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“It 1s not worth an intelligent man’s time to be in the majority. By definition,
there are already enough people to do that.”

--- G. H. Hardy (1877-1947)
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Ludwig Boltzmann
1844-1906

Ludwig Eduard Boltzmann was an
Austrian physicist who created the
field of statistical mechanics. Prior
to Boltzmann, the concept of en-
tropy was already known from
| classical thermodynamics where it
quantlfles the fact that when we take energy from a
system, not all of that energy is typically available
to do useful work. Boltzmann showed that the ther-
modynamic entropy S, a macroscopic quantity, could
be related to the statistical properties at the micro-
scopic level. This is expressed through the famous
equation S = kInW in which W represents the
number of possible microstates in a macrostate, and
k ~ 1.38 x 107%* (in units of Joules per Kelvin) is
known as Boltzmann’s constant. Boltzmann’s ideas
were disputed by many scientists of they day. One dif-
ficulty they saw arose from the second law of thermo-

dynamics, which states that the entropy of a closed
system tends to increase with time. By contrast, at
the microscopic level the classical Newtonian equa-
tions of physics are reversible, and so they found it
difficult to see how the latter could explain the for-
mer. They didn’t fully appreciate Boltzmann’s argu-
_ments, which were statistical in nature and which con-
cluded not that entropy could never decrease over
time but simply that with overwhelming probability it
would generally increase. Boltzmmann even had a long-
running dispute with the editor of the leading German
physics journal who refused to let him refer to atoms
and molecules as anything other than convenient the-
oretical constructs._The continued attacks on his work
lead to bouts of depression, and eventually he com-
_mitted suicide. Shortly after Boltzmann’s death, new
experiments by Perrin on colloidal suspensions veri-
fied his theories and confirmed the value of the Boltz-
mann constant. The equation S = k£1In W is carved on
Boltzmann’s tombstone.

Pattern Recognition and Machine Learning, C. Bishop
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Perceptro

> W _

Frank Rosenblatt
1928-1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
e ¥ 704 computer at Cornell in 1957,
Tt o but by the early 1960s he had built
special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt's work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
IN widespread use, with examples In areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

Pattern Recognition and Machine Learning, C. Bishop
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Abstract

nt a novel translation model
based on tree-to-string alignment template.
(TAT) which describes the alignment be-
tween a source parse tree and a target
string. A TAT is capeble of generating
both terminals end non-terminals and per-
forming reordering at both low and high
Levels. The model is linguistically syntax-
based because TATs are exiracted auto-
‘matically from word-aligned, source side
‘parsed parallel texts. To translate a source
sentence, we first employ a parser o pro-
duce a source parse tree and then ap-
ply TATS to transform the tree into @ tar-
get sting. Our experiments show that
tne T basd mode signfuly ovper
forms Pharaob, a state-of-the-art decy

for phrase-based models.

1 Introduction

Phrase-based translation models (Mareu and
‘Wong, 2002; Koehn et al,, 2003; Och and Ney,
2004), which go beyond the original IBM trans-
lation models (Brown et al, 1993) ! by model-
ing translations of phrases rather than mmwdual
‘words, have been suggested to be the state-of
artin satistical machine translation by empi m\
evaluations.

In phrase-based models, phrases are usually
strings of adjacent words instead of synlactic con-
stituents, excelling at capuring local reordering
and performing translations that are localized to

et ntion v s e o

o e st 1 = Jis v f1

o e e s e s

s, T th et o the et i, J i gt
@ Souree s

substrings that are common enough to be observed
on raining data. However,  key limitation of
phrase-based models is that they il to model re-
ordering at the phrase level robusly. Typically,
reordering is modeled in terms of offset
sitions at the word level (Koehn, 2004; Och and
Ney, 2004), making litle or no direct use of syn-
tactic information.

Recent research on statstical machine transla-
tion has lead 10 the development of syntax-based
models. Wu (1997) proposes Inversion Trans-
duction Grammars, treating translation a5 & pro-
cess of parallel parsing of the source and tar-

\guage via a synchronized grammar. Al
shawi et al. (2000) represent each production in
parallel dependency iree as a finite transducer
Melamed (2004) formalizes machine translation
problem as synchronous parsing based on muli-
text grammars. Graehl and Knight (2004) describe
imining 30 dosaing lgors o bob g
eralized frec-to-string transduc-
e Chung (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
context-free grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on a probabilistic. synchronous dependency in-
sert grammar, & version of synchronous grarm-
mars defined on dependency trees. Al these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Anather class of approaches make use of syn-
sctc infomaton i the tret lnguage dlone

the translation problem as & parsing prob-
Lo Yamade o Kol (301 s« pres .
the target language to train probabilities on aset of
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chical phrase pairs (Chiang, 2005) with free struc-
ture on the source side. At the same time, we face
the risk of

o compute a list of candidate translations for T
by replacing the non-terminals of S(z) with can-

‘pais. For example, the phrase pair

At &4 4 A — President Bush made

can never be obiained in form of TAT from the
TSA in Figure 3 because there is no subiree for
that source string.

4 Decoding

‘We approach the decoding problem as  bottom-up
beam search.

To translate a source sentence, we employ @
parser to produce a parse free. Moving bottom-
wough the source parse tree, we compute a
listof candidate ranslations fo the input subirce
rooted at each node with a postorder ransversal.
Candidate wanslations of subtrees are placed in
re 4 shows the organization of can-

didate translation stacks.

Hononege

Figure 4: Candidate translations of subtrees are
placed in stacks according to the root index set by
postorder transversal

A candidate translation contains the following
information:

1. the partial translation

2. the accumulated feature values

3. the accumulated probability

ATAT 2 is usable 10  parse ree T if and only
i 7(2) is rooted at the root of T and covers part
of nodes of 7. Given a parse tree T, we find all
useble TATs. Given a usable TAT 2, if T(z) is

equal 10 T, then () is a candidate translation of
T. I{T(z) covers only a portion of 7, we have,

613

subirees.

o
S

Figure 5: Candidate translation construction

For example, when computing the candidate
translations for the ree rooted at node 8, the TAT
used in Figure § covers only = portion of the parse
tree in Figure 4. There are two uncovered sub-
trees that are rooted at node 2 and node 7 respec-
tively. Hence, we replace the third symbol with
the candidate translations in stack 2 and the first
symbol with the candidate translations in stack 7.
At the same time, the feature values and probabil-
ities are also accumulated for the new candidate
translations.

"To speed up the decoder, we limit the search
space by reducing the number of TATs used for
cach input node. There are two ways to limit th
TAT table size: by a fixed limit (tatTable-limit) of
how many TATs are retrieved for each input node,
and by a probebility threshold (tatTable-threshold)
that specify that the TAT probebil be
above some value. On the other hand, instezd of
Keeping the full lis of candidates for a given node,
we keep & lop-scoring subset of the candidates.
‘This can also be done by a fixed limit (sack-limif)
or & threshold (stack-threshold). To perform re-
combination, we combine candidate translations
that share the same leading and trailing bigrams
cach stack.

5 Experiments

ur experiments were on Chinese-to-English
ranslation. The raining corpus consists of 31, 149
sentence pairs with 843,256 Chinese words and

operations that transform a target parse tree into .
source st
Paying more attention to source language anal-

Figure 1 shows three TATs aummaucally
leamed from training data.  Note that
demonsiraing  TAT grapical, we lrprvsem

ysis, Quirk etal.
dependency parser, & target language word seg-
‘mentation component, and an unsupervised word
alignment component to learn treelet translations
ftom parallel corpus.

In this paper, we propose a satistical translation
‘model based on tree-to-siring alignment template
which describes the alignment between a source
parse tree and a target string. A TAT is capa-
ble of generating both terminals and non-terminals

del is linguistically syntax-based
because TATS are extracted automatically from
word-aligned, source side parsed parallel texts
“To translate a source sentence, we fist employ &
parser to prodce a source parse tree and then ap-
ply TATs to transform the tree nto @ target sting,

One advaniage of our model is that TATS can
be automaically acquired to capture linguistcall
motivated reordering at both low (word) and high
(phrase, clause) levels. In addition, the training of
‘TAT-based model s less computationally expen-
sive than tree-to-iree models. Similarly to (Galley.
exal., 2004), te tree-to-string alignment templates
discussed in this paper are actually transformation
rules. The major difference is that we model the
syntax of the source language instead of the target
side. As a result, the task of our decoder is to find
the best target string while Galley's is o seek the
most ikely target tree.

2 Tree-to-String Alignment Template

A treeto-string alignment template 2 is a triple

(TS, 4), which describes the alignment A be-

which is the sequence of leaf nodes of T(F{),
consists of bolh terminals (source words) and non.
terminals (phrasal categories). A target string
is also composed of both terminals (target words)
and non-terminals (placeholders). An alignment
i defined as a subset of the Cartesian product
of souce and target symbol positions:

AC{Gi):i= LI

Wewe TO) e spae e Torscs i
e s Simi

L=

strings by bl

Figure 1: Examples of tree-to-siring alignment
templates obiained in training

In the following, we formally deseribe how to
probabilistic dependencics to model Pr{eff{) .

In a firt step, we introduce the hidden variable
T() that denotes a parse tree of the source sen-

tence f/

Prieflfi,

3 Pried TGN @)

()

= 3 PrrUDIPrET L F) @)
()

Next, another hidden variable D i introduced
o detach the source parse tree (/) into a se-
quenceof K subirees T witha preorder transver-
sal. We assume that each subtree T produces
& target suing ;. A & resul, the sequence
of subirees TX produces a sequence of target
strings S, which can be combined serially o
generse the targe semence ¢f, We assume that
Pr(e|D,T(f7), f{) = PriSE \T“) ecase <]
y the deriva

Note tht e omi n el dependence on o
detachment D) to avoid notational overhead.

Prie{IT(7). ZW e, DIT() ) @)
*21”'”1 ) fx IPr(elID. T(f), 5) ()

= Z”"[D (T(), ) Pr(SHITE) ®
5

x
*ZPr(me’) ol e (A O]
T i il o Yo
o 1) o G oty G
peir)

o 02 enre g

Ty dtratom e e e )

Figure 2: Graphic illustration for translation pro-

To further decompose Pr(3|T), the tree-t0-
string alignment template, denoted by the variable
3, inttoduced as  hidden variable.

