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Abstract
While recent neural machine translation ap-
proaches have delivered state-of-the-art perfor-
mance for resource-rich language pairs, they suffer
from the data scarcity problem for resource-scarce
language pairs. Although this problem can be al-
leviated by exploiting a pivot language to bridge
the source and target languages, the source-to-pivot
and pivot-to-target translation models are usually
independently trained. In this work, we introduce a
joint training algorithm for pivot-based neural ma-
chine translation. We propose three methods to
connect the two models and enable them to inter-
act with each other during training. Experiments on
Europarl and WMT corpora show that joint training
of source-to-pivot and pivot-to-target models leads
to significant improvements over independent train-
ing across various languages.

1 Introduction
Recent several years have witnessed the rapid development
of neural machine translation (NMT) [Sutskever et al., 2014;
Bahdanau et al., 2015], which advocates the use of neural
networks to directly model the translation process in an end-
to-end way. Thanks to the capability of learning represen-
tations from training data, NMT systems have achieved sig-
nificant improvements over conventional statistical machine
translation (SMT) across a variety of language pairs [Junczys-
Dowmunt et al., 2016; Johnson et al., 2016].

However, there still remains a major challenge for NMT:
large-scale parallel corpora are usually non-existent for most
language pairs. This is unfortunate because NMT is a data-
hungry approach and requires a large amount of data to fully
train translation models. Without sufficient training data,
NMT tends to learn poor estimates on low-count events. Zoph
et al. [2016] indicate that NMT obtains much worse transla-
tion quality than SMT when only small-scale parallel corpora
are available.

As a result, improving neural machine translation on
resource-scarce language pairs has attracted much attention
[Firat et al., 2016; Zoph et al., 2016; Johnson et al., 2016].
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Most existing methods focus on leveraging parallel corpora
of multiple resource-rich language pairs to improve NMT
for resource-scarce language pairs. Firat et al. [2016] pro-
pose multi-way, multilingual neural machine translation to
achieve direct source-to-target translation even without par-
allel data available. Zoph et al. [2016] present a transfer
learning method that transfers the model parameters trained
for resource-rich language pairs to initialize and constrain the
translation model training of resource-scarce language pairs.
Johnson et al. [2016] introduce a universal NMT model for
all language pairs, which takes advantage of multilingual data
to improve NMT for all languages involved.

Bridging source and target languages with a pivot lan-
guage is another important direction, which has been inten-
sively studied in conventional SMT [Cohn and Lapata, 2007;
Wu and Wang, 2007; Utiyama and Isahara, 2007; Bertoldi
et al., 2008; Zahabi et al., 2013; El Kholy et al., 2013].
Pivot-based approaches assume that there exist source-pivot
and pivot-target parallel corpora, which can be used to train
source-to-pivot and pivot-to-target translation models, re-
spectively. One of the most representative approaches, the
triangulation approach [Wu and Wang, 2007], is to construct
a source-to-target phrase table through combining source-to-
pivot and pivot-to-target phrase tables. Another representa-
tive approach adopts a pivot-based translation strategy [Wu
and Wang, 2007]. As a result, source-to-target translation can
be divided into two steps: the source sentence is first trans-
lated into a pivot sentence using the source-to-pivot model,
which is then translated to a target sentence using the pivot-to-
target model. Pivot-based approaches have been widely used
in SMT due to its simplicity, effectiveness, and minimum
requirement of multilingual data. Recently, Johnson et al.
[2016] adapt pivot-based approaches to NMT and show that
their universal model without incremental training achieves
much worse translation performance than pivot-based NMT.

However, pivot-based approaches often suffer from the
error propagation problem: the errors made in the source-
to-pivot translation will be propagated to the pivot-to-target
translation. This can be partly attributed to the discrepancy
between source-pivot and pivot-target parallel corpora since
they are usually loosely-related or even unrelated. To aggra-
vate the situation, source-to-pivot and pivot-to-target transla-
tion models are trained independently, which further enlarges
the gap between source and target languages.



