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Abstract. Community structure in networks indicates groups of ver-
tices within which are dense connections and between which are sparse
connections. Community detection, an important topic in data mining
and social network analysis, has attracted considerable research interests
in recent years. Motivated by the idea that community detection is in
fact a clustering problem on graphs, we propose several similarity met-
rics of vertex to transform a community detection problem into a cluster-
ing problem, and further adopt a recently-proposed clustering method,
namely ‘Affinity Propagation’, to extract communities from graphs. We
demonstrate that the method achieves significant quality in detecting
community structures in both computer-generated and real-world net-
work data in near-linear time. Furthermore, the method could automat-
ically determine the number of communities.

Key words: community detection, vertex similarity, affinity propaga-
tion, social network, clustering

1 Introduction

Vertices of many real-world networks, such as Internet, World Wide Web, bio-
logical and social networks, are often organized into communities or groups with
dense connections within groups and sparse connections between groups. The
vertices within a community are likely to share common properties and play
similar roles within the graph. For instance, communities in a social network
might correspond to groups of people with similar hobbies, while communities
in a web graph might correspond to groups of websites with related topics, and
communities in a scientific collaboration graph might correspond to groups of
researchers sharing close research interests. The community structure is valuable
and useful information for both commercial and scientific purposes. Hence, an
efficient and cost-effective algorithm to detect and analyze community structures
may be of considerable use in many fields.

In recent years, community detection has received an enormous amount of
attention from the scientific communities, such as data mining, information re-
trieval and social network analysis. Various methods have been proposed for
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detecting communities. However, most proposed methods perform poorly in
scalability. In other words, previous methods are not appropriate for analyzing
large-scale networks either in space cost or time cost, while moderate-to-large
networks are ubiquitous in real world.

Motivated by the idea that community detection is in nature a clustering
problem on graphs, we investigate several metrics for measuring vertex similar-
ities and transform a community detection problem into a clustering problem.
We further adopt an recently-proposed effective and scalable clustering method,
‘Affinity Propagation’ (AP) [1, 2], for detecting community structures in net-
works. Affinity Propagation has been widely used ever since reported in Science

Magazine in 2007. We demonstrate that the method is highly effective and ef-
ficient of detecting community structures in both computer-generated and real-
world network data.

The contribution of this paper is that: (1) a novel method is proposed to
transform a community detection problem to a clustering problem based on sev-
eral similarity metrics of vertex; and (2) an appropriate, effective and scalable
clustering method is selected and presented for detecting communities, which
could automatically determine the number of communities and achieves signifi-
cant performance.

2 Related Work

Traditional methods of detecting communities were mainly from Computer Sci-
ence and Social Network Analysis. In Computer Science, the community detec-
tion task is usually called Graph Partitioning Problem. Two well-known algo-
rithms are Kernighan-Lin Algorithm [3] and Spectral Bisection Method [4, 5].
These methods perform well when the number of communities in networks is
given. However, in real-world networks, it is usually not possible for people to
know the number of communities in advance.

In study of social networks, sociologists developed hierarchical clustering

methods [6] for detecting communities in networks. Firstly, one should develop
a measure of vertices similarity s(i, j) between vertex pairs (i, j) based on the
network structure. The method can be split into two strategies: agglomerative
and divisive. For the first strategy, starting from an empty network of n vertices
but no edges, edges are added between pairs of vertices in decreasing order of
similarity. For the latter strategy, starting from the complete network, edges are
removed in increasing order of similarity, until no edges remain. And the process
could be terminated at any step and gets a correspond community structure of
networks.

Traditional methods are somehow not ideal for general network analysis,
many algorithms have been proposed in recent years. One of the most popular
methods was a divisive method of hierarchical clustering, proposed by Girvan
and Newman [7]. In this method, they proposed a new similarity measure called
edge betweenness. The betweenness of an edge is defined as the number of shortest
paths between vertex pairs that run along the edge in question, summed over all
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vertex pairs. Generally, the edge betweenness of vertex pairs within communities
is less than the one between communities. For a network with n vertices and m
edges, the betweenness for all edges can be calculated in time that goes as O(mn).
This calculation has to be repeated once for each edge when it is removed,
therefore the entire Girvan-Newman method runs in worst-case time O(m2n),
and for a sparse network it should approximately be O(n3).