Pr($iT) = 3 Pr($,2/T) ®
72Pr(z\”i‘)Py(.

) ©

Therefore, the TAT-based translation model can
be decomposed into four sub-models

1. parse model: Pr(7(f{)|f{)

2. detachment model: Pr(D|T(f?), )
3. TAT selection model: Pr(z|T)

4. TAT application model: Pr(3]z,T)

Figure 2 shows how TATS work to perform
ransltion. Firt, the input source sentence is
parsed. Next, the pase tee s detached into ive
subtrees with  preordertransversal. For eah sub-
ree, & TAT is selected and applid o produce a
string. Finally, these strings are combined serially
‘o generaie e tanslation (we use X 10 denote the
non-teminal):

= X; X3 of China
= economic X of China
= economic development of China

Following Och and Ney (2002), we base our
model on log-linear framework. Hence,all knowl-
edge sources are described as feature functions
that include the given source string f7, the target
string ef, and hidden variables. The hidden vari-
able 7(7) is omitted because we usually make
use of only single best output of a parser. As we
assume that all detachment have the same proba-
bility, the hidden variable D is also omitted. As
a result, the model we actually adopt for exper-
iments is limited because the parse, detachment,
and TAT application sub-models are simplified

Pril,f150)
el bl 1)
S oI Ak (i1, 25)
cgmes{ 3° Aol 1,510}

r our experiments we use the following seven
feature functions * that are analogous 1o defeult
feature set of Pharaoh (Koekn, 2004). To simplify
the notation, we omit the dependence on the

den variables of the model.

il - i TR

. £.0) m)f)
(el 1) \o}'{ N

b )~ o ] lesT@IS(2) - 802050

K
halel, 1) = log T] tex(S(:)IT(2)) - 6T (), Ti)
=

(e sf) = K
;

nfel 1) = tog [T plesfeis, i)
=

) = 1

‘When computin lexical weighting festures (Koehn et
L, 2003), we ake only erminal in ccount. 1 hero aro

Tree String
R A Bush
(W 5 President
(WEEk)
(NNEH) Spoech
(NP (NR)(NN)) X[ %
NP (NR A ) (NN)) X | Bush
(NP (NR) (NN %)) | President| X
(NP (NR A1) (NN £4.)) | President | Bush
(VP(VV) (NN)) Xi[a] X
(VP (VV A A)(NN)) la| X
(VP (VV) (NN %)) | X [a] speech
(VP (VV £ &) (NN 3% )) | made |a| spoech
(P (NP) (VP)) X[ X

3 Trais

2
o extract tree-to-strng aligoment templates from
a word-aligned, source side parsed sentence pair
(T(f), el A), we need first identify TS4s (Tree-
String-Alignment) using similar criterion as sug-
gested in (Och and Ney, 2004). A TSA is a triple
(T(§32), €2, A)) that is in accordance with the
wing consteinis:
LY(j)eAi<i<ioi<i<jp
2. (%) is asubtree of T(f/)

Given 2 TSA (T(fi2),ef',A), a triple
(T(3) ¢t A) s its sub 754 if and only
if:

1. (1), e, A) isa TSA

2. T(f}}) is rooted at the direct descendant of
the root node of T(f:)

Li<i<i<h

4 Gg) € Aris<i<iso <<

we extract TATs from 2 TSA
(T(Ij() »h 2 2)using te following o s
1. IET(f}?) contains only one node,
then (T(77), €1, 4) isa TAT

2. If the height of T(f3?) is grester than one,

Figure 3: An example of TSA

Usually, we can extrect & very large amount of
TATS from training data using the above rules,
making both waining and decoding very slow.
‘Therefore, we impose three restrictions to reduce
the magnitude of extracted TATS:

1. A third constraint i added to the definition of
™

33" 3y <5 < faandjy 57 < fy

and (i1, ') € A and (ig,§") € A

‘This constraint requires that borh the first

and last symbols in the target string must be
igned to some source symbols.

2. The height of T(z) is limited to no greater
than h.

3. The number of direct descendants of a node
of Tz is limited to no greater than c.
‘Table 1 shows the TATS exiracted from the TSA.
in Figure 3 with 2
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System Features
d dlelf)

Pharaoh d+Im+ d(e|f) +

@+ m = 6(7le) * lex(f]e) -

W
£) = lex(elf) ~pp + wp

Lynx i the s

02100 = 0.0089

B hy+ By *he = hs g <y 02178

0080

Table 2: C £ Pharach and L

th different the test corpus

949, 583 English words. For the language model,
we used SRI Language Modeling Toolkit (Stol-
cke, 2002) to train a trigram model with modi-
fied Kneser-Ney smoothing (Chen and Goodman,
1998) on the 31,149 English sentences. We se-
lected 571 short sentences from tre 2002 NIST
MT Evaluation test set as our dev
‘pus, and used the 2005 NIST MT Evihuaton ot
set as our test corpus. We evaluated the transla-
tion quality using the BLEU metric (Papineni et
al, 2002), as calculated by mteval-v1 1b,pl with s
defeult setting except that we used case-sensitive
‘matching of n-grams.
5.1 Pharaoh
‘The baseline system we used for comparison was
Pharach (Koehn et al, 2003; Kochn, 2004), a
Sreely available decoder for phrase-based transla-
els:

Blelf) = polfle) x pLyy(e)'IM x
e, [1'D x TEHIWE (1)

We ran GIZA++ (Och and Ney, 2000) on the
‘raining corpus in both directions using itsdefeult
seting, and then applied the refinemen rule “diag-
and" described in (Koehn et al., 2003) to obtain
a single many-to-many word alignment for cach
sentence pair. Aftr that, we used some heuristics,
which including rule-based translation of num-
bers, dates, and person names, o furthe improve

the aligament accurecy.
Given the word-aligaed bilingual corpus, we
obtained 1,231,959 bilingual phrases (221,453
t corpus) using the training toolkits
‘publicly released by Philipp Koehn with s default

i
imum error rat training (Och,
ights

2005).  We used default pruning settings for
‘Pharaoh except tha we set the distortion limit to
4

52 Lyns
On the same word-aligned training daa, it took
us about one month to parse al the 31, 149 Chi-
nese sentences using a Chinese parser written by
Deyi Xiong (Xiong et al, 2005). The parser was
{rained on articles 1 — 270 of Penn Chinese Tree-
bank version 1.0 and achieved 70.4% (F1 mea-
sure) as well as  4.4% relative decrease in er-
for ate. Then, we performed TAT extracton de-
scribed in section 3 with h = 3 and ¢

and obiained 350, 575 TATs (88, 066 used on test
corpus). To run our decoder Lynx on develop-
ment and test corpus, we set taTable-limit = 20,
taTable-threshold = 0, staciclimit = 100, and
stack-threshold = 0.0000

53 Results
“Table 2 shows the resuls on test set using Pharaoh
and Lynx with different feature settings. The 95%
confidence intervals were computed using Zhang's
significance tester (Zkang et al, 2004). We mod-
ified it to conform to NIST's current defnition
of the BLEU brevity penalty. For Pharaoh, cight
features were used: distortion model d, a trigram
language mc Im, phrase translation probabili-
ties (fe) and 6] ), lexical weightings ex(7|e)
and lex(e| ), phrase penalty pp, and word penaly

seven features described in sec-
tion 2 were used. We find that Lynx outperforms
Pharaoh with 2l feaure settings. With ful fea-
tures, Lynx achieves an absolute improvement of
0.006 over Pharaoh (3.1% relative). This differ-
ence is statistically significant (p < 0.01). Note
that Lynx made use of only 88,066 TATs on test

-
system’s BLEU score on development st, we used
optimizeVSIBMBLEU.m (Venugopal and Vogel,

P 1453
for Pharaoh,
‘The feature weights oblained by minimum er-

\ —

/

s 2 el e s e e vt 1 Ve ) X
X1 Xaof Xa o den oo weihing, e G e s of TS e build TATs using those eximeted from AS Wo st that 7(/7) must b st of
= Xz of China e fordocoding by K a7 the gt of et ssing b 1. sub TSAs of (T(f12), 2, ). T(f7), TAT may be treated as syntacti hierar-
o o2
[— Featares ] e
T [0 [le) [66l [e@n T 58 eferences Fans . O Noy. 20, Discriipatne

Pharaoh | 0.0476 | 0.1386 | 00611 | 00459 | 0.1723 | 00223 | 03122 | 0.2000
yox 0.3735 | 0.0061 | 0.1081 | 0.1656 | 0.0022 | 0.0824 | 0.2620

Table 3: Feature biained by minimum error rate
[T siew gram language models were used for Lynx. One
Ca | a zns = onoxa was trained on the 2.6 million English sentences
and another was trained on the first 13 of the Xin-

‘Table 4: Effect of using bilingual phrases for Lynx

for rate training for both Phareoh and Ly
shown in Table 3. We find that 6(|e) (ie. ha) is
ot helpful featute for Lynx. The reason is that
we use only & single non-teminal symbol instead
of assigning phrasal categories to the target string.
In addition, we allow the target string consists of
only non-terminals, making translation decisions
not always based on lexical evidence.

5.4 Using bilingual phrases
It is interesting 1o use bilingual phrases to
strengihen the TAT-based model. As we men-
tioned before, some useful non-syntactic phrase
pairs can never be obtained in form of TAT be-
cause w ittt thee st e comespond-
ing parse tree for the source phrase. Moreover,
it tkes s e 0 otan TATS an bilingual

hua portion of Gigaword corpus. We also inchuded
rule-based translations of named entites, dates,
‘and numbers. By making use of these data, Lynx
achieves a BLEU score of 0.2830 on the 2005
NIST Chinese-to-English MT evaluation test set,
which is a very promising result for linguistically
synax-based models.

6 Conclusion

Tn this paper, we introduce tree-to-string |
men: templates, which can be automatically
leamed from syntactically-annotated training data.
‘The TAT-based translation model improves trans-
lation quality significantly compared with a sate-
of-the-art phrase-based decoder. Treated as spe-
cial TATs withou free on the source side, bilingual
‘phrases can be uilized for the TAT-besed model to
get further improvement,

1t should be emphasized that the restrictions
‘we impose on TAT extraction limit the expressive

phrases on the same &

power of TAT.

i usually very timeconsuming.