In this work, we propose an approach to joint training for
pivot-based neural machine translation. The basic idea is to
connect the source-to-pivot and pivot-to-target NMT models
and enable them to interact with each other during training.
This can be done either by encouraging the sharing of word
embeddings on the pivot language or by maximizing the like-
lihood of the cascaded model on a small source-target parallel
corpus. Experiments on the Europarl and WMT corpora show
that joint training of source-to-pivot and pivot-to-target mod-
els obtains significant improvements over independent train-
ing.

2 Background
Given a source language sentence x and a target language
sentence y, we use P (y|x;θx→y) to denote a standard
attention-based neural machine translation model [Bahdanau
et al., 2015], where θx→y is a set of model parameters.

Ideally, the source-to-target model can be trained on a
source-target parallel corpus Dx,y = {〈x(s),y(s)〉}Ss=1 using
maximum likelihood estimation:

θ̂x→y = argmax
θx→y

{
L(θx→y)

}
(1)

where the log-likelihood is defined as:

L(θx→y) =

S∑
s=1

logP (y(s)|x(s);θx→y) (2)

Unfortunately, parallel corpora are usually not readily
available for low-resource language pairs. Instead, one can
assume that there exist a third language called pivot with
source-pivot and pivot-target parallel corpora available. As a
result, it is possible to bridge the source and target languages
with the pivot [Cohn and Lapata, 2007; Wu and Wang, 2007;
Bertoldi et al., 2008; Zahabi et al., 2013; El Kholy et al.,
2013]. Figure 1 illustrates the idea of pivot-based translation.

Let z be a pivot language sentence. The source-to-target
model can be decomposed into two sub-models by treating
the pivot sentence as a latent variable:

P (y|x;θx→z,θz→y)

=
∑
z

P (z|x;θx→z)P (y|z;θz→y) (3)

Let Dx,z = {〈x(m), z(m)〉}Mm=1 be a source-pivot paral-
lel corpus, and Dz,y = {〈z(n),y(n)〉}Nn=1 be a pivot-target
parallel corpus. The source-to-pivot and pivot-to-target mod-
els can be independently trained on the two parallel corpora,
respectively:

θ̂x→z = argmax
θx→z

{
L(θx→z)

}
(4)

θ̂z→y = argmax
θz→y

{
L(θz→y)

}
(5)

where the log-likelihoods are defined as:

L(θx→z) =

M∑
m=1

logP (z(m)|x(m);θx→z) (6)

L(θz→y) =

N∑
n=1

logP (y(n)|z(n);θz→y) (7)

Spanish

English

French

Life is a box of chocolate.

La vida es una caja de bombones.

La vie est une boîte de chocolat.

P(z | x;θ x→z )

P(y | z;θ z→y )

Figure 1: The illustration of translation on Spanish-French
with English as the pivot language. The Spanish-English
NMT model P (z|x;θx→z) first transforms a Spanish sen-
tence into latent English sentences, from which English-
French NMT model P (y|z;θz→y) attempts to generate a
French sentence corresponding to the Spanish sentence.

Given an unseen source sentence to be translated x, the
decision rule is given by:

ŷ = argmax
y

{∑
z

P (z|x; θ̂x→z)P (y|z; θ̂z→y)

}
(8)

Due to the exponential search space of the pivot language,
the decoding process is usually approximated with two steps.
The first step translates the source sentence x into a pivot
sentence:

ẑ = argmax
z

{
P (z|x; θ̂x→z)

}
(9)

Then, the pivot sentence is translated to a target sentence:

ŷ = argmax
y

{
P (y|ẑ; θ̂z→y)

}
(10)

Although pivot-based approaches are widely used for ad-
dressing the data scarcity problem in machine translation,
they suffer from cascaded translation errors: the mistakes
made in the source-to-pivot translation as shown in Eq. (9)
will be propagated to the pivot-to-target translation as shown
in Eq. (10). This can be partly attributed to the model dis-
crepancy problem: the source-to-pivot and pivot-to-target
models are quite different in terms of vocabulary and pa-
rameter space because the source-pivot and pivot-target par-
allel corpora are usually loosely-related or even unrelated. To
make things worse, the source-to-pivot model P (z|x;θx→z)
and the pivot-to-target model P (y|z;θz→y) are trained on the
two parallel corpora independently, which further increases
the discrepancy between two models.

