient NMT models such as Lite Trans-
former [24] whenever possible.

We experiment with two commonly used settings for on-
device NMT:
� Tiny setting: We set the hidden size d of the model to 128.

The filter size of feed-forward layers is set to 512. Under

1We use the torchprofile library to count the number of Mult-Adds.
2Signature: BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.

1.4.14.

this setting, the Transformer has 229.0 M Mult-Adds for
the En-De translation task.

� Small setting: A larger setting for more capable devices,
which resulting around 623.2 M Mult-Adds for a Trans-
former model trained on the En-De translation task. We set
the hidden size d of the model to 256. The filter size of
feed-forward layers is set to 1,024.

For all our models, we use Adam [13] (β1 = 0.9, β2 = 0.98
and ε = 1× 10−9) as the optimizer. We empirically set α = 0.1
for our MoE and DMB approaches, and use N = 4 experts or
branches. For DMB layers, we initialize all shared parameters
to zero at the beginning of training. Each mini-batch contains
approximately 64 K source and 64 K target tokens. All other
settings are the same with Vaswani et al. [22]. We train all models
on a machine with 8 RTX 2080Ti GPUs for 10,000 steps and
save a checkpoint every 1,000 steps. For all models, we averaged
the last five checkpoints to obtain a single model. Decoding is
performed using beam search. Following [22], we set the beam
size to 4 in all our experiments. We set the length penalty to 0.6
for En-De translation and 1.0 for Zh-En translation.

B. Results

Table I shows the results on the En-De and the Zh-En trans-
lation tasks, respectively.

On the En-De translation task, our model outperforms the
Transformer model by 1.7 BLEU points under tiny model set-
tings, and 0.7 BLEU points under small model settings. The
results of the Zh-En translation task are similar. Our model
outperforms the Transformer model over 1.8 BLEU points under
tiny model settings, and 1.0 BLEU point under small model
settings. The performance of our model is on par with the
Transformer model extended with MoE. The Transformer-DMB
and Transformer-MoE models also have the same number of
parameters. However, the computational overhead of our model
is much less than the MoE approach. Our approach only adds
0.6 M computational overhead for the tiny model compared to
the corresponding Transformer architecture whereas the MoE
approach adds 84.2 M Mult-Adds. Under the small model
settings, our Transformer-DMB model is 1.5 times faster than
the Transformer-MoE model (624.3 M Mult-Adds vs. 956.6 M
Mult-Adds), which is, therefore, more preferable for edge de-
vices. We also compare our Transformer-DMB models with
other models, such as Evolved Transformer [20], Lite Trans-
former [24], and HAT [23]. With comparable performance, our
models achieve the best performance-time ratio. Nevertheless,
we believe our work is also applicable to Lite Transformer and
HAT.

We report the inference latency of a sequence with 30 tokens
in Table II on a Raspberry 4 device, which has 4 Cortex-A72
cores at 1.5 GHz and 8 GB RAM. For greedy search, the
Transformer-DMB model costs about 7.7% more time than the
Transformer model under the tiny model settings and costs about
10.9% more time under the small model settings. Compared
with Transformer-MoE models, the Transformer-DMB model
is about 1.4 times faster under the tiny model settings, and 1.5
times faster under the small model settings. For beam search,
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TABLE I
EXPERIMENTS ON WMT14 EN-DE AND WMT20 ZH-EN DATASETS

“#Params.” denotes the number of parameters, “#MA.” denotes the number of multi-adds, and “PTR” denotes the performance-time
ratio. different from wu et al. [24] and wang et al. [23], we also count the number of parameters and mult-adds in the embedding and
classification layers. “-” indicates that the comparison is not applicable. the number of experts/branches N is set to 4 for MoE and DMB.

TABLE II
RASPBERRY PI 4 ARM CPU LATENCY AND BLEU COMPARISONS WITH

DIFFERENT MODELS ON THE WMT14 EN-DE TRANSLATION TASK. THE

NUMBER OF EXPERTS/BRANCHES N IS SET TO 4 FOR MOE AND DMB

Transformer-DMB modes introduce more computational bur-
dens to Transformer models compared with the results when
using greedy search. This is because our current implementation
splits a batched matrix into smaller matrices to enable condi-
tional computations, which reduces the degree of parallelism for
matrix multiplications. We believe the gap can be significantly
narrowed with a dedicated DMB-aware matrix multiplication
kernel.