Given an input subiree T(FJ?), if F% i asring
of terminals, we find all bilingual phrases that the
source phrase is equal to F. Then we build
TAT for each bilingual phrase (f7",e!’ ~>, the
tree of the TAT is T(F), the siing is e/ , and
the alignment is A. 1Fa TAT builtfrom a bilingual
phrase s the same with a TAT in the TAT table, we

removing these restrictions does improve transle-
tlon qualty, but e o lrge ey e
ments. We feel that both parsing and word ali
ment s have important effects on the T
based model. We will rtrain the Chinese perser
on Penn Chinese Treebank version 5.0 and try to
improve word alignment quality using log-linear
‘models as suggested in (Liu et al., 2005)

prefer to the

Table 4 shows the effect of using bilingual
phrases for Lynx. Note that these bilingual phrases
are the same with those used for Phareoh.

55 Results on large data
‘We also conducted an experiment on large data o
er examine our design philosophy. The train-

‘This work is supported by National High Tech-
nology Research and Development Program con-
tract “Generally Technical Research and Ba-
sic Database Establishment of Chinese Plat-
form”(Subject No. 2004AA114010). We are
‘grateful to Deyi Xiong for providing the parser and.

We
used all the data to extract bilingual phrases and
a portion of 800K pairs to obiain TATs. Two tri-

robust. Thanks to Dr. Yajuan Lv for many helpful
‘comments on an earlier draft of this pape:
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Abstract

Conventional n-best reranking techniques of-
ten suffer from the limited scope of the n-
best list. which rules out many potentially
good alternatives. We instead propose forest
reranking. a method that reranks a packed for-
est of exponentially many parses. Since ex-
act inference 1s intractable with non-local fea-
tures. we present an approximate algorithm in-
spired by forest rescoring that makes discrim-
inative traming practical over the whole Tree-
bank. Our final result. an F-score of 91.7. out-
performs both 50-best and 100-best reranking
baselines. and 1s better than any previously re-
ported systems tramned on the Treebank.

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.
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Improving Tree-to-Tree Translation with Packed Forests

Yang Liu and Yajuan Lii and Qun Liu
Key Laboratory of Intelligent Information Processing
Institute of Computing Technology
Chinese Academy of Sciences
P.O. Box 2704, Beijing 100190, China
{yliu, lvyajuan, liuqun}@ict.ac.cn

Abstract

Current tree-to-tree models suffer from
parsing errors as they usually use only 1-
best parses for rule extraction and decod-
ing. We instead propose a forest-based
tree-to-tree model that uses packed forests.
The model is based on a probabilis-
tic synchronous tree substitution gram-
mar (STSG), which can be learned from
aligned forest pairs automatically. The de-
coder finds ways of decomposing trees in
the source forest into elementary trees us-
ing the source projection of STSG while
building target forest in parallel. Compa-
rable to the state-of-the-art phrase-based
system Moses, using packed forests in
tree-to-tree translation results in a signif-
icant absolute improvement of 3.6 BLEU
points over using 1-best trees.

1 Introduction

Approaches to syntax-based statistical machine
translation make use of parallel data with syntactic
annotations, either in the form of phrase structure
trees or dependency trees. They can be roughly
divided into three categories: string-to-tree mod-
els (e.g., (Galley et al., 2006; Marcu et al., 2006;
Shen et al., 2008)), tree-to-string models (e.g.,
(Liu et al., 2006; Huang et al., 2006)), and tree-to-
tree models (e.g., (Eisner, 2003; Ding and Palmer,
2005; Cowan et al., 2006; Zhang et al., 2008)).
By modeling the syntax of both source and tar-
get languages, tree-to-tree approaches have the po-
tential benefit of providing rules linguistically bet-
ter motivated. However, while string-to-tree and
tree-to-string models demonstrate promising re-
sults in empirical evaluations, tree-to-tree models
have still been underachieving.

We believe that tree-to-tree models face two
major challenges. First, tree-to-tree models are
more vulnerable to parsing errors. Obtaining
syntactic annotations in quantity usually entails
running automatic parsers on a parallel corpus.
As the amount and domain of the data used to
train parsers are relatively limited, parsers will
inevitably output ill-formed trees when handling
real-world text. Guided by such noisy syntactic in-
formation, syntax-based models that rely on 1-best
parses are prone to leamn noisy translation rules
in training phase and produce degenerate trans-
lations in decoding phase (Quirk and Corston-
Oliver, 2006). This situation aggravates for tree-
to-tree models that use syntax on both sides.

Second, tree-to-tree rules provide poorer rule
coverage. As a tree-to-tree rule requires that there
must be trees on both sides, tree-to-tree mod-
els lose a larger amount of linguistically unmoti-
vated mappings. Studies reveal that the absence of
such non-syntactic mappings will impair transla-
tion quality dramatically (Marcu et al., 2006; Liu
et al.,, 2007; DeNeefe et al., 2007; Zhang et al.,
2008).

Compactly encoding exponentially many
parses, packed forests prove to be an excellent
fit for alleviating the above two problems (Mi et
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tential benefit of providing rules linguistically bet-
ter motivated. However, while string-to-tree and
tree-to-string models demonstrate promising re-
sults in empirical evaluations, tree-to-tree models
have still been underachieving.

We believe that tree-to-tree models face two
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more vulnerable to parsing errors. Obtaining
syntactic annotations in quantity usually entails
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As the amount and domain of the data used to
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inevitably output ill-formed trees when handling
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parses, packed forests prove to be an excellent
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we propose a forest-based tree-to-tree model. To
learn STSG rules from aligned forest pairs, we in-
troduce a series of notions for identifying minimal
tree-to-tree rules. Our decoder first converts the
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inevitably output ill-formed trees when handling
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lations in decoding phase (Quirk and Corston-
Oliver, 2006). This situation aggravates for tree-
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must be trees on both sides, tree-to-tree mod-
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fit for alleviating the above two problems (Mi et
al.,, 2008; Mi and Huang, 2008). In this paper,
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learn STSG rules from aligned forest pairs, we in-
troduce a series of notions for identifying minimal
tree-to-tree rules. Our decoder first converts the
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inevitably output ill-formed trees when handling
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coverage. As a tree-to-tree rule requires that there
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fit for alleviating the above two problems (Mi et
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learn STSG rules from aligned forest pairs, we in-
troduce a series of notions for identifying minimal
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source forest to a translation forest and then finds
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mar (STSG), which can be learned from
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tential benefit of providing rules linguistically bet-
ter motivated. However, while string-to-tree and
tree-to-string models demonstrate promising re-
sults in empirical evaluations, tree-to-tree models
have still been underachieving.

We believe that tree-to-tree models face two
major challenges. First, tree-to-tree models are
more vulnerable to parsing errors. Obtaining
syntactic annotations in quantity usually entails
running automatic parsers on a parallel corpus.
As the amount and domain of the data used to
train parsers are relatively limited, parsers will
inevitably output ill-formed trees when handling
real-world text. Guided by such noisy syntactic in-
formation, syntax-based models that rely on 1-best
parses are prone to leamn noisy translation rules
in training phase and produce degenerate trans-
lations in decoding phase (Quirk and Corston-
Oliver, 2006). This situation aggravates for tree-
to-tree models that use syntax on both sides.

Second, tree-to-tree rules provide poorer rule
coverage. As a tree-to-tree rule requires that there
must be trees on both sides, tree-to-tree mod-
els lose a larger amount of linguistically unmoti-
vated mappings. Studies reveal that the absence of
such non-syntactic mappings will impair transla-
tion quality dramatically (Marcu et al., 2006; Liu
et al.,, 2007; DeNeefe et al., 2007; Zhang et al.,
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al.,, 2008; Mi and Huang, 2008). In this paper,
we propose a forest-based tree-to-tree model. To
learn STSG rules from aligned forest pairs, we in-
troduce a series of notions for identifying minimal
tree-to-tree rules. Our decoder first converts the
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the best derivation that has the source yield of one
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system Moses, using packed forests in
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By modeling the syntax of both source and tar-
get languages, tree-to-tree approaches have the po-
tential benefit of providing rules linguistically bet-
ter motivated. However, while string-to-tree and
tree-to-string models demonstrate promising re-
sults in empirical evaluations, tree-to-tree models
have still been underachieving.

We believe that tree-to-tree models face two
major challenges. First, tree-to-tree models are
more vulnerable to parsing errors. Obtaining
syntactic annotations in quantity usually entails
running automatic parsers on a parallel corpus.
As the amount and domain of the data used to
train parsers are relatively limited, parsers will
inevitably output ill-formed trees when handling
real-world text. Guided by such noisy syntactic in-
formation, syntax-based models that rely on 1-best
parses are prone to leamn noisy translation rules
in training phase and produce degenerate trans-
lations in decoding phase (Quirk and Corston-
Oliver, 2006). This situation aggravates for tree-
to-tree models that use syntax on both sides.

Second, tree-to-tree rules provide poorer rule
coverage. As a tree-to-tree rule requires that there
must be trees on both sides, tree-to-tree mod-
els lose a larger amount of linguistically unmoti-
vated mappings. Studies reveal that the absence of
such non-syntactic mappings will impair transla-
tion quality dramatically (Marcu et al., 2006; Liu
et al.,, 2007; DeNeefe et al., 2007; Zhang et al.,
2008).

S OTpaC Y CICOUITE X POTICTI Ay TITaTTy"
parses, packed forests prove to be an excellent
fit for alleviating the above two problems (Mi et
al.,, 2008; Mi and Huang, 2008). In this paper,
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source forest to a translation forest and then finds
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coder finds ways of decomposing trees in
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ing the source projection of STSG while
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By modeling the syntax of both source and tar-
get languages, tree-to-tree approaches have the po-
tential benefit of providing rules linguistically bet-
ter motivated. However, while string-to-tree and
tree-to-string models demonstrate promising re-
sults in empirical evaluations, tree-to-tree models
have still been underachieving.