Therefore, it is important to reduce the discrepancy be-
tween source-to-pivot and pivot-to-target models to further
improve pivot-based neural machine translation.



3 Joint Training for Pivot-based NMT
3.1 Training Objective
To alleviate the model discrepancy problem, we propose an
approach to joint training for pivot-based neural machine
translation. The basic idea is to connect source-to-pivot and
pivot-to-target models and enable them to interact with each
other during training. Our new training objective is given by:

J (θx→z,θz→y)

= L(θx→z) + L(θz→y) + λR(θx→z,θz→y) (11)

Note that the training objective consists of three parts: the
source-to-pivot likelihoodL(θx→z), the pivot-to-target likeli-
hood L(θz→y), and a connection term R(θx→z,θz→y). The
hyper-parameter λ is used to balance the preference between
likelihoods and the connection term.

We expect that the connection term associates the source-
to-pivot model θx→z with the pivot-to-target model θz→y and
enables the interaction between two models during training.
In the following subsection, we will introduce the three con-
nection terms used in our experiments.

3.2 Connection Terms
It is difficult to connect the source-to-pivot and pivot-to-target
models during training because the source-to-pivot and pivot-
to-target models are distantly-related by definition. More
importantly, NMT lacks linguistically interpretable language
structures such as phrases in SMT to achieve a direct connec-
tion at the parameter level [Wu and Wang, 2007].

Fortunately, both the source-to-pivot and pivot-to-target
models include the word embeddings of the pivot language
as parameters. It is possible to connect the two models via
pivot word embeddings.

More formally, let Vz
x→z be the pivot vocabulary of the

source-to-pivot model and Vz
z→y be the pivot vocabulary of

the pivot-to-target model. We use w to denote a word in the
pivot language and θwx→z ∈ Rd to denote the vector repre-
sentation of w in the source-to-pivot model. θwz→y ∈ Rd is
defined in a similar way.

Our first connection term encourages the two models to
generate the same vector representations for pivot words in
the intersection of two vocabularies:

Rhard(θx→z,θz→y)

=
∏

w∈Vz
x→z∩Vz

z→y

δ(θwx→z,θ
w
z→y) (12)

where δ(θwx→z,θ
w
z→y) = 1 if the two vectors θwx→z and θwz→y

are identical. Otherwise, δ(θwx→z,θ
w
z→y) = 0. This con-

straint requires that θwx→z and θwz→y share the same embed-
dings of the intersected pivot words.

As word embeddings seem hardly to be exactly identical
due to the divergence of natural languages, an alternative is
to soften the above hard matching constraint by penalizing
the Euclidean distance between two vectors:

Rsoft(θx→z,θz→y)

= −
∑

w∈Vz
x→z∩Vz

z→y

||θwx→z − θwz→y||2 (13)

The third connection term assumes that there is a
small bridging source-target parallel corpus D̃x,y =

{〈x(l),y(l)〉}Ll=1 (Bridging Corpus) available. The connec-
tion term is defined as the log-likelihood of the bridging data:

Rlikelihood(θx→z,θz→y)

=

L∑
l=1

logP (y(l)|x(l);θx→z,θz→y) (14)

=

L∑
l=1

log
∑
z

P (z|x(l);θx→z)P (y
(l)|z;θz→y) (15)

3.3 Training
In training, our goal is to find the optimal source-to-pivot and
pivot-to-target model parameters that maximize the training
objective:

θ̂x→z, θ̂z→y = argmax
θx→z,θz→y

{
J (θx→z,θz→y)

}
(16)

The partial derivative of J (θx→z,θz→y) with respect to
the parameters θx→z of the source-to-pivot model can be cal-
culated as:

∂J (θx→z,θz→y)

∂θx→z

=

M∑
m=1

∂ logP (z(m)|x(m);θx→z)

∂θx→z
+

λ
∂R(θx→z,θz→y)

∂θx→z
(17)

The partial derivative with respect to the parameters θz→y

can be calculated similarly.
The gradients of the first and second connection terms

Rhard(θx→z,θz→y) and Rsoft(θx→z,θz→y) with respect
to model parameters are easy to calculate. However,
calculating the gradients of the third connection term
Rlikelihood(θx→z,θz→y) involves enumerating all possible
pivot sentences in an exponential search space (see Eq. (15)).

To alleviate this problem, we follow standard practice to
use a subset to approximate the full space [Shen et al., 2016;
Cheng et al., 2016]. Two methods can be used to generate a
subset: sampling k translations from the full space [Shen et
al., 2016] or generating a top-k list of candidate translations
[Cheng et al., 2016]. We find that using top-k lists leads to
better results than sampling in our experiments.

We use standard mini-batched stochastic gradient descent
algorithms to optimize model parameters. In each iteration,
three mini-batches are constructed by randomly selecting sen-
tence pairs from the source-pivot parallel corpus Dx,z , the
pivot-target parallel corpus Dz,y , and the bridging source-
target parallel corpus Dx,y (only available for the third con-
nection term), respectively. After separate gradient calcula-
tion in each mini-batch, the gradients are collected to update
model parameters.

4 Experiments
4.1 Setup
We evaluated our approach on two translation tasks:



Corpus Lang. Source Target

Europarl

# Sent. 850K
es-en # Word 22.32M 21.44M

Vocab. 118.81K 78.37K
# Sent. 840K

de-en # Word 20.88M 21.91M
Vocab. 242.87K 80.44KM
# Sent. 900K

en-fr # Word 22.56M 25.00M
Vocab. 80.08K 98.50K

WMT

# Sent. 6.78M
es-en # Word 183.01M 166.28M

Vocab. 0.98M 0.91M
# Sent. 9.29M

en-fr # Word 227.06M 258.95M
Vocab. 0.23M 1.19M

Table 1: Characteristics of Spanish-English, German-English
and English-French datasets on the Europarl and WMT cor-
pora. “es” denotes Spanish, “en” denotes English, “de” de-
notes German, and “fr” denotes French.

1. Spanish-English-French: Spanish as the source lan-
guage, English as the pivot language, and French as the
target language,

2. German-English-French: German as the source lan-
guage, English as the pivot language, and French as the
target language.

Table 1 shows the statistics of the Europarl and WMT cor-
pora used in our experiments. We use the tokenize.perl
script for tokenization. For each language pair, we remove
the empty lines and retain sentence pairs with no more than
50 words. To avoid the intersection of the source-pivot and
pivot-target corpora, we split the overlapped pivot-language
sentences of source-to-pivot and pivot-to-target corpora into
two separate parts with equal size and merge them separately
with the non-overlapping parts for each language pair.

The Europarl corpus consists of 850K Spanish-English
sentence pairs with 22.32M Spanish words and 21.44M
English words, 840K German-English sentence pairs with
20.88M German words and 21.91M English words, and 900K
English-French sentence pairs with 22.56M English words
and 25.00M French words. The WMT 2006 shared task
datasets are used as the development and test sets. The evalu-
ation metric is case-insensitive BLEU [Papineni et al., 2002]
as calculated by the multi-bleu.perl script.