Girvan-Newman method itself does not provide a measure to determine the
best split of communities in a network. A most widely accepted measure, mod-

ularity [8–10], was proposed to measure the quality of a division of a network
into groups or communities. Suppose we are given a candidate division with g
communities, we define a g × g matrix e whose component eij is the fraction
of edges in the original network that connect vertices in community i to those
in community j. The sum of ith row ai = Σjeij indicates the fraction of edges
connected to community i. The modularity Q is defined as [8]

Q = Σi(eii − a2

i ) = Tr(e) − ‖e2‖ (1)

where ‖x‖ indicates the sum of the elements of the matrix x. The modularity
measures the fraction of the edges that fall within the given groups minus the
expected such fraction if edges were distributed at random. Hence, we will get
Q = 0 if the number of within-community edges is no more than random. And
Q could reach the maximum value 1 when networks are of strong community
structure. It is reported that the modularity values for real-world networks typ-
ically fall in the range from about 0.3 to 0.7 [8]. Based on this measure, a fast
algorithm was proposed by greedily optimize the modularity values of agglomer-
ative hieratical clustering [9] which takes worst-case running time O((m + n)n)
or O(n2) on a sparse network. A detailed review on community detection could
be found in [11].

3 Community Detection by Affinity Propagation

3.1 Affinity Propagation

Affinity propagation(AP) is a new clustering method proposed by Frey, et al [1, 2]
in Science Magazine in 2007. It takes negative real-valued similarities between
pairs of data points as input and simultaneously considers all data points as
potential exemplars. Two types of messages are exchanged between data points
and a set of exemplars and corresponding clusters will gradually emerges. There
are many advantages to use AP for community detections:

1. AP could find clusters with much lower error than other clustering methods,
such as k-means method [12] and vertex substitution heuristic method [13].

2. The running time of AP scales linearly with the number of similarities, which
is one-hundred less the amount of time compared to other popular clustering
methods, especially for moderate-to-large problems [1, 2, 14, 15] and is also
much less than most popular community detection methods such as Girvan-
Newman method (O(n3)) [7] and fast algorithm (O(n2)) [9].
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3. Rather than requiring pre-specified number of communities or borrowing
external measures such as modularity to determine when to terminate, AP
takes as input a real number, called preference, for each data point to quan-
tify the likelihood it is chosen as exemplars. The number of identified exem-
plars would emerge from the message-passing procedure although influenced
by the values of the input preferences.

4. AP identifies exemplars for each cluster or group which is relatively straight-
forward to the key player problem in social networks. This is an important
byproduct of community detection by AP.

5. The method could be applied to problems where the similarities are not sym-
metric [i.e., s(i, k) 6= s(k, i)] and to problems where the similarities violate
the triangle inequality [i.e., s(i, k) < s(i, j) + s(j, k)]. This corresponds with
the common phenomenon in social network analysis, where an individual A
knows B well does not indicates B knows A well, moreover, A knows B well
and B knows C well does not indicate how much A knows C.

As indicated above, it is desirable to use AP for community detection which
could find an appropriate split of communities in high efficiency. However, we
could not adopt AP directly on graph, because the data only records the link
information between vertices and does not supply vertex similarities. An appro-
priate similarity metric of vertex is crucial for transforming community detec-
tion to a clustering problem. In the following subsection we will elaborate how
to measure the vertex similarities of a network and transform the problem.

3.2 Similarity Metrics of Vertex

Vertex similarity is an important network concept in social network analysis
and data mining. The problem of quantifying similarity between vertices in a
network has a long history and there are many perspectives to answer whether
two vertices are similar. In a general community detection problem, we measure
vertex similarities solely based on the structure of a network given only the
pattern of edges between vertices in a network, which is usually called structural

similarity [16].