‘We believe that tree-to-tree models face two
major challenges. First, tree-to-tree models are
more vulnerable to parsing errors. Obtaining
syntactic annotations in quantity usually entails
running automatic parsers on a parallel corpus.
As the amount and domain of the data used to
train parsers are relatively limited, parsers will
inevitably output ill-formed trees when handling
real-world text. Guided by such noisy syntactic in-
formation, syntax-based models that rely on 1-best
parses are prone to leamn noisy translation rules
in training phase and produce degenerate trans-
lations in decoding phase (Quirk and Corston-
Oliver, 2006). This situation aggravates for tree-
to-tree models that use syntax on both sides.

Second, tree-to-tree rules provide poorer rule
coverage. As a tree-to-tree rule requires that there
must be trees on both sides, tree-to-tree mod-
els lose a larger amount of linguistically unmoti-
vated mappings. Studies reveal that the absence of
such non-syntactic mappings will impair transla-
tion quality dramatically (Marcu et al., 2006; Liu
et al.,, 2007; DeNeefe et al., 2007; Zhang et al.,
2008).
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We believe that tree-to-tree models face two
major challenges. First, tree-to-tree models are
more vulnerable to parsing errors. Obtaining
syntactic annotations in quantity usually entails
running automatic parsers on a parallel corpus.
As the amount and domain of the data used to
train parsers are relatively limited, parsers will
inevitably output ill-formed trees when handling
real-world text. Guided by such noisy syntactic in-
formation, syntax-based models that rely on 1-best
parses are prone to learn noisy translation rules
in training phase and produce degenerate trans-
lations in decoding phase (Quirk and Corston-
Oliver, 2006). This situation aggravates for tree-
to-tree models that use syntax on both sides.

Second, tree-to-tree rules provide poorer rule
coverage. As a tree-to-tree rule requires that there
must be trees on both sides, tree-to-tree mod-
els lose a larger amount of linguistically unmoti-
vated mappings. Studies reveal that the absence of
such non-syntactic mappings will impair transla-
tion quality dramatically (Marcu et al., 2006; Liu
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ter motivated. However, while string-to-tree and
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sults in empirical evaluations, tree-to-tree models
have still been underachieving.

We believe that tree-to-tree models face two
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vated mappings. Studies reveal that the absence of
such non-syntactic mappings will impair transla-
tion quality dramatically (Marcu et al., 2006; Liu
et al.,, 2007; DeNeefe et al., 2007; Zhang et al.,
2008).

Compactly encoding exponentially many
parses, packed forests prove to be an excellent
fit for alleviating the above two problems (Mi et
al.,, 2008; Mi and Huang, 2008). In this paper,
we propose a forest-based tree-to-tree model. To
learn STSG rules from aligned forest pairs, we in-
troduce a series of notions for identifying minimal
tree-to-tree rules. Our decoder first converts the
source forest to a translation forest and then finds
the best derivation that has the source yield of one
source tree in the forest. Comparable to Moses,
our forest-based tree-to-tree model achieves an
absolute improvement of 3.6 BLEU points over
conventional tree-based model.
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The need to segment and label sequences arises in many
different problems in several scientific fields. Hidden
Markov models (HMMs) and stochastic grammars are well
understood and widely used probabilistic models for such
problems. In computational biology, HMMs and stochas-
tic grammars have been successfully used to align bio-
logical sequences, find sequences homologous to a known
evolutionary family, and analyze RNA secondary structure
(Durbin et al., 1998). In computational linguistics and
computer science, HMMs and stochastic grammars have
been applied to a wide variety of problems in text and
speech processing, including topic segmentation, part-of-
speech (POS) tagging, information extraction, and syntac-
tic disambiguation (Manning & Schiitze, 1999).

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data. In /CML 2003. 35
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We believe that 1t 1s important to make available

one hand. phrases have been proven to be a simple
and powerful mechanism for machine translation.
They excel at capturing translations of short idioms.
providing local re-ordering decisions. and incorpo-
rating context information straightforwardly. Chi-
ang (2005) shows significant improvement by keep-
ing the strengths of phrases while incorporating syn-
tax into statistical translation. On the other hand.
the performance of linguistically syntax-based mod-
els can be hindered by making use of only syntac-
tic phrase pairs. Studies reveal that linguistically
syntax-based models are sensitive to syntactic anal-
ysis (Quirk and Corston-Oliver. 2006). which 1s still
not reliable enough to handle real-world texts due to
limited size and domain of training data.

Yang Liu, Yajuan Lv, and Qun Liu. Improving Tree-to-Tree Translation with Packed Forests. In ACL 2009.
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Finding word alignments between parallel texts,
however, 1s still far from a trivial work due to the di-
versity of natural languages. For example, the align-
ment of words within idiomatic expressions, free
translations, and missing content or function words
is problematic. When two languages widely differ
in word order, finding word alignments 1s especially
hard. Therefore, it i1s necessary to incorporate all
useful linguistic information to alleviate these prob-
lems.

Tiedemann (2003) introduced a word alignment
approach based on combination of association clues.
Clues combination i1s done by disjunction of single
clues, which are defined as probabilities of associa-
tions. The crucial assumption of clue combination
that clues are independent of each other, however,
is not always true. Och and Ney (2003) proposed

Yang Liu, Qun Liu, and Shogun Lin. Log-Linear Models for Word Alignment. In ACL 2005.
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compute within the baseline system. But despite its
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this method suffers from the limited scope of the n-
best list. which rules out manv potentially good al-
ternatives. For example 41% of the correct parses
were not in the candidates of ~30-best parses in
(Collins. 2000). This situation becomes worse with
longer sentences because the number of possible in-
terpretations usually grows exponentially with the
sentence length. As a result. we often see very few
variations among the n-best trees. for example. 50-
best trees typically just represent a combination of 5
to 6 binary ambiguities (since 2° < 50 < 29).

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.
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step | action | rule stack coverage
0 0000000
¥\
1 S T3 [The President will] ®e00000
2 S 1 [The President will] [visit] eecocooe
3 R [The President will visit] eeoc00OS®
-
4 S T4 [The President will visit] [London in April] eccccee
5 R, [The President will visit London in April] ececccee
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step | action | rule stack coverage System Setting English-French ~ Chinese-English
Model 4 s2t 7.7 20.9
0 0000000 Model 4 t2s 9.2 30.3
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Union 9.6 28.1
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o Vigne +exact match 5.3 -
4 S T4 [The President will visit] [London in April] eecccee +linked word count 52 17.3
+bilingual dictionary - 17.1
+link co-occurrence count (GIZA++) 5.1 16.3
5 R, [The President will visit London in April ecccecece +link co-occurrence count (Cross-EM) 4.0 15.7
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Shift-reduce parsing is efficient but suffers from
parsing errors caused by syntactic ambiguity. Fig-
ure 3 shows two (partial) derivations for a depen-
dency tree. Consider the item on the top, the algo-
rithm can either apply a shift action to move a new
item or apply a reduce left action to obtain a big-
ger structure. This is often referred to as conflict
in the shift-reduce dependency parsing literature
(Huang et al., 2009). In this work, the shift-reduce
parser faces four types of conflicts:
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Algorithm 1 A beam search algorithm for word alignment

1: procedure ALIGN(f, e)

2: open — 0

3: N—0

4 a0

5: ADD(open, a, 3,b)

6: while open # () do

7: closed «— @

8 for all a € open do

9: forallle JxI—ado
10: a’ —au{l}
11: g — GaIN(f, e,a,])
12: if ¢ > 0 then
13: ADD(closed, a’, B, b)
14: end if
15: ADD(N, a’,0,n)
16: end for
17: end for
18: open «— closed

19: end while
20: return N/
21: end procedure

> a list of active alignments

> n-best list

> begin with an empty alignment
> initialize the list

> a list of promising alignments

> enumerate all possible new links
> produce a new alignment

> compute the link gain

> ensure that the score will increase

> update promising alignments

> update n-best list

> update active alignments

> return n-best list

Shift-reduce parsing is efficient but suffers from
parsing errors caused by syntactic ambiguity. Fig-
ure 3 shows two (partial) derivations for a depen-
dency tree. Consider the item on the top, the algo-
rithm can either apply a shift action to move a new
item or apply a reduce left action to obtain a big-
ger structure. This is often referred to as conflict
in the shift-reduce dependency parsing literature
(Huang et al., 2009). In this work, the shift-reduce
parser faces four types of conflicts:
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Algorithm 1 A beam search algorithm for word alignment
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3: N <D > n-best list
4 a—10 > begin with an empty alignment
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21: end procedure
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the 2’th example. Take z to the output proposed
at this example, z = argmax,cGEN(z;) (74, ¥) -

ak. It follows from the algorithm updates that
aktl =ak + @ Tiy Yi) — @gwi,z). We take inner
products of both sides with the vector U:
U-a*'=U-a"+U-®(zi,y:) — U - ®(a4, 2)
>U-a"+46
where the inequality follows because of the prop-
erty of U assumed in Eq. 3. Because a' = 0,
and therefore U - a! = 0, it follows by induc-
tion on k that for all k, U - &t > k. Be-
cause U - a*+! < ||U|| ||a*t!||, it follows that
a5 > k.