The WMT corpus is composed of the Common Crawl,
News Commentary, Europarl v7 and UN corpora. The
Spanish-English parallel corpus consists of 6.78M sentence
pairs with 183.01M Spanish words and 166.28M English
words. The English-French parallel corpus comprises 9.29M
sentence pairs with 227.06M English words and 258.95M
French words. The newstest2011 and newstest2012 datasets
serve as development and test sets. We use case-sensitive
BLEU as the evaluation metric.

We use the attention-based neural machine translation sys-
tem RNNSEARCH [Bahdanau et al., 2015] in our experi-
ments. For the Europarl corpus in Table 1, we set the vocab-
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Figure 2: Learning curves of independent training and joint
training on different connection terms.

ulary size of all the languages to 30K which covers over 99%
of words for English, Spanish and French and over 97 % for
German. We follow Jean et al. [2015] to address rare words.
For Spanish-English and English-French corpora from the
WMT corpus, due to large vocabulary size, we adopt byte
pair encoding [Sennrich et al., 2016b] to split rare words into
sub-words. We set the size of sub-words to 43K, 33K, and
43K for Spanish, English, and French, respectively. These
sub-words cover 100% of the text.

We set the hyper-parameter λ for balancing between like-
lihood and the connection term to 1.0. The threshold of gra-
dients is set to 0.1. The bridging source-target parallel corpus
contains 100K sentence pairs that are sampled from the train-
ing corpus but do not overlap with the training corpus through
removing them. We set k to 10 for calculating top-k lists. The
parameters for the source-to-pivot and pivot-to-target transla-
tion models in the likelihood connection term are initialized
by pre-trained model parameters.

4.2 Results on the Europarl Corpus
Table 2 shows the comparison results between our joint train-
ing on three connection terms and independent training on the
Europarl Corpus. For the source-to-target translation task, we
present source-to-pivot, pivot-to-target and source-to-target
translation results compared with independent training. In
Spanish-to-French translation task, soft connection achieves
significant improvements in Spanish-to-French and Spanish-
to-English directions although hard connection still performs
comparably with independent training. In German-to-French
translation task, soft and hard connections also achieve com-
parable performances with independent training.

In contrast, we find that likelihood connection dramatically
improves translation performance on both Spanish-to-French
and German-to-French corpora (up to +2.80 BLEU scores in
Spanish-to-French and up to 2.23 BLEU scores in German-
to-French). The significant improvements for source-to-pivot
and pivot-to-target directions are also observed. This sug-



Training Connection Dataset Spanish-French German-French
es→ en en→ fr es→ fr de→ en en→ fr de→ fr

indep. - Dev. 31.53 30.46 29.52 26.52 30.46 23.67
Test 31.54 31.42 29.79 26.47 31.42 23.70

joint

hard Dev. 31.81 30.18 29.11 26.48 30.47 23.87
Test 31.55 31.13 29.93 26.58 31.35 23.88

soft Dev. 32.11∗∗ 30.41 30.24∗∗ 26.92 30.39 23.99
Test 31.96∗ 31.40 30.57∗∗ 26.55 31.33 23.79

likelihood Dev. 33.35∗∗ 31.63∗∗ 32.45∗∗ 27.90∗∗ 31.49∗∗ 25.21∗∗
Test 33.54∗∗ 32.33∗∗ 32.59∗∗ 28.01∗∗ 32.34∗∗ 25.93∗∗

Table 2: Comparison between independent and joint training on Spanish-French and German-French translation tasks using
the Europarl corpus. English is treated as the pivot language. The BLEU scores are case-insensitive. “*”: significantly better
than independent training (p < 0.05); “**”: significantly better than independent training (p < 0.01). We use the statistical
significance test with paired bootstrap resampling [Koehn, 2004].

GROUNDTRUTH
source uno no debe empezar a dudar en público del valor , tampoco del valor inmediato en el aspecto material

, de esta ampliación .
pivot it makes little sense to start to doubt in public the value , including the direct value at a material level ,

of this enlargement .
target il ne faut pas commencer à douter en public de la valeur , ni de la valeur immédiate , de la portée

matérielle de cet élargissement .