C. Ablation Study

We conduct an ablation study on the WMT14 En-De transla-
tion task to investigate the performance of each component of
our model, the results are reported in Table III . Based on the
results, we have the following observations:
� Replacing all DMB MHA layers in the Transformer-DMB

model with plain MHA layers lowers the BLEU score by
0.7 points. The results suggest that besides extending FFN
layers with DMB FFN layers, extending MHA layers on
both the encoder and the decoder with DMB MHA layers

TABLE III
ABLATION STUDY OF OUR PROPOSED TRANSFORMER-DMB MODEL ON THE

WMT14 EN-DE TRANSLATION TASK

can further increase the capacity of the model, and is helpful
for improving the translation performance.

� Without using shared-private reparameterization, the
Transformer-DMB model achieves 21.9 BLEU points,
which underperforms the result of a model trained with
shared-private reparameterization by 0.8 points. This
shows that shared-private reparameterization is helpful in
improving the learning of each branch in DMB layers.

� Without introducing auxiliary losses (diversity loss or en-
tropy loss or both) during training, the Transformer-DMB
model only achieves around 21.1 BLEU points, which is
nearly the same as a Transformer model with the same
hidden size (21.0 BLEU points). The results indicate that
both diversity and entropy loss are essential for learning
DMB layers.

D. Effect of Reparameterzation and the Number of Branches

We investigate the effect of the number of branches and the
effectiveness of the shared-private reparameterization on the
WMT14 En-De translation task. Fig. 5 shows the results with
different settings. We have two observations:
� The number of branches is a key factor that affects the

performance of our Transformer-DMB models. The perfor-
mance of our methods improves as the number of branches
increases. This validates our assumption that the model
capacity is a key bottleneck for current on-device NMT
models. Our methods can significantly increase the model
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TABLE IV
EXPERIMENTS ON WMT14 EN-DE AND WMT20 ZH-EN DATASETS WITH KNOWLEDGE DISTILLATION

“transformer (big)” is used as the teacher model in knowledge distillation. “#params.” denotes the number of parameters, “#MA.” denotes
the number of multi-adds, and “PTR” denotes the performance-time ratio. the number of branches N is set to 4 for MoE and DMB.

Fig. 5. Effect of branch number and shared-private reparameterization on the
WMT14 En-De dataset.

capacity while introducing negligible computational over-
head.

� The shared-private reparameterization is very effective.
Under all settings, we can see that the model with shared-
private reparameterization outperforms the corresponding
counterpart. We can see that the gap between models
with/without shared-private reparameterization becomes
larger as N increases, which proves that shared-private
reparameterization can effectively address the shrinking
training examples problem.

E. Effect of Knowledge Distillation and Quantization

As knowledge distillation (KD) [12] is a commonly used tech-
nique to improve the performance of small models, we conduct
additional experiments to investigate the effectiveness of our
method on the data generated with sequence-level knowledge
distillation.

On the En-De translation task, our model outperforms the
Transformer model over 1.8 BLEU points under tiny model
settings, and 1.0 BLEU point under small model settings. The
results of the Zh-En translation task are similar. Our model
outperforms the Transformer model over 1.7 BLEU points under
tiny model settings, and 0.5 BLEU points under small model

settings. The performance of our model is also on par with the
Transformer model extended with MoE. The results suggest that
our method is still effective when combined with knowledge
distillation.

One potential concern of the DMB approach is the increase
of memory requirements. Fortunately, this problem can be al-
leviated with quantization techniques [7]. Quantization is a
very effective approach to reduce the memory consumption of
NMT models, and it also improves the translation speed by
utilizing integer instructions instead of floating-point operations.
We show our model is orthogonal with quantization techniques.
We further conduct experiments with a tiny Transformer-DMB
model on the WMT14 En-De dataset with 8-bit quantization.
The model has 8 branches and is trained on the data generated by
knowledge distillation. The BLEU score of the quantized model
is 25.3, which is the same as the model without quantization.

Fig. 6 shows the BLEU, #Mult-Adds and disk spaces of mod-
els with DMB, knowledge distillation, and quantization. Com-
bining all techniques, we achieve 25.3 BLEU points with only
230.1 M Mult-Adds. The model trained with 8-bit quantization
only occupies 26.9 MB of space, which we believe is affordable
for most edge devices. By using even lower bit quantization
techniques [7], we believe our methods can achieve a better
space-time tradeoff and further improve the model performance.

F. Analysis

1) Size of Training Dataset: It is well-known that increased
capacity is helpful for neural models to absorb more training
data [19]. Therefore, we conduct experiments to study the com-
parisons between Transformer-DMB models (tiny) and Trans-
former models (tiny) at different data sizes. Fig. 7 shows the
results. To our surprise, we find that Transformer-DMB models
always outperform Transformer models regardless of the input
data size. The results indicate that increasing the capacity of the
model not only helps learn from more data but also is helpful
for learning expressive representations.