40



N\

=/

step | action | rule stack coverage
0 0000000
¥\
1 S T3 [The President will] eeco000O0
2 S 1 [The President will] [visit] eeco00cOe
3 R [The President will visit] eecococoOe
-

4 S T4 [The President will visit] [London in April] eecccee
5 R, [The President will visit London in April] ®eccoee
S
*

00,

I
> ). Pyx®;0)éx(x?,y)

_Z Z P(x,y;0)dr(x,y)

I
Z Eylx(i) -0 [¢k (X(i) ) y)] - IEx,y;G [¢k (X, y)]
=1

XEX yeY(x)

TR ZIERE

Shift-reduce parsing is efficient but suffers from
parsing errors caused by syntactic ambiguity. Fig-
ure 3 shows two (partial) derivations for a depen-
dency tree. Consider the item on the top, the algo-
rithm can either apply a shift action to move a new
item or apply a reduce left action to obtain a big-
ger structure. This is often referred to as conflict
in the shift-reduce dependency parsing literature
(Huang et al., 2009). In this work, the shift-reduce
parser faces four types of conflicts:

X

* k%

Proof of Theorem 1: Let a* be the weights
before the £’th mistake is made. It follows that

a' = 0. Suppose the k’th mistake is made at

System Setting English-French  Chinese-English
Model 4 s2t 7.7 20.9
Model 4 t2s 9.2 30.3
GIZA++ Intersection 6.8 21.8
Union 9.6 28.1
Refined method 5.9 18.4
Cross-EM  HMM, joint 5.1 18.9
Model 4 s2t 7.8 20.5
+Model 4 2s 5.6 18.3
+link count 5.5 17.7
+cross count 5.4 17.6
. +neighbor count 5.2 174
Vigne +exa%t match 5.3 -
+linked word count 5.2 17.3
+bilingual dictionary - 17.1
+link co-occurrence count (GIZA++) 5.1 16.3
+link co-occurrence count (Cross-EM) 4.0 15.7
* %
Algorithm 1 A beam search algorithm for word alignment
1: procedure ALIGN(f, e)
2: open — 0 > a list of active alignments
3: N <D > n-best list
4 a—10 > begin with an empty alignment
5: ADD(open, a, 3,b) > initialize the list
6: while open # () do
7 closed «— 0 > a list of promising alignments
8 for all a € open do
9: foralll €] xI—ado > enumerate all possible new links
10: a’ —au{l} > produce a new alignment
11: g — GAIN(f, e,a,]) > compute the link gain
12: if ¢ > 0 then > ensure that the score will increase
13: ADD(closed, ', B, b) > update promising alignments
14: end if
15: ADD(N, a’,0,n) > update n-best list
16: end for
17: end for
18: open «— closed > update active alignments
19: end while
20: return N/ > return n-best list

21: end procedure

kkkk*k

the 2’th example. Take z to the output proposed
at this example, z = argmax,cGEN(z;) (74, ¥) -

ak. It follows from the algorithm updates that
akftl = ak + &(z;, 1) — @gwi,z). We take inner
products of both sides with the vector U:
U-a*'=U-a"+U-®(zi,y:) — U - ®(a4, 2)
>U-a"+46

where the inequality follows because of the prop-
erty of U assumed in Eq. 3. Because a' = 0,
and therefore U - a! = 0, it follows by induc-
tion on k that for all k, U - &t > k. Be-
cause U - a*+! < ||U|| ||a*t!||, it follows that

&+ > ke,
1IE AR

Xk Kkkk*k*k

40



RSN AV 72

#iE Pa 8 WS wE e B
430035385 1iHEE

SsnE

M THRABIL RSN

C1g)
—An
—n T B, RN,

) x5, P, BOSSEHAE, SRS HORE

LHXE 4399\3F78 - web 4399 €om/ddt/ - 2RI - B8 - 1A
4 B

. 4399
e E RN 55439945102 T2 FAR: FIEFAMR: FIEANLE: 02085639217 F - @
439PK/) ¥ 2k RE2VMEEE 2 & - 9WRE2HETEHFR EHFMEACENERMER

4399/v§R% - web 4399 com/__ elect_server html - 2% #/ - B8R - 155
EBREFEER ) "
M oBBETD 430038385\l 3 43003838
4399393952 A9WWE2HERMTEEANMTAR: MEANLARTE . FENNSIFTEURHYRE
4399 E =M THMERNENFS, HRENEMFEENFFARE EXZOBHMFL!
4309320 5} 42 4399\ 78 - news 4399 com/dandantang/ - 2012-11-2 - #E2 - #8455
R — e ————

3

RRBFE

T 2R

41



RSN AV 12

B

#Y MR &F EE uEm wE a0 =3 N FR &% B WA M AR B
| 43003838 1T ek BINE
2] =M
P UL
SsnE
—%n
—%R
—An
s Am
—AA ,,“' m
—En
S 15E LBESE
PR 43993578 - web 43991€0midcy - 2% B - - K EmiE
4399/ ik
4399 wRiG
e F AR 543994102 TE45FAR: FIEFAR: FIEMEE: 02085639217 F - @ SRS
439PK/) H 2k WE2¥ 2 B& 5% 49N EREREIHEE EHFAMERCENERER
4399/ - web 4399 con/__ elect_server html - 2% - B8R - IFS BREFREER
SREARER A n—— kR ABRE
- WH? 430033 |\HAE 4300383 .
43993939 E2 qqk R AIE# fF

4399MIEEM

439939 it e

A399WWE2H RN EEANMTAR :
THMANENFF, HRENEXFAENFARE  BRROBAFE!
- news 4399 com/dandantang/ - 2012-11-2

MEERILAET . BENDSIFEUBHYRE
gk R EEE R

qukRAEEE

FEHKISS ME TEi£QQ AN B HE irta-i'lﬁ Q!V’\];‘l‘lﬁ ILOVE YOU !

- 63

- fi

&R

Wiz 4R EBS

FER
LRASHAFTETLTHE THEDEWTSE X 2NENE 250NzNE K E2HW

R —

B R —

£

RRBEBERFXZE

41



RENAY

Hid 1T 5 B 055 s apo EE | (2] " Bs Wi e #nA B3

o ek BIE s
2] g ¥HF BB Wiz 48 B2

2BrE S

i = " k! B QOTX —T. FARKBAT ME 1 KA
—Ef 7
_&n :Fj 2112 - B8 - 30
~An _ _ . QQARITE
e e A M MEQQHRAHFEHOOA LIS, FEHqARIE, TEARAE FHX0AE R
s ¥R L 0TS ’%'T!‘HPOﬁﬁiﬁﬁi&mﬁ FARPRE2, mzxwz BOE ARMKAR §TLER. OFRSTH ok @HE
ths SERAE, HafHNtE LHEE -2012-112 - 88 -}
EHER 43991 mx web 4399 com/ddy - 2K R - 58 - JiK =@
4399/ vod o AR
e ERAGE 00655439948 102 TE45 B MR: FRIETM: FEME: 02085639217 F - SRR
439PK/) 35 2K BE2H 25 - 4309 ERETENEE EHAFMEACENRARMER
4399/ 3R - web.4399 comV/___elect_server html - 2K/ - BER - 1§48 BRFREER
gk R EEE
WP 430035 |\ilirE 4300383 -
WP EOHBRNEBANMTAR: MILOLANY . BEUNSEI DB RHES b E aqsk MAERIfF - .
THBERENES, ARENSRBEENFARE . BEXEOBHEHY! qok RAEEE R N
4390354 - news 4399 com/dandantang/ - 2012-11.2 - B - 125 - F I HKISS ME TE450Q - B HIE zﬁwm SBASHE ILOVEYOU ! $%
F ; sl qukRAEFE LR ASHBAFETLTINE THEDEIOTFSE T 2VENE 2550NzhINE e
R — R R —

B A RBFEARSF X

FEBEINRM R R ERE BN ERTE

41



=INEES

Forest Reranking: Discriminative Parsing with Non-Local Features

*

Liang Huang
University of Pennsylvania

Philadelphia, PA 19104
lhuang3@cis.upenn.edu

Abstract

Conventional n-best reranking techniques of-
ten suffer from the limited scope of the n-
best list, which rules out many potentially
good alternatives. We instead propose forest
reranking, a method that reranks a packed for-
est of exponentially many parses. Since ex-
act inference is intractable with non-local fea-
tures, we present an approximate algorithm in-
spired by forest rescoring that makes discrim-
inative training practical over the whole Tree-
bank. Our final result, an F-score of 91.7, out-
performs both 50-best and 100-best reranking
baselines, and is better than any previously re-
ported systems trained on the Treebank.

1 Introduction

Discriminative reranking has become a popular
technique for many NLP problems, in particular,
parsing (Collins, 2000) and machine translation
(Shen et al., 2005). Typically, this method first gen-
erates a list of top-n candidates from a baseline sys-
tem, and then reranks this n-best list with arbitrary
features that are not computable or intractable to

local non-local

conventional reranking only at the root
DP-based discrim. parsing | exact N/A

this work: forest-reranking | exact on-the-fly

Table 1: Comparison of various approaches for in-
corporating local and non-local features.

sentence length. As a result, we often see very few
variations among the n-best trees, for example, 50-
best trees typically just represent a combination of 5
to 6 binary ambiguities (since 2° < 50 < 26).
Alternatively, discriminative parsing is tractable
with exact and efficient search based on dynamic
programming (DP) if all features are restricted to be
local, that is, only looking at a local window within
the factored search space (Taskar et al., 2004; Mc-
Donald et al., 2005). However, we miss the benefits
of non-local features that are not representable here.
Ideally, we would wish to combine the merits of
both approaches, where an efficient inference algo-
rithm could integrate both local and non-local fea-
tures. Unfortunately, exact search is intractable (at
least in theory) for features with unbounded scope.

Liang Huang. Forest Reranking: Discriminative Parsing with Non-Local Features. In ACL 2008.

42
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Abstract

We present a novel translation model
based on tree-to-string alignment template
(TAT) which describes the alignment be-
tween a source parse tree and a target
string. A TAT is capable of generating
both terminals and non-terminals and per-
forming reordering at both low and high
levels. The model is linguistically syntax-
based because TATs are extracted auto-
matically from word-aligned, source side
parsed parallel texts. To translate a source
sentence, we first employ a parser to pro-
duce a source parse tree and then ap-
ply TATs to transform the tree into a tar-
get string. Our experiments show that
the TAT-based model significantly outper-
forms Pharaoh, a state-of-the-art decoder
for phrase-based models.

1 Introduction

Phrase-based translation models (Marcu and
Wong, 2002; Koehn et al., 2003; Och and Ney,
2004), which go beyond the original IBM trans-
lation models (Brown et al., 1993) ! by model-
ing translations of phrases rather than individual
words, have been suggested to be the state-of-the-
art in statistical machine translation by empirical
evaluations.

In phrase-based models, phrases are usually
strings of adjacent words instead of syntactic con-
stituents, excelling at capturing local reordering
and performing translations that are localized to

!The mathematical notation we use in this paper is taken
from that paper: a source string fi/ = fi,..., fj,..., fsis
to be translated into a target string e! = e;,...,¢€;,...,

er.
Here, I is the length of the target string, and J is the length
of the source string.

substrings that are common enough to be observed
on training data. However, a key limitation of
phrase-based models is that they fail to model re-
ordering at the phrase level robustly. Typically,
phrase reordering is modeled in terms of offset po-
sitions at the word level (Koehn, 2004; Och and
Ney, 2004), making little or no direct use of syn-
tactic information.