In social network analysis, it is reasonable to consider that two individuals
in a social network have something in common if they share many same friends.
Hence, the most common approach in previous work focuses on structural equiv-

alence [17], that is two vertices are considered structurally equivalent if they
share many same network neighbors. Denoting Ni as the neighborhood of ver-
tex i in a network, namely the vertices directly connected to i, the number of
common friends of i and j is

snaive(i, j) = |Ni
⋂

Nj | (2)

where |x| indicates the number of elements in set x. However, this similarity
function is not satisfactory for it tends to take large values for vertices with high
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degree even if they have only a small fraction of neighbors. There are at least
three previously proposed metrics eliminating the bias successfully [16, 18–20],

sJaccard(i, j) =
|Ni

⋂

Nj |

|Ni

⋃

Nj |
(3)

scosine(i, j) =
|Ni

⋂

Nj |
√

|Ni||Nj |
(4)

smin(i, j) =
|Ni

⋂

Nj |

min(|Ni|, |Nj |)
(5)

All these three metrics could normalize the similarity value and get the maximum
value 1 only when Ni = Nj . Notably, these similarity metrics of two vertices
does not take the connectivity condition themselves into account, although it
is apparent that two connected vertices are more similar than those do not
connected directly no matter how much fraction of their neighbors are the same.
In this paper we will alter these three metrics in consideration of connectivity
condition. Take Jaccard metric for example, considering a negative real-valued
similarities compulsorily required by AP, the altered version should be

sNew Jaccard(i, j) =

{

sJaccard(i, j) − 2 if e(i, j) = 0
sJaccard(i, j) − 1 if e(i, j) = 1

(6)

where e(i, j) = 0 indicates there is no edge between i and j and vice versa. Both
‘cosine’ and ‘min’ metrics are similar as stated above.

Besides based on common neighbors, we could measure vertex similarity in
other perspective. Three reasonable metrics are defined as follows,

1. An immediate way is considering two vertices with edges are more similar
there two with no edges. Therefore, the similarity of two vertices could be
assigned a greater negative constant number if there is an edge between them
and assigned a less negative constant number if there is no edge. That is,

sconstant(i, j) =

{

−w if e(i, j) = 0
−v if e(i, j) = 1

(7)

where 0 < v < w.
2. It is reasonable to consider two vertices are similar if there are short paths

between them. Therefore, the similarity of two vertices is assigned as the
negative shortest path length between them. That is

spath(i, j) = −p(i, j) (8)

where p(i, j) is the shortest path length between i and j in the network.
3. Edge betweenness measures the tendency of an edge to be within a commu-

nity or between communities in a network. Therefore, the similarity of two
vertices could be measured in terms of the edge betweenness between them.
That is,

sbetweenness(i, j) = −b(i, j) (9)

where b(i, j) is the betweenness value of the edge between i and j.
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In this paper, we will use the above six vertex similarity metrics and try
to figure out the most appropriate metric for the transformation process from
community detection to clustering.

4 Experiment and Evaluation

We present various tests of AP for community detection both on computer-
generated graphs and real world social networks. The results of each test show
that AP could reliably find community structures under an appropriate vertex
similarity metric. In the following tests, AP is configured by setting the maximum
number of iterations as maxits = 2000, the damping fact as dampfact = 0.9
which may be needed if oscillations occur, and if the estimated exemplars stay
fixed for convits = 200 iterations AP terminates. As a prior, all vertices are
equally suitable as exemplars and the preferences are set to a common value.

4.1 Computer-Generated Graphs

Firstly, we apply the method to a set of artificial, computer-generated graphs.
Each graph is constructed with 128 vertices divided into four communities of 32
vertices each, and the expected average degree of each vertex equal to 16. Each
edge is assigned between vertices independently at random, with probability
pin for vertices within the same community and pout for vertices in different
communities. We should set pout < pin to ensure the community structure in
the generated network.

Using AP for community detection of these generated graphs, we measure
the fraction of vertices that were classified into their correct communities, as a
function of the probability pin. We switch the probability pin from 0.5 to 1.0
stepped by 0.05. In each step, 10 networks are generated separately and fed to
AP for community detection. In Fig. 1(a) - 1(e) we show the accuracies under five
different vertex similarity metrics. For more discriminative display, we introduce
various colors to identify different accuracy values of ten tests in each step,
with ‘orange’ for maximum, ‘green’ for minimum and ‘red’ for medians of the
ten values. And in Fig. 1(f) we compare the medians of accuracies of different
metrics. The result of metric based on ‘edge betweenness’ is not plotted here
because AP under this metric suffers severe numerical oscillation and is not able
to terminate.

