### Contrastive Unsupervised Word Alignment with Non-Local Features

Yang Liu and Maosong Sun



# Word Alignment

• Word alignment: aligning words between two languages



# Approaches

- Generative [Brown et al., 1993; Vogel et al., 1996, Liang et al., 2006]
  - pros: no need for labeled data
  - cons: hard to extend
- **Discriminative** [Taskar et al., 2005; Moore et al., 2006; Liu et al., 2010]
  - pros: easy to extend
  - cons: rely on labeled data

### Latent-Variable Log-Linear Models



## Challenge

training data  $\{\mathbf{x}^{(i)}\}_{i=1}^{I}$ 

$$\begin{array}{ll} \text{objective} & L(\boldsymbol{\theta}) \ = \ \sum_{i=1}^{I} \log \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x}^{(i)})} \exp(\boldsymbol{\theta} \cdot \boldsymbol{\phi}(\mathbf{x}^{(i)}, \mathbf{y})) - \log Z(\boldsymbol{\theta}) \\ \\ \text{derivative} & \ \frac{\partial L(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_{k}} \ = \ \sum_{i=1}^{I} \mathbb{E}_{\mathbf{y}|\mathbf{x}^{(i)};\boldsymbol{\theta}}[\boldsymbol{\phi}_{k}(\mathbf{x}^{(i)}, \mathbf{y})] - \mathbb{E}_{\mathbf{x},\mathbf{y};\boldsymbol{\theta}}[\boldsymbol{\phi}_{k}(\mathbf{x}, \mathbf{y})] \end{array}$$

i=1

#### intractable to calculate two feature expectations

[Smith and Eisner, 2005; Berg-Kirkpatrick et al., 2010; Dyer et al., 2011]

Idea

#### observation

| ta    | zai  | huiy | yi sh | ang | fab | iao  | yar | njiang |
|-------|------|------|-------|-----|-----|------|-----|--------|
| he    | made | e a  | spe   | ech | at  | the  | me  | eting  |
| noise | 9    |      |       |     |     |      |     |        |
| zai   | fab  | iao  | huiyi | sha | ng  | WO   | yaı | njiang |
| talk  | а    | me   | eting | she | at  | t th | ıe  | made   |

Intuition: observations have higher probabilities than noises

### Contrastive Learning

training data

$$\{\langle \mathbf{x}^{(i)}, \tilde{\mathbf{x}}^{(i)} \rangle\}_{i=1}^{I}$$

objective

$$J(\boldsymbol{\theta}) = \log \prod_{i=1}^{I} \frac{P(\mathbf{x}^{(i)}; \boldsymbol{\theta})}{P(\tilde{\mathbf{x}}^{(i)}; \boldsymbol{\theta})}$$

derivative

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_k} = \sum_{i=1}^{I} \mathbb{E}_{\mathbf{y}|\mathbf{x}^{(i)};\boldsymbol{\theta}}[\boldsymbol{\phi}_k(\mathbf{x}^{(i)},\mathbf{y})] - \mathbb{E}_{\mathbf{y}|\tilde{\mathbf{x}}^{(i)};\boldsymbol{\theta}}[\boldsymbol{\phi}_k(\tilde{\mathbf{x}}^{(i)},\mathbf{y})]$$

#### partition function canceled out

### Concentration

 Alignments with higher probabilities are more important in calculating expectations



### Top-n Sampling



### Comparison with Gibbs Samping

| # samples | Gibbs  | Top-n  |
|-----------|--------|--------|
| 1         | 1.5411 | 0.1653 |
| 5         | 0.7410 | 0.1477 |
| 10        | 0.6550 | 0.1396 |
| 50        | 0.5498 | 0.1108 |
| 100       | 0.5396 | 0.1086 |
| 500       | 0.5180 | 0.0932 |

Comparison with Gibbs sampling in terms of average approximation error

### Effect of Noise Generation

| noise generation | <b>French-English</b> | <b>Chinese-English</b> |
|------------------|-----------------------|------------------------|
| SHUFFLE          | 8.93                  | 21.05                  |
| DELETE           | 9.03                  | 21.49                  |
| INSERT           | 12.87                 | 24.87                  |
| REPLACE          | 13.13                 | 25.59                  |

Effect of noise generation in terms of alignment error rate

### Final Result

| system     | model            | supervision  | algorithm | French-English | <b>Chinese-English</b> |
|------------|------------------|--------------|-----------|----------------|------------------------|
| GIZA++     | IBM model 4      | unsupervised | EM        | 6.36           | 21.92                  |
| Berkeley   | joint HMM        | unsupervised | EM        | 5.34           | 21.67                  |
| fast_align | log-linear model | unsupervised | EM        | 15.20          | 28.44                  |
| Vigne      | linear model     | supervised   | MERT      | 4.28           | 19.37                  |
| this work  | log-linear model | unsupervised | SGD       | 5.01           | 20.24                  |

Comparison with state-of-the-art aligners

# Conclusion

- Word alignment is important for multilingual NLP tasks
- Unsupervised learning of latent-variable log-linear models combines the merits of generative and discriminative approaches
- We have proposed an efficient and accurate learning algorithm for unsupervised word alignment with arbitrary features
- We will apply our approach to other NLP tasks

### Thank You

Source code and data sets are freely available at: <u>http://nlp.csai.tsinghua.edu.cn/~ly/systems/</u> <u>TsinghuaAligner/TsinghuaAligner.html</u>