Recent research on statistical machine transla-
tion has lead to the development of syntax-based
models. Wu (1997) proposes Inversion Trans-
duction Grammars, treating translation as a pro-
cess of parallel parsing of the source and tar-
get language via a synchronized grammar. Al-
shawi et al. (2000) represent each production in
parallel dependency tree as a finite transducer.
Melamed (2004) formalizes machine translation
problem as synchronous parsing based on multi-
text grammars. Graehl and Knight (2004) describe
training and decoding algorithms for both gen-
eralized tree-to-tree and tree-to-string transduc-
ers. Chiang (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
context-free grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use a parser in
the target language to train probabilities on a set of

Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 609616,
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training and decoding algorithms for both gen-
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on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
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based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
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propose a syntax-based translation model based
on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
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guages.
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As tokenization is usually ambiguous for
many natural languages such as Chinese
and Korean, tokenization errors might po-
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translation systems that rely on 1-best to-
kenizations. While using lattices to of-
fer more alternatives to translation sys-
tems have elegantly alleviated this prob-
lem, we take a further step to tokenize
and translate jointly. Taking a sequence
of atomic units that can be combined to
form words in different ways as input, our
joint decoder produces a tokenization on
the source side and a translation on the
target side simultaneously. By integrat-
ing tokenization and translation features
in a discriminative framework, our joint
decoder outperforms the baseline trans-
lation systems using 1-best tokenizations
and lattices significantly on both Chinese-
English and Korean-Chinese tasks. In-
terestingly, as a tokenizer, our joint de-
coder achieves significant improvements
over monolingual Chinese tokenizers.

1 Introduction

Tokenization plays an important role in statistical
machine translation (SMT) because tokenizing a
source-language sentence is always the first step
in SMT systems. Based on the type of input, Mi
and Huang (2008) distinguish between two cat-
egories of SMT systems : string-based systems
(Koehn et al., 2003; Chiang, 2007; Galley et al.,
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Figure 1: (a) Separate tokenization and translation and (b)
joint tokenization and translation.

2006; Shen et al., 2008) that take a string as input
and tree-based systems (Liu et al., 2006; Mi et al.,
2008) that take a tree as input. Note that a tree-
based system still needs to first tokenize the input
sentence and then obtain a parse tree or forest of
the sentence. As shown in Figure 1(a), we refer to
this pipeline as separate tokenization and transla-
tion because they are divided into single steps.
As tokenization for many languages is usually
ambiguous, SMT systems that separate tokeniza-
tion and translation suffer from a major drawback:
tokenization errors potentially introduce transla-
tion mistakes. As some languages such as Chi-
nese have no spaces in their writing systems, how
to segment sentences into appropriate words has
a direct impact on translation performance (Xu et
al., 2005; Chang et al., 2008; Zhang et al., 2008).
In addition, although agglutinative languages such
as Korean incorporate spaces between “words”,
which consist of multiple morphemes, the gran-
ularity is too coarse and makes the training data
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problem as synchronous parsing based on multi-
text grammars. Graehl and Knight (2004) describe
training and decoding algorithms for both gen-
eralized tree-to-tree and tree-to-string transduc-
ers. Chiang (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
context-free grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use a parser in
the target language to train probabilities on a set of
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substrings that are common enough to be observed
on training data. However, a key limitation of
phrase-based models is that they fail to model re-
ordering at the phrase level robustly. Typically,
phrase reordering is modeled in terms of offset po-
sitions at the word level (Koehn, 2004; Och and
Ney, 2004), making little or no direct use of syn-
tactic information.

Recent research on statistical machine transla-
tion has lead to the development of syntax-based
models. Wu (1997) proposes Inversion Trans-
duction Grammars, treating translation as a pro-
cess of parallel parsing of the source and tar-
get language via a synchronized grammar. Al-
shawi et al. (2000) represent each production in
parallel dependency tree as a finite transducer.
Melamed (2004) formalizes machine translation
problem as synchronous parsing based on multi-
text grammars. Graehl and Knight (2004) describe
training and decoding algorithms for both gen-
eralized tree-to-tree and tree-to-string transduc-
ers. Chiang (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
context-free grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use a parser in
the target language to train probabilities on a set of
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al., 2005; Chang et al., 2008; Zhang et al., 2008).
In addition, although agglutinative languages such
as Korean incorporate spaces between “words”,
which consist of multiple morphemes, the gran-
ularity is too coarse and makes the training data
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Abstract

We present a novel translatj
based on tree-to-string align
(TAT) which describes the
tween a source parse
string. A TAT is capal
both terminals and non
forming reordering a
levels. The model
based because T. extracted auto-
matically from word-aligned, source side
parsed parallel textsgTo translate a source
sentence, we first loy a parser to pro-
duce a source p: tree and then ap-
ply TATs to transfolin the tree into a tar-
get string. Our ef®eriments show that
the TAT-based mod@ significantly outper-
forms Pharaoh, a sfite-of-the-art decoder
for phrase-based mdWels.

and a target
of generating
inals and per-

1 Introduction

Phrase-based translati
Wong, 2002; Koehn e
2004), which go beyo

models (Marcu and
1., 2003; Och and Ney,
the original IBM trans-
lation models (Brow: ., 1993) ! by model-
ing translations of phr&¥s rather than individual
words, have been suggested to be the state-of-the-
art in statistical machine translation by empirical
evaluations.

In phrase-based models, phrases are usually
strings of adjacent words instead of syntactic con-
stituents, excelling at capturing local reordering
and performing translations that are localized to

!The mathematical notation we use in this paper is taken
from that paper: a source string fi/ = fi,..., fj,..., fsis
to be translated into a target string e! = e;,...,¢€;,...,e;.

Here, I is the length of the target string, and J is the length
of the source string.

,sxlin}@ict.ac.cn

substrings that are common enough to be observed
on training data. However, a key limitation of
phrase-based models is that they fail to model re-
ordering at the phrase level robustly. Typically,
phrase reordering is modeled in terms of offset po-
sitions at the word level (Koehn, 2004; Och and
Ney, 2004), making little or no direct use of syn-
tactic information.

Recent research on statistical machine transla-
tion has lead to the development of syntax-based
models. Wu (1997) proposes Inversion Trans-
duction Grammars, treating translation as a pro-
cess of parallel parsing of the source and tar-
get language via a synchronized grammar. Al-
shawi et al. (2000) represent each production in
parallel dependency tree as a finite transducer.
Melamed (2004) formalizes machine translation
problem as synchronous parsing based on multi-
text grammars. Graehl and Knight (2004) describe
training and decoding algorithms for both gen-
eralized tree-to-tree and tree-to-string transduc-
ers. Chiang (2005) presents a hierarchical phrase-
based model that uses hierarchical phrase pairs,
which are formally productions of a synchronous
context-free grammar. Ding and Palmer (2005)
propose a syntax-based translation model based
on a probabilistic synchronous dependency in-
sert grammar, a version of synchronous gram-
mars defined on dependency trees. All these ap-
proaches, though different in formalism, make use
of synchronous grammars or tree-based transduc-
tion rules to model both source and target lan-
guages.

Another class of approaches make use of syn-
tactic information in the target language alone,
treating the translation problem as a parsing prob-
lem. Yamada and Knight (2001) use a parser in
the target language to train probabilities on a set of
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Abstract

As tokenization is usually ambiguous for
many natural languages such as Chinese
and Korean, tokenization errors might po-
tentially introduce translation mistakes for
translation systems that rely on 1-best to-
kenizations. While using lattices to of-
fer more alternatives to translation sys-
tems have elegantly alleviated this prob-
lem, we take a further step to token
and translate jointly. Taking
of atomic units that ¢ mbined to
form words in differ as input, our
joint decoder produces a tokenization on
the source side andj@ translation on the
target side simultanfbusly. By integrat-
ing tokenization andMtranslation features
in a discriminative ework, our joint
decoder outperform@lthe baseline trans-
lation systems usingill -best tokenizations
and lattices significa
English and Kore: hinese tasks. In-
terestingly, as a tokfihi
coder achieves signfilcant improvements
over monolingual Clihese tokenizers.

1 Introduction

ortant role in statistical
ecause tokenizing a

Tokenization plays an i
machine translation (|
source-language sente: always the first step
in SMT systems. Based{pn the type of input, Mi
and Huang (2008) distinguish between two cat-
egories of SMT systems : string-based systems
(Koehn et al., 2003; Chiang, 2007; Galley et al.,

wang * Qun Liuf Shouxun Lin

fHILab Convergence Technology Center
C&I Business
SKTelecom

yshwang@sktelecom.com

source  string tokenization

ranslat
;J translation

target

source  string tokenization

target translation

Figure 1: (a) Separate tokenization and translation and (b)
joint tokenization and translation.

2006; Shen et al., 2008) that take a string as input
and tree-based systems (Liu et al., 2006; Mi et al.,
2008) that take a tree as input. Note that a tree-
based system still needs to first tokenize the input
sentence and then obtain a parse tree or forest of
the sentence. As shown in Figure 1(a), we refer to
this pipeline as separate tokenization and transla-
tion because they are divided into single steps.

As tokenization for many languages is usually
ambiguous, SMT systems that separate tokeniza-
tion and translation suffer from a major drawback:
tokenization errors potentially introduce transla-
tion mistakes. As some languages such as Chi-
nese have no spaces in their writing systems, how
to segment sentences into appropriate words has
a direct impact on translation performance (Xu et
al., 2005; Chang et al., 2008; Zhang et al., 2008).
In addition, although agglutinative languages such
as Korean incorporate spaces between “words”,
which consist of multiple morphemes, the gran-
ularity is too coarse and makes the training data
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coding phase. ! Based on max-translation decod-
ing and max-derivation decoding used in conven-
tional individual decoders (Section 2) we go fur-
ther to develop a joint decoder that integrates mul-
tiple models on a firm basis:

e Structuring the search space of each model

as a rranslation hypergraph (Section 3.1).
our joint decoder packs individual translation
hypergraphs together by merging nodes that
have identical partial translations (Section
3.2). Although such mranslation-level combi-
nation will not produce new translations. it
does change the way of selecting promising
candidates.