As Fig. 1(a) - 1(c) show, when pin > 0.7, AP under the metrics of ‘Jac-
card’, ‘cosine’ and ‘min’ performs nearly perfect and classify 90% or more of
the vertices correctly. And even for the situation when each vertex has as many
iter-community edges as intra-community ones, the method performs well and
get the accuracy more than 50%. From Fig. 1(d) and 1(e), we found the metrics
of ‘constant’ and ‘shortest path length’ are not satisfactory measures for similar-
ities of vertex. However, they could still get high performance when pin is high
enough and the community structure is strong, and it is considerably appropri-
ate to use them for community detection of large-scale sparse networks because
vertices similarities under these metrics can be computed in limited time.
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(a) Metric: Jaccard
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(b) Metric: cosine
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(c) Metric: min
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(d) Metric: constant
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(e) Metric: shortest path length
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Fig. 1. Accuracies of AP for community detection of computer-generated networks
under five vertex similarity metrics.
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4.2 Real world social networks

Besides the test on computer-generated networks, it is also necessary to test the
method on data from real-world networks as well. In this section we introduce
some most popular real-world social network data sets to test and verify the
performance of our method. People could access these network data via http:

//www-personal.umich.edu/~mejn/netdata/.
Zachary’s Karate Club. The first of real world networks is from the well

known karate club study of Zachary [21]. Zachary observed 34 members of a
karate club over two years. During the period, a disagreement developed be-
tween the administrator of the club and the club’s instructor. This resulted in
the instructor leaving and starting a new club, taking about a half of the original
club’s members with him. Zachary constructed a network of friendships between
members of the club. The network is shown in Fig. 2(a), and the shapes ‘square’
and ‘circle’ of vertices indicate two divisions, led separately by the instructor
and the administrator represented by vertices 1 and 34. Our method under the
metric ‘min’ as well as ‘Jaccard’ and ‘cosine’ splits the network into two commu-
nities with modularity value 0.3715, and the vertices of different communities are
marked with different colors as shown in Fig. 2(a), which is perfectly matching
with the real division the club members after the break-up and leaving. While
the Girvan-Newman method [7] and fast algorithm [9] could also split the net-
work in a right way, but they both classifies one vertex wrongly (vertex 10 and
3 separately). Moreover, the method finds the exemplars of each communities,
1 and 34, which are exactly the instructor and the administrator. In addition,
our method could get a larger modularity 0.39 splitting the network into 4 com-
munities. This indicates the modularity provides a useful quantitive measure of
success for community detection, although it does not always completely fit the
human observations on communities of network.

Books on US Politics. This is a network of 105 books on recent US politics
sold by Amazon.com. Edges between books represent frequent co-purchasing of
books by the same buyers, indicated by the ‘customers who bought this book
also bought these other books’ feature on Amazon. The network data was com-
piled by V. Krebs which is still unpublished. This network is shown in Fig. 2(b),
and the shapes ‘circle’, ‘square’ and ‘diamond’ of vertices indicate whether they
are ‘liberal’, ‘neutral’ or ‘conservative’. These alignments were assigned by Mark
Newman based on a reading of the descriptions and reviews of the books posted
on Amazon. Our method splitted the network into two communities with modu-
larity value 0.44. These books of different communities are marked with different
colors as shown in Fig. 2(b) which is almost perfectly identical with the actual
division of them according to political orientations. The exemplars found by the
method are 13 and 31. The first book is ‘Off with Their Heads: Traitors, Crooks

& Obstructionists in American Politics, Media & Business’, written by Dick
Morris, an American political author who became an adviser to the Bill Clinton
administration after Clinton was elected president in 1992. And the latter is
‘The Price of Loyalty: George W. Bush, the White House, and the Education of

Paul OŃeill ’, written by Ron Suskind, an American investigative journalist and
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author, who won the Pulitzer Prize for Feature Writing in 1995. Both of them
are best sellers in Amazon.com.