INDEP. pivot one should not begin to doubt in terms of the value of courage , or of the immediate effect on material
, of enlargement . [BLEU: 13.33]

target il ne faudrait pas se tromper en termes de valeur de courage ou d ’ effet immédiat sur le matériel , l ’
élargissement . [BLEU: 8.69]

HARD
pivot one must not start to doubt in the public , not the immediate value in the material , this enlargement .

[BLEU: 19.02]
target il ne faut pas que l ’ on commence à douter , ni au public , ni à la valeur immédiate , à l ’ élargissement

. [BLEU: 25.36]

SOFT
pivot one cannot start thinking of the value of the value , and the immediate courage , of this enlargement .

[BLEU: 21.57]
target on ne peut pas commencer à penser à la valeur de la valeur , au courage immédiat , de cet élargissement

. [BLEU: 26.60]

LIKLIHHOD
pivot one must not start to question the value of the value , either of the immediate value in the material

aspect , of this enlargement . [BLEU: 24.60]
target il ne faut pas commencer à remettre en question la valeur de la valeur , ni de la valeur immédiate de l

’ aspect matériel , de cet élargissement . [BLEU: 56.40]

Table 3: Examples of pivot and target translations using the pivot-based translation strategy. We observe that our approaches
generate better translations for both pivot and target sentences. We italicize correct translation segments which are no short
than 2-grams.

Method Dataset Spanish-French (WMT)
es→ en en→ fr es→ fr

indep. Dev. 27.62 27.90 24.92
Test 29.03 25.82 24.60

likelihood Dev. 28.92∗∗ 28.52∗∗ 26.24∗∗
Test 30.43∗∗ 26.36∗∗ 25.95∗∗

Table 4: Results on Spanish-French translation task from
WMT corpus. English is treated as the pivot language. “**”:
significantly better than independent training (p < 0.01).

gests that introducing source-to-target parallel corpus to max-
imize P (y|x;θx→z,θz→y) with z as latent variables makes
the source-to-pivot and pivot-to-target translation models im-
proved collaboratively.

Table 3 shows pivot and target translation examples of in-

Systems newstest2012 newstest2013
Firat et al. [2016] 22.08 21.70

this work 25.95∗∗ 25.78∗∗

Table 5: Comparison with Firat et al. [2016] on Spanish-
French translation task from WMT corpus. “**”: signifi-
cantly better than independent training (p < 0.01).

dependent training and our approaches. Apparently, our ap-
proaches improve the translation quality of both pivot sen-
tences and target sentences.

According to Eq. (3), the cost of the source-to-target
model can be decomposed into the costs of source-to-pivot
and pivot-to-target models. As we have a small test trilingual
corpus, (Spanish, English, French), we use the English sen-
tence to approximate the latent variables in Eq. (3). Then



Corpus Lang. source-target source-pivot-target

Europarl es→ fr 26.37 29.79
de→ fr 14.02 23.70

WMT es→ fr 11.75 24.60

Table 6: Translation performance on bridging corpora.

# Sent. es→ en en→ fr es→ fr
0 31.53 30.46 29.52

1K 32.64 30.29 30.23
10K 32.92 30.93 31.51
50K 33.29 31.57 32.40

100K 33.35 31.63 32.45

Table 7: Effect of the data size of source-to-target parallel
corpora (Bridge Corpora) used in LIKELIHOOD.

we calculate the cost of Spanish-to-French on the trilingual
corpus. Figure 2 shows the learning curves of the test cost
of independent training and joint training on three connec-
tion terms. We can find that hard and soft connections learn
slower than the independent training. Likelihood connection
drives its cost lower after fine-tuning based on pre-trained pa-
rameters in just 10K iterations.