Two models could even share derivations
with each other if they produce the same
structures on the target side (Section 3 3).
which we refer to as derivation-level com-
bination. This method enlarges the search
space by allowing for mixing different types
of translation rules within one derivation.

As multiple derivations are used for finding
optimal translations. we extend the minimum
error rate training (MERT) algorithm (Och.
2003) to tune feature weights with respect
to BLEU score for max-translation decoding
(Section 4).
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Figure 1: An example of word alignment between
a pair of Chinese and English sentences.

ear space to encode the probabilities of exponen-
tially many alignments. We develop a new algo-
rithm for extracting phrase pairs from weighted
matrices and show how to estimate their relative
frequencies and lexical weights. Experimental re-
sults show that using weighted matrices achieves
consistent improvements in translation quality and
significant reduction in extraction time over using
n-best lists.

2 Background

Figure 1 shows an example of word alignment be-
tween a pair of Chinese and English sentences.
The Chinese and English words are listed horizon-
tally and vertically, respectively. The dark points
indicate the correspondence between the words in
two languages. For example, the first Chinese
word “zhongguo” is aligned to the fourth English
word “China”.

Formally, given a source sentence f = fi =
fis+.os fjs..., frand a target sentence e = e! =
€l,...,€i,... ey, we define a link | = (j,1) to
exist if f; and e; are translation (or part of trans-
lation) of one another. Then, an alignment a is a
subset of the Cartesian product of word positions:

aC{(i):j=1,....,J5i=1,....,I} (1)

Usually, SMT systems only use the 1-best align-
ments for extracting translation rules. For exam-
ple, given a source phrase f and a target phrase
&, the phrase pair (f, €) is said to be consistent
(Och and Ney, 2004) with the alignment if and
only if: (1) there must be at least one word in-
side one phrase aligned to a word inside the other

phrase and (2) no words inside one phrase can be
aligned to a word outside the other phrase.

After all phrase pairs are extracted from the
training corpus, their translation probabilities can
be estimated as relative frequencies (Och and Ney,
2004):

count(f, &)
e count(f, &)

where count(f, €) indicates how often the phrase
pair (f, ) occurs in the training corpus.

Besides relative frequencies, lexical weights
(Koehn et al., 2003) are widely used to estimate
how well the words in f translate the words in
€. To do this, one needs first to estimate a lexi-
cal translation probability distribution w(e|f) by
relative frequency from the same word alignments
in the training corpus:

o(elf) = @

count(f,e)
Ze’ Count(f’ e’)

Note that a special source NULL token is added
to each source sentence and aligned to each un-
aligned target word.

As the alignment & between a phrase pair (f, €)
is retained during extraction, the lexical weight
can be calculated as

w(elf) = (©)

pw(élf!d) H |{]|(] Z) € a}l Zw(ellf]) (4)

If there are multiple alignments & for a phrase
pair (f,€), Koehn et al. (2003) choose the one
with the highest lexical weight:

pu(@lf) = max {p,(éf,a)} ®)

Simple and effective, relative frequencies and
lexical weights have become the standard features
in modern discriminative SMT systems.

3 Weighted Alignment Matrix

e believe that offering more candidate align-
ments to extracting translation rules might help
improve translation quality. Instead of using n-
best lists (Venugopal et al., 2008), we propose a
new structure called weighted alignment matrix.

We use an example to illustrate our idea. Fig-
ure 2(a) and Figure 2(b) show two alignments of
a Chinese-English sentence pair. We observe that
some links (e.g., (1,4) corresponding to the word

1018
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Figure 2: (a) One alignment of a sentence pair; (b) another alignment of the same sentence pair; (c)
the resulting weighted alignment matrix that takes the two alignments as samples, of which the initial

probabilities are 0.6 and 0.4, respectively.

pair (“zhongguo”, “China™)) occur in both align-
ments, some links (e.g., (2,3) corresponding to the
word pair (“de”,“of”)) occur only in onc align-
ment, and some links (e.g., (1,1) corresponding
to the word pair (“zhongguo”, “the”)) do not oc-
cur. Intuitively, we can estimate how well two
words are aligned by calculating its relative fre-
quency, which is the probability sum of align-
ments in which the link occurs divided by the
probability sum of all possible alignments. Sup-
pose that the probabilities of the two alignments in
Figures 2(a) and 2(b) are 0.6 and 0.4, respectively.
We can estimate the relative frequencies for every
word pair and obtain a weighted matrix shown in
Figure 2(c). Therefore, each word pair is associ-
ated with a probability to indicate how well they
are aligned. For example, in Figure 2(c), we say
that the word pair (“zhongguo”, “China”) is def-
initely aligned, (“zhongguo”, “the”) is definitely
unaligned, and (“de”, “of”) has a 60% chance to
get aligned.

Formally, a weighted alignment matrix m is a
J x I matrix, in which each element stores a link
probability pp,(j,i) to indicate how well f; and
e; are aligned. Currently, we estimate link proba-
bilities from an n-best list by calculating relative
frequencies:

where

8(a,4,1) ={ 1 (i)ea o

0 otherwise

Note that A is an n-best list, p(a) is the probabil-
ity of an alignment a in the n-best list, é(a, j,4)
indicates whether a link (j,¢) occurs in the align-
ment @ or not. We assign 0 to any unseen
alignment. As p(a) is usually normalized (i.e.,
Y wen P(a) = 1), we remove the denominator in
Eq. (6).

Accordingly, the probability that the two words
f; and e; are not aligned is

i’m(]:l) = 1'0_pm.(jsi) (9)

For example, as shown in Figure 2(c), the prob-
ability for the two words “de” and “of” being
aligned is 0.6 and the probability that they are not
aligned is 0.4.

Intuitively, the probability of an alignment a is
the product of link probabilities. If a link (j,%)
occurs in a, we use p,,(j,4); otherwise we use
Pm(j,7). Formally, given a weighted alignment
matrix m, the probability of an alignment a can
be calculated as

Pm(a) = H H(pm(J, x 8(a, j,i) +

j=li=1

c o Zaenp(a) X 6(a,4,1) Pm(j,i) x (1= 8(a,4,i))) (10)
Pm(d8) = (6)
o Xaen P(@) that th £ all ali b
— Z p(a) x 6(a,j, 'L) (7) b ¥t.pro.ves at e sum or all a 1g1_1ment proba-
= ilities is always 1: 3, 4 Pm(a) = 1, where A
1019
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We believe that offering more candidate align- pair (“zhongguo™. “China™)) occur in both align-
ments to extracting translation rules might help ments. some links (e.g.. (2.3) corresponding to the
improve translation quality. Instead of using n- word pair (“de”."of ")) occur only in one align-
best lists (Venugopal et al.. 2008). we propose a ment. and some links (e.g.. (1.1) corresponding

new structure called weighred alignment matrix. to the word pair (“zhongguo™. “the™)) do not oc-
We use an example to illustrate our idea. Fig- cur. Intuitivelv. we can estimate how well two

ure 2(a) and Figure 2(b) show two alignments of
a Chinese-English sentence pair. We observe that
some links (e.g.. (1.4) corresponding to the word

words are aligned by calculating its relative fre-
quency. which i1s the probability sum of align-
ments in which the link occurs divided by the
probability sum of all possible alignments. Sup-
pose that the probabilities of the two alignments in
Figures 2(a) and 2(b) are 0.6 and 0.4. respectively.
We can estimate the relative frequencies for every

: ;e . . 7. . . 1o ]o h.olo . . - . .
Lo e e ceonomy (010 1LOW0 word pair and obtain a weighted matrix shown in
China @ - - - China ¢ - - - China 1010 10 10 Figure 2(c). Therefore each word pair 1s associ-
of - @ - - of - - < @ of |0 0.6/ 0 0.4 . S . .
development Py development . PY development |0 [0 [0 [L.0 ated V\’lt].l a pl'Obablht}’ o llldlC ate h.OVV \\'ell th.ey
I ce e h e e I . - -
e e reledofofo are aligned. For example. in Figure 2(c). we say
s O a'_c E E = § E E < 2"7; é - << -n ¢ - - -
2 23 2 =3 223 that the word pair (“zhongguo™. “China™) 1s def-
B = = mitely aligned. (“zhongeuo™. “the™) 1s definitely
— O -
(a) (b) (c)

unaligned. and (““de™. “of ") has a 60% chance to

Figure 2:. (a) Oge alignn'lent of a sentence pair: (b) another gligmneut of the same sentence pai.r:. (c) get allglled_
the resulting weighted alignment matrix that takes the two alignments as samples. of which the initial
probabilities are 0.6 and 0.4, respectively.

Formally. a weighted alignment matrix m 1s a
J x I matrix. in which each element stores a /ink
probability pm,(j,i) to mdicate how well f; and
e; are aligned. Currently. we estimate link proba-
bilities from an n-best list by calculating relative
frequencies:

Yang Liu, Tian Xia, Xinyan Xiao, and Qun Liu. Weighted Alignment Matrices
for Statistical Machine Translation. In EMNLP 2009.
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pint T =

We first used the validation sets to find the optimal setting of our approach: noisy
generation, the value of n, feature group, and training corpus size.

Table 2 shows the results of different noise generation strategies: randomly shuf-
fling, inserting, replacing, and deleting words. We find shuffling source and target
words randomly consistently yields the best results. One possible reason is that the
translation probability product feature (Liu, Liu, and Lin, 2010) derived from GIZA++
suffices to evaluate lexical choices accurately. It is more important to guide the aligner
to model the structural divergence by changing word orders randomly.

Table 3 gives the results of different values of sample size n on the validation sets.
We find that increasing n does not lead to significant improvements. This might result
from the high concentration property of log-linear models. Therefore, we simply set
n = 1 in the following experiments.

Table 4 shows the effect of adding non-local features. As most structural diver-
gence between natural languages are non-local, including non-local features leads to
significant improvements for both French-English and Chinese-English. As a result,
we used all 16 features in the following experiments.