(a) Zachary’s Karate Club (b) Books on US politics

Fig. 2. Communities of networks.

In Fig. 3 we demonstrate the influence of input preferences on the number
of found communities. Firstly, we traversal the vertex similarities to determine
the minimum and maximum values of preferences and run AP under 200 dif-
ferent preferences uniformly distributed within the boundary. Although it could
not always find communities to achieve maximum modularity, we could get an
approximately optimal result in a wide range of preference values.

Two more networks are listed as follows. The Bottlenose Dolphin Social

Network is consist of frequent associations between 62 dolphins in a commu-
nity living off Doubtful Sound, New Zealand [22]. Our method could also find
the natural split of two communities with modularity 0.38, but get a more large
modularity value 0.50 when split into 5 sub-groups. The Network of Ameri-

can College Football Teams represents the schedule of Division I Games for
the 2000 season [7]. 115 vertices in the network represents football teams and 616
edges represent games between the two teams they link together. These teams are
usually divided into conferences containing around 8-12 teams each and games
are more frequent between members of the same conference. On average, teams
played about 7 intra-conference games and 4 inter-conference games and the
community structure is strong. Our method could find a split of 10 communities
with modularity 0.54, which is near the real number 12 of conferences.

The vertex preferences were set to a common value in the above experiments.
In fact we could speed up the convergence by setting the preferences to different
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Fig. 3. Community detection of networks.

values according to some prior knowledge such as the degrees of vertices. A com-
mon sense is that the vertices with more degrees are more likely to be exemplars.
Take Zachary’s Karate Club for example, we set the preference value of the ver-
tex with maximum degree to pmax, the one with minimum degree to pmin, and
the preferences of other vertices are assigned to a real number in (pmin, pmax)
based on linear interpolation. Then AP could get the convergence result only
after 3 iterations, which is much faster than previous preference setting method
with 15 iterations. For Books on US Politics, the results are 43 vs. 73. The new
preference setting method is still too naive to achieve optimal modularity values,
which could only get modularity 0.372 and 0.369 for the two networks, slightly
worse than optimal result. Whereas it might be a practical choice for finding
communities of a large-scale network.

From the above four real-world networks, it is clear that AP is quite capable
of extracting community structures from networks under appropriate vertex sim-
ilarity metrics. Furthermore, we investigate the speed and efficiency of AP on a
moderate network, the Co-authorship Network of scientists on Network

Theory. The network records the collaborations of 1, 589 scientists working on
network theory, compiled by Newman mainly from the bibliographies of two
review articles on networks [23, 24]. We ran a group of experiments based on
Jaccard metric, where the parameter maxits is varied within [100, 2000] stepped
by 100 and given maxits the parameter convits is varied within (0,maxits]
stepped by maxits/20, on a PC with 1.5G memory and 2.66GHz CPU, and the
modularity value, community number and elapsed time were separately plot-
ted in Fig. 4. The plot illustrates that previous configuration of AP is actually
over-conservative, and we got the maximum modularity 0.8522 by extracting
280 communities from the network under the parameters maxits = 300 and
convits = 30 within 64 seconds, which is fast enough considering the fact that
AP was implemented by Matlab in a naive way with no optimization. In fact,
we took only 8 seconds to get an acceptable modularity 0.7536 with 451 com-
munities when we set maxits = 100 and convits = 5, which is relatively fast for
solving practical problems.
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Fig. 4. Community Detections on Co-authorship Network.

5 Conclusions and Future Work

In this paper we have described a method combined vertex similarity metrics
with Affinity Propagation for detecting communities from networks, which is
considerable efficient over previous popular methods. Moreover, in contrast to
previous methods which need pre-specified communities number or external mea-
sures as stop criterion, the method could automatically determine the number
of communities and select exemplars or leaders for each community.

Some possible future work may includes: (1) Optimize the computation pro-
cess of vertex similarities and further improve the efficiency; and (2) find more
practical method for setting preference values to speed up convergence of AP
with no influence on performance; and (3) extend the method to more compli-
cated networks with weights, directions and nested or overlapped community
structures.
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