2) Sentence Length: As shown in Fig. 8, it is clear that
the Transformer-DMB model (tiny) is much better than the
Transformer model (tiny) at translating long sentences. We
believe this is due to the Transformer-DMB models can use
different branches to learn different semantic features of the
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Fig. 6. (a) #Mult-Adds vs. BLEU and (b) Disk space vs. BLEU on the WMT14 En-De translation tasks. Combined with DMB, knowledge distillation, and 8-bit
quantization, we are able to achieve an improvement of 4.3 BLEU points over the Transformer model with nearly the same number of Mult-Adds and disk spaces.
“quant.” indicates quantization.

Fig. 7. Comparisons between Transformer-DMB models and Transformer
models on the WMT14 En-De translation task with different data sizes.

input sentence, which is more powerful and flexible than the
single-branch Transformer models.

3) Visualization: We visualize the gate predictions to find out
how DMB layers process sequences. Fig. 9 shows visualizations
of 5 sentences. The predictions are based on the gating unit
at the 4th attention sub-layer of the encoder. As we can see,
different branches typically process different types of words.
For example, pronouns and articles are classified into the branch
highlighted in purple, named entities usually processed by the
green branch. The results confirm that different branches can
learn different semantic representations, thus improving the
performance of NMT models.

V. RELATED WORK

Efficient NMT: There are many works devoted to efficient
NMTs, which can be roughly divided into two categories. The
first line is related to model compression. Pruning [11], [25] and
quantization [7], [17] are two widely used methods to reduce the
model size. We believe our work is orthogonal with these works.
The second line focuses on reducing the computations of NMT

Fig. 8. BLEU scores of the generated translations on the newstest2014
with respect to the lengths of the source sentences.

Fig. 9. Visualization of gate predictions on the En-De translation task. Differ-
ent colors represent different branches.

models. Wu et al. [24] proposed Lite Transformer for mobile
applications. They introduced a Long-Short Range Attention
network to reduce the computational cost of the Transformer
model. Lu et al. [14] proposed the multi-head attention Res-
Block and the position-wise feed-forward network ResBlock
to speed up the Transformer model. So et al. [20] and [23]
introduced architecture search methods to find a hardware-aware
architecture. Compared with these works, our work does not
need additional search time. Besides, we believe our methods
are easily applicable to these new architectures.

b) Conditional Computation: Bengio et al. [5] first proposes
the concept of conditional computation to enhance the capacity
of neural networks without incurring additional computations.
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Various forms of conditional computation have been proposed
since then [3], [4], [6], [8], [9]. Shazeer et al. [19] introduce
a sparsely-gated mixture-of-experts approach. They build an
NMT model with thousands of feed-forward neural networks
between two recurrent layers. The MoE layer is similar to ours
but has two major differences. First, instead of a mixture of
top-k experts, we only choose one branch in a layer. Second, we
introduce shared-private reparameterization in each layer during
training. Bapna et al. [2] propose conditional computation trans-
former (CCT) architecture. They add a budget loss to control the
balance between quality and computation. Our work is different
from theirs in several aspects. First, while they adopt an in-
dependent gating approach, we use a dynamic multi-branch ap-
proach. Second, our architecture is different from the conditional
computation Transformer. Third, given a fixed sequence length,
the computational costs of our models are fixed, whereas CCT
depends on the complexity of the input sequence. Very recently,
Fedus et al. [10] propose Switch Transformer architecture for
scaling to trillion parameter models, which is concurrent with
our work. They introduce a top-1 MoE layer which reduces the
computation required in the previous approach [19]. The differ-
ences between our DMB layers and their top-1 MoE layers are
two folds: First, our gating decisions are binary-valued whereas
their gating outputs are real-valued. Our method requires less
computation because we do not need to multiply the gating
output with the branch output. Second, we use shared-private
reparameterization during training whereas they do not have
a similar approach. Besides, Switch Transformer focuses on
scaling up large models, while we show the effectiveness of
our approach for resource-constrained applications.

VI. CONCLUSION

We have proposed to use dynamic multi-branch layers to im-
prove performance without sacrificing efficiency for on-device
neural machine translation. This can be done by dynamically
activating a single branch during training and inference. We also
propose shared-private reparameterization for sufficient training
of each branch. Experiments show that our approach achieves
higher performance-time ratios than state-of-the-art approaches
to on-device NMT.
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