Table 5 gives our final result on the test sets. Our approach outperforms all unsu-
pervised alif;rners significantly statistically (p < 0.01) except for the Berkeley aligner
on the French-English data. The margins on Chinese-English are generally much larger
than French-English because Chinese and English are distantly related and exhibit
more non-local structural divergence. Vigne used the same features as our system but
was trained in a supervised way. Its results can be treated as the upper bounds that our
method can potentially approach.

Yang Liu and Massing Sun. Contrastive Unsupervised Word Alignment
with Non-Local Features. arXiv:1410.2082[cs.CL].
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Table 8

Resulting feature weights of minimum error rate training on the Chinese-English task (M4ST:
Model 4 s2t; M4TS: Model 4 t2s; LC: link count; CC: cross count; NC: neighbor count; LWC:
linked word count; BD: bilingual dictionary; LCCG: link co-occurrence count (GIZA++); LCCC:

link co-occurrence count(Cross-EM)).

M4ST +M41S +LC +CC +NC +LWC +BD +LCCG +LCCC

M4ST 1.0 0.63 0.18 0.19 0.12 0.143 0.07 0.03 0.02

MA4TS - 0.37 0.07 0.07 0.06 0.08 0.02 0.04 0.02
LC - - -0.75 -0.56 -0.55 -022 -035 —-0.13 0.14
CC - - - —-0.18 -0.08 —-0.08 -005 —-0.05 —0.03
NC - - - - 0.17 0.25 0.16 0.20 0.10

LWC - - - - - —-0.26 0.01 —0.16 —0.26
BD - - - - - - 0.34 0.28 0.30

LCCG - - - - - - - 0.11 0.04

LCCC - - - - - - - - 0.09

S/



FARAIRX

Table 8

Resulting feature weights of minimum error rate training on the Chinese-English task (M4ST:
Model 4 s2t; M4TS: Model 4 t2s; LC: link count; CC: cross count; NC: neighbor count; LWC:
linked word count; BD: bilingual dictionary; LCCG: link co-occurrence count (GIZA++); LCCC:

link co-occurrence count (Cross-EM)).

M4ST MA4TS LC CC NC LWC BD LCCG LCCC
M4ST 1.00 - - - - - - - -
+MA4TS 0.63 0.37 - - - - - - -
+L.C 0.18 0.07 —0.75 - - - - - -
+CC 0.19 0.07 —0.56 —0.18 - - - - -
+NC 0.12 0.06 —0.55 —-0.08 0.17 - - - -
+LWC 0.14 0.08 —-0.22 -0.08 0.25 -0.26 - - -
+BD 0.07 0.02 —-0.35 —-0.05 0.16 0.01 0.34 - -
+LCCG  0.03 0.04 —-0.13 -0.05 0.20 -0.16 0.28 0.11 -
+LCCC 0.02 0.02 0.14 —-0.03 0.10 -0.26 0.30 0.04 0.09
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Figure 3. Plots of 2 x 2 error rates for HMMs, CRFs, and MEMMs on randomly generated synthetic data sets, as described in Section 5.2.
As the data becomes “more second order,’ the error rates of the test models increase. As shown in the left plot, the CRF typically
significantly outperforms the MEMM. The center plot shows that the HMM outperforms the MEMM. In the right plot, each open square
represents a data set with o < % and a solid circle indicates a data set with o > % The plot shows that when the data 1s mostly second
order (o« > %), the discriminatively trained CRF typically outperforms the HMM. These experiments are not designed to demonstrate
the advantages of the additional representational power of CRFs and MEMMs relative to HMMs.
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2 Related Work

The CVG i1s inspired by two lines of research:
Enriching PCFG parsers through more diverse
sets of discrete states and recursive deep learning
models that jointly learn classifiers and continuous
feature representations for variable-sized inputs.

Richard Socher, John Bauer, Christopher Manning, and Andrew Ng. Parsing with Compositional Vector Grammars. In ACL 2013.
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The CVG i1s inspired by two lines of research:
Enriching PCFG parsers through more diverse
sets of discrete states and recursive deep learning
models that jointly learn classifiers and continuous
feature representations for variable-sized inputs.

Improving Discrete Syntactic Representations
As mentioned in the introduction, there are several
approaches to improving discrete representations
for parsing. Klein and Manning (2003a) use
manual feature engineering, while Petrov et
al. (2006) use a learning algorithm that splits
and merges the syntactic categories in order
to maximize likelihood on the treebank. Their
approach splits categories into several dozen
subcategories. Another approach is lexicalized
parsers (Collins, 2003; Charniak, 2000) that
describe each category with a lexical item, usually
the head word. More recently, Hall and Klein

Richard Socher, John Bauer, Christopher Manning, and Andrew Ng. Parsing with Compositional Vector Grammars. In ACL 2013.
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2 Related Work

The CVG i1s inspired by two lines of research:
Enriching PCFG parsers through more diverse
sets of discrete states and recursive deep learning
models that jointly learn classifiers and continuous
feature representations for variable-sized inputs.

Improving Discrete Syntactic Representations Deep Learning and Recursive Deep Learning
As mentioned in the introduction, there are several Early attempts at using neural networks to de-
approaches to improving discrete representations scribe phrases include Elman (1991), who used re-
for parsing. Klein and Manning (2003a) use .
: : . current neural networks to create representations
manual feature engineering, while Petrov et )
of sentences from a simple toy grammar and to

al. (2006) use a learning algorithm that splits _ . :
and merges the syntactic categories in order analyze the linguistic expressiveness of the re-

to maximize likelihood on the treebank. Their sulting representations. Words were represented
approach splits categories into several dozen as one-on vectors, which was feasible since the
subcategories. Another approach is lexicalized grammar only included a handful of words. Col-
parsers (Collins, 2003; Charniak, 2000) that lobert and Weston (2008) showed that neural net-
describe each category with a lexical item, usually works can perform well on sequence labeling lan-

the head word. More recently, Hall and Klein

Richard Socher, John Bauer, Christopher Manning, and Andrew Ng. Parsing with Compositional Vector Grammars. In ACL 2013.
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in a factored parser. We extend the above ideas
from discrete representations to richer continuous
ones. The CVG can be seen as factoring discrete
and continuous parsing in one model. Another
different approach to the above generative models
1s to learn discriminative parsers using many well
designed features (Taskar et al., 2004; Finkel et
al., 2008). We also borrow ideas from this line of
research in tm generative
PCFG model with discriminatively learned RNNGs.

This paper uses several ideas of (Socher et al.,
2011b). The main differences are (1) the dual
representatiormfnodeismate categories and
vectors, (11) the combination with a PCFG, and
(111) the syntactic untying of weights based on
child categories. We directly compare models with
fully tied and untied weights. Another work that
represents phrases with a dual discrete-continuous
representation is (Kartsaklis et al., 2012).

Richard Socher, John Bauer, Christopher Manning, and Andrew Ng. Parsing with Compositional Vector Grammars. In ACL 2013.
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Appendix A: Table of Notation

j
fi
fo

source sentence

sequence of source sentences: fy, ..., f;, ..., fs
source word

length of £

positioninf,j=1,2,...,]

the j-th word in £

empty cept on the source side

Appendix B: Using the IBM Models as Feature Functions

In this article, we use IBM Models 14 as feature functions by taking the logarithm of the
models themselves rather than the sub-models just for simplicity. It is easy to separate
each sub-model as a feature as suggested by Fraser and Marcu (2006). We distinguish

Yang Liu, Qun Liu, and Shouxun Lin. Discriminative Word Alignment by Linear Modeling.

Computational Linguistics. 2010.
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research communities. To accelerate the
development of  Chinese  language
processing technology. under a grant from
863 Program. Institute of Computing
Technology of Chinese Academy of
Sciences took part in building Corpora
Resources of 863 Program together with
Institute  of Automation of Chinese
Academy of Sciences. Tsinghua University.
Peking University. Beying HanWang
Technology Corporation. Anhui USTC
iIFLYTEK Corporation, Graduate School of
the Chinese Academy of Sciences and
Institute of Linguistics of Chinese Academy
of Social Sciences.
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Institute  of Automation of Chinese
Academy of Sciences. Tsinghua University.
Peking

Technology

University,  Beying HanWang
Anhui USTC
iIFLYTEK Corporation, Graduate School of

the Chinese Academy of Sciences and

Corporation.

Institute of Linguistics of Chinese Academy
of Social Sciences.

To advance the state of the art of
Chinese language processing
technology, many institutions in China
took part in building the Corpora
Resources under the grant from the
863 Program. These institutions include
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W= AT+ 55517

The whole process of finding fuzzy-matched word pairs
and computing their similarity is demonstrated in
detail. More importantly, the performance of BLEU is

significantly improved by integrating fuzzy matching.

v

We demonstrate how to find fuzzy-matched word pairs
and compute their similarities in detail. More importantly,
integrating fuzzy matching significantly improved the
translation performance in terms of BLEU.
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their meanings, so it would be a usetul constraint for rule
extraction and reduce the searching space.
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ZEMIRE+ IR +IRZ IR

In this step, we want to induce an alignment between

words and predicates. The alignment can give a roughly
mapping between words and the predicates that express
their meanings, so it would be a usetul constraint for rule

extraction and reduce the searching space.

v

This step induces an alignment between words and predicates.

Reflecting a rough mapping between natural languages and
logic, such alignments impose linguistically motivated
constraints on the search space and improve the efficiency of
rule extraction.

71
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AM —alcrmm{ZE a(f..e; )\"1”))} (7)

AM

= awmm{ZZE (a(f.. e /\ ), as.k)} (8)

AM s—1 k=1

where a(f.. e.: )\"1” ) is the best candidate alignment produced by the linear model:

M
é’l(fs,es;/\f[) = aldma:\{z Ao (fs, €4 a)} (9)

a
m=1

The basic idea of MERT is to optimize only one parameter (i.e., feature weight)
each time and keep all other parameters fixed. This process runs iteratively over M
parameters until it cannot further reduce the loss on the training corpus.

ANINEHNXEASRINEXR, WA, S48
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Jack (2010) argues that it is important to use syntax.

This algorithm proves to runs in approximately linear
time (Jack, 2010).

AIERTA, REERENZAZEZAENER.
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different problems in several scientific fields. Hidden
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The need to learn latent-variable models from
unlabeled data arises in many NLP problems.
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