4.3 Results on the WMT Corpus
Likelihood connection obtains the best performance in our
three proposed connection terms according to experiments
on the Europarl corpus. To further verify its effectiveness,
we evaluate all the methods on the WMT corpus, which is
much larger than Europarl. As shown in Table 4, we find that
likelihood connection still outperforms independent training
significantly on Spanish-to-English, English-to-French and
Spanish-to-French directions (up to +1.18 BLEU scores in
Spanish-to-French).

We also compare our approach with Firat et al. [2016].
Although our parallel training corpus is much smaller than
theirs, Table 5 shows that our approach achieves substantial
improvements over them (up to +4.32 BLEU).

4.4 Effect of Bridging Corpora
As bridging corpora are used in likelihood connection term
for “bridging” the source-to-pivot and pivot-to-target transla-
tion models, why do not we directly build NMT systems with
these corpora?

We train source-to-target models using bridging corpora
and show translation results in Table 6 . We observe that per-
formance is much worse than that in Table 2 and Table 4 us-
ing the pivot-based translation strategy. It indicates that NMT
yields poor performance on low-resource languages and the
pivot-based translation strategy remedies the drawback to al-
leviate data scarcity effectively.

We also investigate the effect of the data size of bridging
corpora on the likelihood connection. Table 7 shows that us-
ing a small parallel corpus (1K sentence pairs) has made a
measurable improvement. When more than 50K sentence
pairs are added, the further improvements become modest.

This finding suggests that a small corpus suffices to enable the
likelihood connection to reach the reasonable performance.

5 Related Work
Our work is inspired by two lines of research: (1) machine
translation with pivot languages and (2) incorporating addi-
tional data resource for NMT.

5.1 Machine Translation with Pivot Languages
Machine translation suffers from the scarcity of parallel cor-
pora. For low-resource language pairs, a pivot language is
introduced to “bridge” source and target languages in stat-
ical machine translation [Cohn and Lapata, 2007; Wu and
Wang, 2007; Utiyama and Isahara, 2007; Zahabi et al., 2013;
El Kholy et al., 2013].

In NMT, Firat et al. [2016] and Johnson et al [2016] pro-
pose multi-way, multilingual NMT models that enable zero-
resource machine translation. They also need to apply pivot-
based approaches into NMT to ameliorate the performance of
zero-resource machine translation. Zoph et al. [2016] adopt
transfer learning to fine-tune parameters of the low-resource
language pairs using trained parameters on the high-resource
language pairs. However, our approach aims to jointly train
source-to-pivot and pivot-to-target NMT models, which can
alleviate the error propagation of pivot-based approaches. We
use connection terms to “bridge” these two models and make
them benefit each other.

5.2 Incorporating Additional Data Resources for
NMT

Due to the limit in quantity, quality and coverage for par-
allel corpora, additional data resources have raised attention
recently. Gulccehre et al [2015] propose to incorporate target-
side monolingual corpora as a language model for NMT.
Sennrich, Haddow, and Birch [2016a] pair the target mono-
lingual corpora with its automatic, NMT-generated transla-
tions, then merge them with parallel corpora for retraining
source-to-target model. Zhang and Zong [2016] propose two
approaches, self-training algorithm and multi-task learning
framework, to incorporate source-side monolingual corpora.
Cheng et al. [2016] introduce an autoencoder framework to
reconstruct monolingual sentences using source-to-target and
target-to-source NMT models. The proposed model can ex-
ploit both source and target monolingual corpora. In contrast
to Cheng et al. [2016], the objective of our likelihood connec-
tion is to maximize the probability of target-language sen-
tences through pivot sentences given source sentences. We
use a small source-to-target parallel corpus to train source-to-
pivot and pivot-to-target NMT models jointly.

6 Conclusion
We present joint training for pivot-based neural machine
translation. Experiments on different language pairs confirm
that our approach achieves significant improvements. It is
appealing to combine source and pivot sentences for decod-
ing target sentences [Firat et al., 2016] or train a multi-source
model directly [Zoph and Knight, 2016]. We also plan to
study better connection terms for our joint training.
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